1
|
Meng F, Mi P, Yu Z, Wei W, Gao L, Ren J, Li Z, Dai H. Design, synthesis and biological evaluation of 5‑substituted sulfonylureas as novel antifungal agents targeting acetohydroxyacid synthase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Ezzat A, Mohamed MBI, Mahmoud AM, Farag RS, El-Tabl A, Ragab A. Synthesis, spectral characterization, antimicrobial evaluation and molecular docking studies of new Cu (II), Zn (II) thiosemicarbazone based on sulfonyl isatin. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
3
|
Possamai Rossatto FC, Tharmalingam N, Escobar IE, d’Azevedo PA, Zimmer KR, Mylonakis E. Antifungal Activity of the Phenolic Compounds Ellagic Acid (EA) and Caffeic Acid Phenethyl Ester (CAPE) against Drug-Resistant Candida auris. J Fungi (Basel) 2021; 7:jof7090763. [PMID: 34575801 PMCID: PMC8466507 DOI: 10.3390/jof7090763] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Candida auris is an emerging healthcare-associated fungal pathogen that has become a serious global health threat. Current treatment options are limited due to drug resistance. New therapeutic strategies are required to target this organism and its pathogenicity. Plant polyphenols are structurally diverse compounds that present a vast range of biological properties. In the present study, plant-derived molecules ellagic acid (EA) and caffeic acid phenethyl ester (CAPE) were investigated for their antifungal and antivirulence activities against Candida auris. We also tested against C. albicans. The minimum inhibitory concentration (MIC) for EA ranged from 0.125 to 0.25 µg/mL and for CAPE ranged from 1 to 64 µg/mL against drug-resistant C. auris strains. Killing kinetics determined that after 4 h treatment with CAPE, there was a complete reduction of viable C. auris cells compared to fluconazole. Both compounds might act by modifying the fungal cell wall. CAPE significantly reduced the biomass and the metabolic activity of C. auris biofilm and impaired C. auris adhesion to cultured human epithelial cells. Furthermore, both compounds prolonged the survival rate of Galleria mellonella infected by C. auris (p = 0.0088 for EA at 32 mg/kg and p = 0.0028 for CAPE at 4 mg/kg). In addition, EA at 4 μg/mL prolonged the survival of C. albicans-infected Caenorhabditis elegans (p < 0.0001). CAPE was not able to prolong the survival of C. albicans-infected C. elegans. These findings highlight the antifungal and antivirulence effects of EA and CAPE against C. auris, and warrant further investigation as novel antifungal agents against drug-resistant infections.
Collapse
Affiliation(s)
- Fernanda Cristina Possamai Rossatto
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Nagendran Tharmalingam
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
| | - Iliana E. Escobar
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
| | - Pedro Alves d’Azevedo
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Karine Rigon Zimmer
- Laboratory of Biofilms and Alternative Models, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, RS, Brazil; (F.C.P.R.); (P.A.d.); (K.R.Z.)
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Warren Alpert Medical School at Brown University, 593 Eddy Street, P.O. Box 328/330, Providence, RI 02903, USA; (N.T.); (I.E.E.)
- Correspondence: ; Tel.: +1-401-444-7845; Fax: +1-401-444-8179
| |
Collapse
|
4
|
Computational Drug Repurposing Resources and Approaches for Discovering Novel Antifungal Drugs against Candida albicans N-Myristoyl Transferase. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is a yeast that is an opportunistic fungal pathogen and also identified as ubiquitous polymorphic species that is mainly linked with major fungal infections in humans, particularly in the immunocompromised patients including transplant recipients, chemotherapy patients, HIV-infected patients as well as in low-birth-weight infants. Systemic Candida infections have a high mortality rate of around 29 to 76%. For reducing its infection, limited drugs are existing such as caspofungin, fluconazole, terbinafine, and amphotericin B, etc. which contain unlikable side effects and also toxic. This review intends to utilize advanced bioinformatics technologies such as Molecular docking, Scaffold hopping, Virtual screening, Pharmacophore modeling, Molecular dynamics (MD) simulation for the development of potentially new drug candidates with a drug-repurpose approach against Candida albicans within a limited time frame and also cost reductive.
Collapse
|
5
|
A Second-Generation Fungerp Analog, SCY-247, Shows Potent In Vivo Activity in a Murine Model of Hematogenously Disseminated Candida albicans. Antimicrob Agents Chemother 2021; 65:AAC.01989-20. [PMID: 33318003 DOI: 10.1128/aac.01989-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/05/2020] [Indexed: 11/20/2022] Open
Abstract
Echinocandins are a first-line therapy for Candida infections through their ability to inhibit the synthesis of polymer β-(1,3)-d-glucan. However, there has been an emergence of multidrug-resistant fungal species necessitating the development of novel antifungal agents to combat invasive fungal infections. SCY-247, a second-generation glucan synthase inhibitor of the triterpenoid class (fungerps), is currently being developed as a potential therapy option. We determined the pharmacokinetics (PKs) of SCY-247 following oral (gavage) administration in mice and evaluated the efficacy of SCY-247 in a murine model of hematogenously disseminated candidiasis caused by Candida albicans Plasma concentrations of SCY-247 were measurable through the last collected time point in all dose groups. Mean concentrations of SCY-247 increased with dose levels, with concentrations of SCY-247 higher after multiple doses than after a single dose. Treatment with SCY-247 resulted in decreased fungal burden and improvement in survival rates against C. albicans disseminated infection. Treatment with 10 mg/kg of body weight of SCY-247 showed a significant reduction in CFU compared with the untreated control (3-log decrease on average) (P = 0.008). Similarly, 40 mg/kg SCY-247 demonstrated a statistically significant reduction in kidney CFU compared with untreated mice (average log CFU ± SD of 2.38 ± 2.58 versus 6.26 ± 0.51; P = 0.001). Mice treated with SCY-247 at 40 mg/kg exhibited a 100% survival rate at the end of the study, contrasted with 62.5% (5 of 8) survival rate in untreated mice. The results of this investigation indicate that SCY-247 is a promising novel anti-fungal agent with activity against Candida infections.
Collapse
|
6
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
7
|
Zhang TY, Zheng CJ, Wu J, Sun LP, Piao HR. Synthesis of novel dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties as potential antibacterial agents. Bioorg Med Chem Lett 2019; 29:1079-1084. [PMID: 30842033 DOI: 10.1016/j.bmcl.2019.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
Three novel series of dihydrotriazine derivatives bearing 1,3-diaryl pyrazole moieties were designed, synthesized and evaluated in terms of their antibacterial and antifungal activities. Most of the synthesized compounds showed potent inhibition of several Gram-positive bacterial strains (including multidrug-resistant clinical isolates) and Gram-negative bacterial strains with minimum inhibitory concentration values in the range of 1-64 µg/mL. Compounds 4b and 4c presented the most potent inhibitory activity against Gram-positive bacteria (S. aureus 4220, MRSA 3167, QRSA 3519) and Gram-negative bacteria (E. coli 1924), with minimum inhibitory concentration values of 1 or 2 µg/mL. Compared with previous studies, these compounds exhibited a broad spectrum of inhibitory activity. The cytotoxic activity of the compounds 4a, 4b, 4c and 11n were assessed in L02 cells. In vitro enzyme study implied that compound 4c exerted its antibacterial activity through DHFR inhibition.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- Department of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, PR China.
| | - Chang-Ji Zheng
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, PR China
| | - Jie Wu
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, PR China
| | - Liang-Peng Sun
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, PR China
| | - Hu-Ri Piao
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, PR China.
| |
Collapse
|
8
|
Acylhydrazones as Antifungal Agents Targeting the Synthesis of Fungal Sphingolipids. Antimicrob Agents Chemother 2018; 62:AAC.00156-18. [PMID: 29507066 PMCID: PMC5923120 DOI: 10.1128/aac.00156-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/21/2018] [Indexed: 01/19/2023] Open
Abstract
The incidence of invasive fungal infections has risen dramatically in recent decades. Current antifungal drugs are either toxic, likely to interact with other drugs, have a narrow spectrum of activity, or induce fungal resistance. Hence, there is a great need for new antifungals, possibly with novel mechanisms of action. Previously our group reported an acylhydrazone called BHBM that targeted the sphingolipid pathway and showed strong antifungal activity against several fungi. In this study, we screened 19 derivatives of BHBM. Three out of 19 derivatives were highly active against Cryptococcus neoformansin vitro and had low toxicity in mammalian cells. In particular, one of them, called D13, had a high selectivity index and showed better activity in an animal model of cryptococcosis, candidiasis, and pulmonary aspergillosis. D13 also displayed suitable pharmacokinetic properties and was able to pass through the blood-brain barrier. These results suggest that acylhydrazones are promising molecules for the research and development of new antifungal agents.
Collapse
|
9
|
Liu N, Tu J, Dong G, Wang Y, Sheng C. Emerging New Targets for the Treatment of Resistant Fungal Infections. J Med Chem 2018; 61:5484-5511. [DOI: 10.1021/acs.jmedchem.7b01413] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Na Liu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Jie Tu
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Yan Wang
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, People’s Republic of China
| |
Collapse
|
10
|
Abstract
Cryptococcus neoformans is a human pathogenic yeast that causes hundreds of thousands of deaths worldwide among susceptible individuals, in particular, HIV+ patients. This yeast has developed several adaptation mechanisms that allow replication within the host. During decades, this yeast has been well known for a very peculiar and unique structure that contributes to virulence, a complex polysaccharide capsule that surrounds the cell wall. In contrast to other fungal pathogens, such as Candida albicans or Aspergillus fumigatus, the role of morphological transitions has not been studied in the virulence of Cryptococcus neoformans since this yeast does not form hyphae during infection. However, in the last years, different groups have described the ability of this fungus to change its size during infection. In particular, Cryptococcus can form "titan cells," which are blastoconidia of an abnormal large size. Since their discovery, there is increasing evidence that these cells contribute, not only to long-term persistence in the host, but they can also actively participate in the development of the disease. Recently, several groups have simultaneously described different media that induce the appearance of titan cells in laboratory conditions. Using these conditions, new inducing factors and signaling pathways involved in this transition have been described. In this article, we will review the main phenotypic features of these cells, factors, and transduction pathways that induce cell growth, and how titan cells contribute to the disease caused by this pathogen.
Collapse
|
11
|
Niemiec MJ, Grumaz C, Ermert D, Desel C, Shankar M, Lopes JP, Mills IG, Stevens P, Sohn K, Urban CF. Dual transcriptome of the immediate neutrophil and Candida albicans interplay. BMC Genomics 2017; 18:696. [PMID: 28874114 PMCID: PMC5585943 DOI: 10.1186/s12864-017-4097-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 08/30/2017] [Indexed: 12/23/2022] Open
Abstract
Background Neutrophils are traditionally considered transcriptionally inactive. Compared to other immune cells, little is known about their transcriptional profile during interaction with pathogens. Methods We analyzed the meta-transcriptome of the neutrophil-Candida albicans interplay and the transcriptome of C. albicans challenged with neutrophil extracellular traps (NETs) by RNA-Seq, considering yeast and hypha individually in each approach. Results The neutrophil response to C. albicans yeast and hyphae was dominated by a morphotype-independent core response. However, 11 % of all differentially expressed genes were regulated in a specific manner when neutrophils encountered the hyphal form of C. albicans. While involving genes for transcriptional regulators, receptors, and cytokines, the neutrophil core response lacked typical antimicrobial effectors genes. Genes of the NOD-like receptor pathway, including NLRP3, were enriched. Neutrophil- and NET-provoked responses in C. albicans differed. At the same time, the Candida transcriptome upon neutrophil encounter and upon NET challenge included genes from various metabolic processes and indicate a mutual role of the regulators Tup1p, Efg1p, Hap43p, and Cap1p. Upon challenge with neutrophils and NETs, the overall Candida response was partially morphotype-specific. Yet again, actual oppositional regulation in yeasts and hyphae was only detected for the arginine metabolism in neutrophil-infecting C. albicans. Conclusions Taken together, our study provides a comprehensive and quantitative transcript profile of the neutrophil–C. albicans interaction. By considering the two major appearances of both, neutrophils and C. albicans, our study reveals yet undescribed insights into this medically relevant encounter. Hence, our findings will facilitate future research and potentially inspire novel therapy developments. Electronic supplementary material The online version of this article (10.1186/s12864-017-4097-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria J Niemiec
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden.,Present Address: Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), Jena, Germany & Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Christian Grumaz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - David Ermert
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden.,Present Address: Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Christiane Desel
- Institute of Clinical Microbiology, Immunology and Hygiene, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Present Address: The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Madhu Shankar
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - José Pedro Lopes
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden
| | - Ian G Mills
- Prostate Cancer Research Group, Center of Molecular Medicine Norway (NCMM), Oslo, Norway.,Department of Molecular Oncology, Institute of Cancer Research, Radium Hospital, Oslo, Norway.,PCUK/Movember Centre of Excellence for Prostate Cancer Research, Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, Belfast, UK
| | - Philip Stevens
- University of Stuttgart IGVP, Stuttgart, Germany.,Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Kai Sohn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Constantin F Urban
- Department of Clinical Microbiology, Umeå Centre for Microbial Research (UCMR) & Laboratory of Molecular Infection Medicine Sweden (MIMS), Umeå University, Umea, Sweden.
| |
Collapse
|
12
|
SCY-078 Is Fungicidal against Candida Species in Time-Kill Studies. Antimicrob Agents Chemother 2017; 61:AAC.01961-16. [PMID: 28069658 PMCID: PMC5328566 DOI: 10.1128/aac.01961-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/10/2016] [Indexed: 11/20/2022] Open
Abstract
SCY-078 is an orally bioavailable ß-1,3-glucan synthesis inhibitor (GSI) and the first-in-class of structurally novel triterpene antifungals in clinical development for treating candidemia and invasive candidiasis. In vitro susceptibilities by broth microdilution, antifungal carryover, and time-kill dynamics were determined for three reference (ATCC) strains (Candida albicans 90028, Candida parapsilosis 90018, and Candida tropicalis 750), a quality-control (QC) strain (Candida krusei 6258), and four other strains (C. albicans MYA-2732, 64124, and 76485 and Candida glabrata 90030). Caspofungin (CASP), fluconazole (FLC), and voriconazole (VRC) were comparators. For time-kill experiments, SCY-078 and CASP were evaluated at 0.25, 1, 2, 4, 8, and 16 times the MIC80, and FLU and VRC were evaluated at 4× MIC80. The time to reach 50%, 90%, and 99.9% reduction in the number of CFUs from the starting inoculum was determined. Net change in the number of CFU per milliliter was used to determine 50% and 90% effective concentrations and maximum effect (EC50, EC90, and Emax, respectively). The SCY-078 MIC range was between 0.0625 and 1 μg/ml and generally similar to that of CASP. Antifungal carryover was not observed for SCY-078. SCY-078 was fungicidal against seven isolates at ≥4× MIC (kill of ≥3 log10) and achieved a 1.7-log10 reduction in CFU count/milliliter against C. albicans 90028. CASP behaved similarly against each isolate and achieved a 1.5-log10 reduction in the number of CFU/milliliter against C. albicans 90028. Reductions of 50% in CFU count/milliliter were achieved rapidly (1 to 2.8 h); fungicidal endpoints were reached at 12.1 to 21.8 h at ≥4× MIC. EC90 was reached at ∼5× MIC at each time point to 24 h. The EC50 and EC90 values were generally similar (8 to 24 h). Time-kill behavior of CASP was similar to that of SCY-078. FLC and VRC were fungistatic. Overall, SCY-078 has primarily fungicidal activity against Candida spp. and behaved comparably to CASP.
Collapse
|
13
|
Abstract
This Special Issue is designed to highlight the latest research and development on new antifungal compounds with mechanisms of action different from the ones of polyenes, azoles, and echinocandins. The papers presented here highlight new pathways and targets that could be exploited for the future development of new antifungal agents to be used alone or in combination with existing antifungals. A computational model for better predicting antifungal drug resistance is also presented.
Collapse
|
14
|
Arıkan Akdağlı S, Azap A, Başaran Demirkazık F, Ener B, Aşcıoğlu Hayran S, Özdemir Kumbasar Ö, Metan G, Odabaşı Z, Uzun Ö, Akan H. Diagnosis of Invasive Fungal Diseases in Hematological Malignancies: A Critical Review of Evidence and Turkish Expert Opinion (TEO-2). Turk J Haematol 2015; 31:342-56. [PMID: 25541650 PMCID: PMC4454048 DOI: 10.4274/tjh.2014.0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
One of the most problematic issues in hematological malignancies is the diagnosis of invasive fungal diseases. Especially, the difficulty of mycological diagnosis and the necessity of immediate intervention in molds have led to the adoption of “surrogate markers” that do not verify but rather strongly suggest fungal infection. The markers commonly used are galactomannan (GM), beta-glucan, and imaging methods. Although there are numerous studies on these diagnostic approaches, none of these markers serve as a support for the clinician, as is the case in human immunodeficiency virus (HIV) or cytomegalovirus (CMV) infections. This paper has been prepared to explain the diagnostic tests. As molecular tests have not been standardized and are not used routinely in the clinics, they will not be mentioned here.
Collapse
|
15
|
Candida albicans mutant construction and characterization of selected virulence determinants. J Microbiol Methods 2015; 115:153-65. [DOI: 10.1016/j.mimet.2015.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/22/2022]
|
16
|
Alp S, Arikan-Akdagli S, Gulmez D, Ascioglu S, Uzun O, Akova M. Epidemiology of candidaemia in a tertiary care university hospital: 10-year experience with 381 candidaemia episodes between 2001 and 2010. Mycoses 2015; 58:498-505. [DOI: 10.1111/myc.12349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/06/2015] [Accepted: 03/26/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Sehnaz Alp
- Faculty of Medicine; Department of Infectious Diseases and Clinical Microbiology; Hacettepe University; Ankara Turkey
| | - Sevtap Arikan-Akdagli
- Faculty of Medicine; Department of Medical Microbiology; Hacettepe University; Ankara Turkey
| | - Dolunay Gulmez
- Faculty of Medicine; Department of Medical Microbiology; Hacettepe University; Ankara Turkey
| | - Sibel Ascioglu
- Faculty of Medicine; Department of Infectious Diseases and Clinical Microbiology; Hacettepe University; Ankara Turkey
| | - Omrum Uzun
- Faculty of Medicine; Department of Infectious Diseases and Clinical Microbiology; Hacettepe University; Ankara Turkey
| | - Murat Akova
- Faculty of Medicine; Department of Infectious Diseases and Clinical Microbiology; Hacettepe University; Ankara Turkey
| |
Collapse
|
17
|
Simitsopoulou M, Peshkova P, Tasina E, Katragkou A, Kyrpitzi D, Velegraki A, Walsh TJ, Roilides E. Species-specific and drug-specific differences in susceptibility of Candida biofilms to echinocandins: characterization of less common bloodstream isolates. Antimicrob Agents Chemother 2013; 57:2562-70. [PMID: 23529739 PMCID: PMC3716187 DOI: 10.1128/aac.02541-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 03/15/2013] [Indexed: 11/20/2022] Open
Abstract
Candida species other than Candida albicans are increasingly recognized as causes of biofilm-associated infections. This is a comprehensive study that compared the in vitro activities of all three echinocandins against biofilms formed by different common and infrequently identified Candida isolates. We determined the activities of anidulafungin (ANID), caspofungin (CAS), and micafungin (MFG) against planktonic cells and biofilms of bloodstream isolates of C. albicans (15 strains), Candida parapsilosis (6 strains), Candida lusitaniae (16 strains), Candida guilliermondii (5 strains), and Candida krusei (12 strains) by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. Planktonic and biofilm MICs were defined as ≥ 50% fungal damage. Planktonic cells of all Candida species were susceptible to the three echinocandins, with MICs of ≤ 1 mg/liter. By comparison, differences in the MIC profiles of biofilms in response to echinocandins existed among the Candida species. Thus, C. lusitaniae and C. guilliermondii biofilms were highly recalcitrant to all echinocandins, with MICs of ≥ 32 mg/liter. In contrast, the MICs of all three echinocandins for C. albicans and C. krusei biofilms were relatively low (MICs ≤ 1 mg/liter). While echinocandins exhibited generally high MICs against C. parapsilosis biofilms, MFG exhibited the lowest MICs against these isolates (4 mg/liter). A paradoxical growth effect was observed with CAS concentrations ranging from 8 to 64 mg/liter against C. albicans and C. parapsilosis biofilms but not against C. krusei, C. lusitaniae, or C. guilliermondii. While non-albicans Candida planktonic cells were susceptible to all echinocandins, there were drug- and species-specific differences in susceptibility among biofilms of the various Candida species, with C. lusitaniae and C. guilliermondii exhibiting profiles of high MICs of the three echinocandins.
Collapse
Affiliation(s)
- Maria Simitsopoulou
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Pavla Peshkova
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Efthymia Tasina
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Aspasia Katragkou
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Daniela Kyrpitzi
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Aristea Velegraki
- Mycology Laboratory, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - Thomas J. Walsh
- Transplantation-Oncology Infectious Diseases Program, Weill Cornell University Medical Center, New York, New York, USA
- Department of Pediatrics, Weill Cornell Medical Center, New York, New York, USA
- Department of Microbiology & Immunology, Weill Cornell Medical Center, New York, New York, USA
| | - Emmanuel Roilides
- Laboratory of Infectious Diseases, 3rd Department of Pediatrics, Aristotle University School of Medicine, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
18
|
Zhang XB, Yu SJ, Yu JX, Gong YL, Feng W, Sun FJ. Retrospective Analysis of Epidemiology and Prognostic Factors for Candidemia at a Hospital in China, 2000^|^ndash;2009. Jpn J Infect Dis 2012. [DOI: 10.7883/yoken.65.510] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Santos C, Lima N, Sampaio P, Pais C. Matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry to detect emerging pathogenic Candida species. Diagn Microbiol Infect Dis 2011; 71:304-8. [DOI: 10.1016/j.diagmicrobio.2011.07.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/12/2023]
|
20
|
Candida parapsilosis meningitis as the first manifestation of AIDS: case report. J Med Microbiol 2011; 60:1530-1533. [DOI: 10.1099/jmm.0.031716-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Noss I, Wouters IM, Smit LAM, Meijer E, Pronk A, Heederik DJJ, Doekes G. IgG to various beta-glucans in a human adult population. Int Arch Allergy Immunol 2011; 157:98-108. [PMID: 21912179 DOI: 10.1159/000324674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/26/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Fungal β-(1,3)-glucans are pro-inflammatory agents, and exposures to β-(1,3)-glucans are associated with respiratory tract symptoms. IgG anti-(1,3)-glucan titers are measured in diagnosis of fungal infections. Although other β-glucan structures exist, like β-(1,6)-glucans, little is known about their antigenic or pro-inflammatory properties. We aimed to investigate IgG titers and specificities in human sera against different β-glucans with varying structures. METHODS IgG anti-β-glucan was measured by enzyme immunoassay in a random sample of 40 sera from healthy adults, with a panel of 8 differently structured glucans. In a subsequent larger series, IgG anti-β-(1,6)-glucan was measured in a random sample of 667 sera from three occupational populations with different organic dust exposures. Possible determinants of IgG anti-β-(1,6)-glucan titers were explored with linear-regression analysis. RESULTS We found wide variation in anti-β-glucan IgG levels. The highest titers were found for pure β-(1,6)-glucan pustulan. Moderate to strong reactions with other β-(1,6)-containing structures appeared to be due to cross-reacting anti-β-(1,6)-glucan antibodies. Surprisingly, the mean IgG anti-β-(1,6)-glucan titer was significantly lower in agricultural workers - with highest organic dust exposure - than in spray painters and bakery workers. Smoking status was associated with lower IgG anti-β-(1,6)-glucan titers in all populations. CONCLUSIONS IgG to β-(1,3)- and β-(1,6)-glucans can be found in normal human sera. β-(1,6)-glucans appear to be much more potent antigens. The health impact of high anti-β-(1,6)-glucan antibody levels remains unclear and further investigations are needed.
Collapse
Affiliation(s)
- Ilka Noss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
22
|
Performance and cost analysis of matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine identification of yeast. J Clin Microbiol 2011; 49:1614-6. [PMID: 21270234 DOI: 10.1128/jcm.02381-10] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry was compared to phenotypic testing for yeast identification. MALDI-TOF mass spectrometry yielded 96.3% and 84.5% accurate species level identifications (spectral scores, ≥ 1.8) for 138 common and 103 archived strains of yeast. MALDI-TOF mass spectrometry is accurate, rapid (5.1 min of hands-on time/identification), and cost-effective ($0.50/sample) for yeast identification in the clinical laboratory.
Collapse
|
23
|
Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. J Clin Microbiol 2010; 48:3482-6. [PMID: 20668126 DOI: 10.1128/jcm.00687-09] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid identification of yeast species. Using Bruker Daltonics MALDI BioTyper software, we created a spectral database library with m/z ratios of 2,000 to 20,000 Da for 109 type and reference strains of yeast (44 species in 8 genera). The database was tested for accuracy by use of 194 clinical isolates (23 species in 6 genera). A total of 192 (99.0%) of the clinical isolates were identified accurately by MALDI-TOF MS. The MALDI-TOF MS-based method was found to be reproducible and accurate, with low consumable costs and minimal preparation time.
Collapse
|
24
|
Del Poeta M. Fungi are Not All "Fun-Guys" after All. Front Microbiol 2010; 1:105. [PMID: 21687719 PMCID: PMC3109610 DOI: 10.3389/fmicb.2010.00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 01/28/2023] Open
Affiliation(s)
- Maurizio Del Poeta
- Departments of Biochemistry and Molecular Biology, Microbiology and Immunology, and Craniofacial Biology, and Division of Infectious Diseases, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|