1
|
Liu Q, Yan R, Wang L, Li R, Zhang D, Liao C, Mao S. Alpha-asarone alleviates cutaneous hyperalgesia by inhibiting hyperexcitability and neurogenic inflammation via TLR4/NF-κB/NLRP3 signaling pathway in a female chronic migraine rat model. Neuropharmacology 2024; 261:110158. [PMID: 39276863 DOI: 10.1016/j.neuropharm.2024.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Migraine is a highly prevalent neurological disorder. Alpha-asarone (ASA), a major active component found in Acorus tatarinowii, plays a crucial role in analgesia and anti-inflammation for neuropathic pain. This study aimed to assess the efficacy of ASA against migraine and elucidate its potential mechanisms using a well-established inflammatory soup (IS) migraine female rat model. Mechanical pain thresholds were assessed daily before IS infusion, followed by post-infusion administration of ASA. Subsequently, spontaneous locomotor activities, exploratory behavior, short-term spatial memory, and photophobia were blindly evaluated after the final drug administration. The rats were then sacrificed for investigation into the underlying mechanisms of action. Network pharmacology was also employed to predict potential targets and pathways of ASA against migraine. The anti-inflammatory activity of ASA and pathway-related proteins were examined in BV2 cells stimulated with lipopolysaccharides (LPS). The results demonstrated that ASA ameliorated cutaneous hyperalgesia and photophobia while improving spatial memory and increasing exploratory behavior in IS rats. ASA attenuated central sensitization-related indicators and excessive glutamate levels while enhancing GABA synthesis. ASA rescued neuronal loss in the cortex and hippocampus of IS rats. Notably, the ability of ASA to improve spatial memory performance in the Y maze test was not observed with sumatriptan, a first-line treatment drug, suggesting the potential involvement of the TLR4 pathway. Moreover, ASA suppressed microglial activation, reduced pro-inflammatory factors, and downregulated TLR4, MyD88, p-NF-κB/NF-κB, NLRP3, caspase-1, IL-1β, and IL-18. Overall, ASA demonstrated its potential to alleviate hyperalgesia and improve behavioral performance in migraine rats by inhibiting hyperexcitability and microglia-related inflammation.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruijie Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ling Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Can Liao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Pleș H, Florian IA, Timis TL, Covache-Busuioc RA, Glavan LA, Dumitrascu DI, Popa AA, Bordeianu A, Ciurea AV. Migraine: Advances in the Pathogenesis and Treatment. Neurol Int 2023; 15:1052-1105. [PMID: 37755358 PMCID: PMC10535528 DOI: 10.3390/neurolint15030067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
This article presents a comprehensive review on migraine, a prevalent neurological disorder characterized by chronic headaches, by focusing on their pathogenesis and treatment advances. By examining molecular markers and leveraging imaging techniques, the research identifies key mechanisms and triggers in migraine pathology, thereby improving our understanding of its pathophysiology. Special emphasis is given to the role of calcitonin gene-related peptide (CGRP) in migraine development. CGRP not only contributes to symptoms but also represents a promising therapeutic target, with inhibitors showing effectiveness in migraine management. The article further explores traditional medical treatments, scrutinizing the mechanisms, benefits, and limitations of commonly prescribed medications. This provides a segue into an analysis of emerging therapeutic strategies and their potential to enhance migraine management. Finally, the paper delves into neuromodulation as an innovative treatment modality. Clinical studies indicating its effectiveness in migraine management are reviewed, and the advantages and limitations of this technique are discussed. In summary, the article aims to enhance the understanding of migraine pathogenesis and present novel therapeutic possibilities that could revolutionize patient care.
Collapse
Affiliation(s)
- Horia Pleș
- Department of Neurosurgery, Centre for Cognitive Research in Neuropsychiatric Pathology (NeuroPsy-Cog), “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Ioan-Alexandru Florian
- Department of Neurosciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Teodora-Larisa Timis
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Razvan-Adrian Covache-Busuioc
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Luca-Andrei Glavan
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Andrei Adrian Popa
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Andrei Bordeianu
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Neurosurgery Department, “Carol Davila” University of Medicine and Pharmacy, 020021 București, Romania; (R.-A.C.-B.); (L.-A.G.); (D.-I.D.); (A.A.P.); (A.B.); (A.V.C.)
| |
Collapse
|
3
|
Meng W, Reel PS, Nangia C, Rajendrakumar AL, Hebert HL, Guo Q, Adams MJ, Zheng H, Lu ZH, Ray D, Colvin LA, Palmer CNA, McIntosh AM, Smith BH. A Meta-Analysis of the Genome-Wide Association Studies on Two Genetically Correlated Phenotypes Suggests Four New Risk Loci for Headaches. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:64-76. [PMID: 36939796 PMCID: PMC9883337 DOI: 10.1007/s43657-022-00078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022]
Abstract
Headache is one of the commonest complaints that doctors need to address in clinical settings. The genetic mechanisms of different types of headache are not well understood while it has been suggested that self-reported headache and self-reported migraine were genetically correlated. In this study, we performed a meta-analysis of genome-wide association studies (GWAS) on the self-reported headache phenotype from the UK Biobank and the self-reported migraine phenotype from the 23andMe using the Unified Score-based Association Test (metaUSAT) software for genetically correlated phenotypes (N = 397,385). We identified 38 loci for headaches, of which 34 loci have been reported before and four loci were newly suggested. The LDL receptor related protein 1 (LRP1)-Signal Transducer and Activator of Transcription 6 (STAT6)-S hort chain D ehydrogenase/R eductase family 9C member 7 (SDR9C7) region in chromosome 12 was the most significantly associated locus with a leading p value of 1.24 × 10-62 of rs11172113. The One Cut homeobox 2 (ONECUT2) gene locus in chromosome 18 was the strongest signal among the four new loci with a p value of 1.29 × 10-9 of rs673939. Our study demonstrated that the genetically correlated phenotypes of self-reported headache and self-reported migraine can be meta-analysed together in theory and in practice to boost study power to identify more variants for headaches. This study has paved way for a large GWAS meta-analysis involving cohorts of different while genetically correlated headache phenotypes. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00078-7.
Collapse
Affiliation(s)
- Weihua Meng
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100 China
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Parminder S. Reel
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Charvi Nangia
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Aravind Lathika Rajendrakumar
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Harry L. Hebert
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Qian Guo
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100 China
| | - Mark J. Adams
- Division of Psychiatry, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH10 5HF UK
| | - Hua Zheng
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zen Haut Lu
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, BE1410 Brunei Darussalam
| | | | - Debashree Ray
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Lesley A. Colvin
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Colin N. A. Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| | - Andrew M. McIntosh
- Division of Psychiatry, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH10 5HF UK
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD2 4BF UK
| |
Collapse
|
4
|
Rahimi MD, Hassani P, Kheirkhah MT, Fadardi JS. Effectiveness of eye movement exercise and diaphragmatic breathing with jogging in reducing migraine symptoms: A preliminary, randomized comparison trial. Brain Behav 2023; 13:e2820. [PMID: 36454123 PMCID: PMC9847608 DOI: 10.1002/brb3.2820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Migraine is a multifactorial headache disorder. Maladaptive functional networks or altered circuit-related connectivity in the brain with migraine appear to perturb the effects of usual treatments. OBJECTIVES In the present preliminary trial, we aim to study the effectiveness of performing pieces of body-mind, cognitive, or network reconstruction-based training (i.e., eye movement exercise plus jogging; EME+J and diaphragmatic breathing plus jogging; DB+J) in decreasing migraine symptoms. METHODS We used a three-arm, triple-blind, non-inferiority randomized comparison design with pre-test, post-test, and follow-up measurements to assess the effectiveness of EME+J and DB+J in the brain with migraine. Participants were randomly assigned to one of the study groups to perform either 12 consecutive weeks of EME+J (n = 22), DB+J (n = 19), or receiving, treatment as usual, TAU (n = 22). RESULTS The primary outcome statistical analysis through a linear mixed model showed a significant decrease in the frequency (p = .0001), duration (p = .003), and intensity (p = .007) of migraine attacks among the interventions and measurement times. The pairwise comparisons of simple effects showed that EME+J and DB+J effectively reduced migraine symptoms at the post-test and follow-up (p < .05). Cochran's tests showed that interventions decreased the number of menses-related migraine attacks. EME+J and DB+J effectively decreased over-the-counter (OTC) drug use, refreshed wake-up mode, and improved sleep and water drinking patterns. These are the secondary outcomes that Cochran's tests showed in the interventional groups after the interventions and at 12 months of follow-up. CONCLUSION EME+J or DB+J can be an effective and safe method with no adverse effects to decrease the symptoms of migraine attacks. Moreover, a reduction in the frequency of menstrual cycle-related attacks, OTC drug use, and improved quality of sleep and drinking water were the secondary outcomes of the post-test and a 12-month follow-up.
Collapse
Affiliation(s)
| | - Pouriya Hassani
- Department of Cognitive Neuroscience and Clinical Neuropsychology, University of Padova, Padua, Italy
| | | | - Javad Salehi Fadardi
- Faculty of Education and Psychology, Ferdowsi University of Mashhad, Mashhad, Iran.,School of Community and Global Health, Claremont Graduate University, Claremont, California, USA.,School of Psychology, Bangor University, Bangor, UK
| |
Collapse
|
5
|
Andreou AP, Pereira AD. Migraine headache pathophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:61-69. [PMID: 38043971 DOI: 10.1016/b978-0-12-823356-6.00018-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
In both episodic and chronic migraine, headache is the most disabling symptom that requires medical care. The migraine headache is the most well-studied symptom of migraine pathophysiology. The trigeminal system and the central processing of sensory information transmitted by the trigeminal system are of considerable importance in the pathophysiology of migraine headache. Glutamate is the main neurotransmitter that drives activation of the ascending trigeminal and trigeminothalamic pathways. The neuropeptide, calcitonin gene-related peptide (CGRP) that is released by the trigeminal system, plays a crucial role in the neurobiology of headache. Peripheral and central sensitizations associated with trigeminal sensory processing are neurobiologic states that contribute to both the development of headache during a migraine attack and the maintenance of chronic migraine.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Research-Wolfson Centre for Age-Related Diseases (CARD), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Headache Centre, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.
| | - Ana D Pereira
- Headache Research-Wolfson Centre for Age-Related Diseases (CARD), Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
6
|
Benbow T, Teja F, Sheikhi A, Exposto FG, Svensson P, Cairns BE. Peripheral N-methyl-D-aspartate receptor activation contributes to monosodium glutamate-induced headache but not nausea behaviours in rats. Sci Rep 2022; 12:13894. [PMID: 35974090 PMCID: PMC9381496 DOI: 10.1038/s41598-022-18290-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022] Open
Abstract
Monosodium glutamate induces behaviors thought to reflect headache and nausea in rats. We explored the effects of the N-methyl-d-aspartate receptor antagonist (2R)-amino-5-phosphonovaleric acid, the inotropic glutamate receptor antagonist kynurenic acid, and the CGRP receptor antagonist olcegepant, on monosodium glutamate-induced increases in nocifensive, headache-like and nausea behaviours. Effects of these antagonists on motor function were examined with a rotarod. The effect of the dopamine receptor antagonist metoclopramide and the serotonin 3 receptor antagonist ondansetron on nausea behaviour was also assessed. (2R)-amino-5-phosphonovaleric acid, and to a lesser extent, kynurenic acid and olcegepant, reduced nocifensive and headache-like behaviours evoked by monosodium glutamate. No alteration in motor function by (2R)-amino-5-phosphonovaleric acid, kynurenic acid or olcegepant was observed. No sex-related differences in the effectiveness of these agents were identified. Nausea behaviour was significantly more pronounced in male than in female rats. Olcegepant, ondansetron and metoclopramide ameliorated this nausea behaviour in male rats. Ondansetron and metoclopramide also reduced headache-like behaviour in male rats. These findings suggest that peripheral N-methyl-d-aspartate receptor activation underlies monosodium glutamate-induced headache-like behaviour but does not mediate the nausea behaviour in rats.
Collapse
Affiliation(s)
- Tarique Benbow
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Felisha Teja
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Afrooz Sheikhi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Fernando G Exposto
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| | - Peter Svensson
- Section for Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000, Aarhus C, Denmark
| | - Brian E Cairns
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Benbow T, Cairns BE. Dysregulation of the peripheral glutamatergic system: A key player in migraine pathogenesis? Cephalalgia 2021; 41:1249-1261. [PMID: 34148407 PMCID: PMC8504403 DOI: 10.1177/03331024211017882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Although the role of glutamate in migraine pathogenesis remains uncertain, there has been significant interest in the development of drug candidates that target glutamate receptors. Activation of trigeminovascular afferent fibers is now recognized as a crucial step to the onset of a migraine episode. New evidence suggests a dysfunction in peripheral glutamate regulation may play a role in this process. Objective To provide a narrative review of the role of peripheral glutamate dysfunction in migraine. Method A review of recent literature from neurobiological, pharmacological and genomic studies was conducted to support peripheral glutamate dysfunction as a potential element in migraine pathogenesis. Results Studies in rats suggest that elevated blood glutamate mechanically sensitizes trigeminal afferent fibers and stimulates the release of calcitonin-gene related peptide and other neuropeptides to promote and maintain neurogenic inflammation. These effects may be driven by upregulation of glutamate receptors, and modifications to reuptake and metabolic pathways of glutamate. Furthermore, genome wide association studies have found polymorphisms in glutamate receptor and transporter genes that are associated with migraine. Conclusion The role of peripheral glutamate signalling in the onset and maintenance of migraine is not completely elucidated and future studies are still needed to confirm its role in migraine pathogenesis.
Collapse
Affiliation(s)
- Tarique Benbow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Brian E Cairns
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Andreou AP, Leese C, Greco R, Demartini C, Corrie E, Simsek D, Zanaboni A, Koroleva K, Lloyd JO, Lambru G, Doran C, Gafurov O, Seward E, Giniatullin R, Tassorelli C, Davletov B. Double-Binding Botulinum Molecule with Reduced Muscle Paralysis: Evaluation in In Vitro and In Vivo Models of Migraine. Neurotherapeutics 2021; 18:556-568. [PMID: 33205382 PMCID: PMC8116399 DOI: 10.1007/s13311-020-00967-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 12/29/2022] Open
Abstract
With a prevalence of 15%, migraine is the most common neurological disorder and among the most disabling diseases, taking into account years lived with disability. Current oral medications for migraine show variable effects and are frequently associated with intolerable side effects, leading to the dissatisfaction of both patients and doctors. Injectable therapeutics, which include calcitonin gene-related peptide-targeting monoclonal antibodies and botulinum neurotoxin A (BoNT/A), provide a new paradigm for treatment of chronic migraine but are effective only in approximately 50% of subjects. Here, we investigated a novel engineered botulinum molecule with markedly reduced muscle paralyzing properties which could be beneficial for the treatment of migraine. This stapled botulinum molecule with duplicated binding domain-binary toxin-AA (BiTox/AA)-cleaves synaptosomal-associated protein 25 with a similar efficacy to BoNT/A in neurons; however, the paralyzing effect of BiTox/AA was 100 times less when compared to native BoNT/A following muscle injection. The performance of BiTox/AA was evaluated in cellular and animal models of migraine. BiTox/AA inhibited electrical nerve fiber activity in rat meningeal preparations while, in the trigeminovascular model, BiTox/AA raised electrical and mechanical stimulation thresholds in Aδ- and C-fiber nociceptors. In the rat glyceryl trinitrate (GTN) model, BiTox/AA proved effective in inhibiting GTN-induced hyperalgesia in the orofacial formalin test. We conclude that the engineered botulinum molecule provides a useful prototype for designing advanced future therapeutics for an improved efficacy in the treatment of migraine.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Research-Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Charlotte Leese
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rosaria Greco
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Demartini
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Eve Corrie
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Deniz Simsek
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Anna Zanaboni
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Joseph O Lloyd
- Headache Research-Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giorgio Lambru
- Headache Research-Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Headache Centre, Guy's and St Thomas's NHS Foundation Trust, King's Health Partners, London, UK
| | - Ciara Doran
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Oleg Gafurov
- Laboratory of Neurobiology, Kazan University, Kazan, Russia
| | - Elizabeth Seward
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rashid Giniatullin
- Laboratory of Neurobiology, Kazan University, Kazan, Russia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Cristina Tassorelli
- Translational Neurovascular Research Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
9
|
Andreou AP, Edvinsson L. Mechanisms of migraine as a chronic evolutive condition. J Headache Pain 2019; 20:117. [PMID: 31870279 PMCID: PMC6929435 DOI: 10.1186/s10194-019-1066-0] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/03/2019] [Indexed: 12/17/2022] Open
Abstract
Understanding the mechanisms of migraine remains challenging as migraine is not a static disorder, and even in its episodic form migraine remains an "evolutive" chronic condition. Considerable progress has been made in elucidating the pathophysiological mechanisms of migraine, associated genetic factors that may influence susceptibility to the disease, and functional and anatomical changes during the progression of a migraine attack or the transformation of episodic to chronic migraine. Migraine is a life span neurological disorder that follows an evolutive age-dependent change in its prevalence and even clinical presentations. As a disorder, migraine involves recurrent intense head pain and associated unpleasant symptoms. Migraine attacks evolve over different phases with specific neural mechanisms and symptoms being involved during each phase. In some patients, migraine can be transformed into a chronic form with daily or almost daily headaches. The mechanisms behind this evolutive process remain unknown, but genetic and epigenetic factors, inflammatory processes and central sensitization may play an important role.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Research, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- The Headache Centre, Guy's and St Thomas', NHS Foundation Trust, London, UK.
| | - Lars Edvinsson
- Department of Medicine, Lund University, 22185, Lund, Sweden
| |
Collapse
|
10
|
Alstadhaug KB, Andreou AP. Caffeine and Primary (Migraine) Headaches-Friend or Foe? Front Neurol 2019; 10:1275. [PMID: 31849829 PMCID: PMC6901704 DOI: 10.3389/fneur.2019.01275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022] Open
Abstract
Background: The actions of caffeine as an antagonist of adenosine receptors have been extensively studied, and there is no doubt that both daily and sporadic dietary consumption of caffeine has substantial biological effects on the nervous system. Caffeine influences headaches, the migraine syndrome in particular, but how is unclear. Materials and Methods: This is a narrative review based on selected articles from an extensive literature search. The aim of this study is to elucidate and discuss how caffeine may affect the migraine syndrome and discuss the potential pathophysiological pathways involved. Results: Whether caffeine has any significant analgesic and/or prophylactic effect in migraine remains elusive. Neither is it clear whether caffeine withdrawal is an important trigger for migraine. However, withdrawal after chronic exposure of caffeine may cause migraine-like headache and a syndrome similar to that experienced in the prodromal phase of migraine. Sensory hypersensitivity however, does not seem to be a part of the caffeine withdrawal syndrome. Whether it is among migraineurs is unknown. From a modern viewpoint, the traditional vascular explanation of the withdrawal headache is too simplistic and partly not conceivable. Peripheral mechanisms can hardly explain prodromal symptoms and non-headache withdrawal symptoms. Several lines of evidence point at the hypothalamus as a locus where pivotal actions take place. Conclusion: In general, chronic consumption of caffeine seems to increase the burden of migraine, but a protective effect as an acute treatment or in severely affected patients cannot be excluded. Future clinical trials should explore the relationship between caffeine withdrawal and migraine, and investigate the effects of long-term elimination.
Collapse
Affiliation(s)
- Karl B. Alstadhaug
- Nordland Hospital Trust, Bodø, Norway
- Institute of Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Anna P. Andreou
- Headache Research, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- The Headache Centre, Guy's and St Thomas', NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
11
|
Kaur S, Ali A, Ahmad U, Siahbalaei Y, Pandey AK, Singh B. Role of single nucleotide polymorphisms (SNPs) in common migraine. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019. [DOI: 10.1186/s41983-019-0093-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
12
|
Hoffmann J, Storer RJ, Park JW, Goadsby PJ. N-Methyl-d-aspartate receptor open-channel blockers memantine and magnesium modulate nociceptive trigeminovascular neurotransmission in rats. Eur J Neurosci 2019; 50:2847-2859. [PMID: 31009120 DOI: 10.1111/ejn.14423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/01/2023]
Abstract
Experimental and clinical studies suggest that the low-affinity N-methyl-d-aspartate (NMDA) receptor open-channel blockers Mg2+ and memantine are effective in reducing trigeminal nociceptive activation. The aim of this study was to investigate the apparent effectiveness of these channel blockers using a model of trigeminal activation in vivo. Rats were anaesthetized before electrically stimulating the dura mater adjacent the middle meningeal artery. Neurons responding to stimulation were recorded extracellularly using electrophysiological methods. l-Glutamate or NMDA, and Mg2+ , memantine, or sodium controls were applied locally using microiontophoresis. Microiontophoretic application of Mg2+ or memantine into the trigeminocervical complex inhibited mechanically and electrically stimulated craniovascular afferents, and l-glutamate or NMDA-evoked neuronal activity at the second-order trigeminal synapse of craniovascular afferents. By contrast, intravenous administration of MgSO4 (100 mg/kg) or memantine (10 mg/kg) did not significantly affect electrically stimulated afferent-evoked activity within the trigeminocervical complex. The Mg2+ and memantine concentrations achieved after systemic administration may not effectively inhibit activation of the trigeminocervical complex, perhaps providing an explanation for the relatively poor efficacy of these NMDA receptor open-channel blockers for headache treatment in clinical studies. Nevertheless, the present results suggest blocking of NMDA-receptor open channels inhibits nociceptive activation of the trigeminocervical complex. Further exploration of such channel blockers as a therapeutic strategy for primary head pain is warranted.
Collapse
Affiliation(s)
- Jan Hoffmann
- Department of Neurology, University of California, San Francisco, California, USA.,Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Robin James Storer
- Department of Neurology, University of California, San Francisco, California, USA.,Office of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jeong-Wook Park
- Department of Neurology, Catholic University, Seoul, South Korea
| | - Peter J Goadsby
- Department of Neurology, University of California, San Francisco, California, USA.,Headache Group, Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Ong JJY, Wei DYT, Goadsby PJ. Recent Advances in Pharmacotherapy for Migraine Prevention: From Pathophysiology to New Drugs. Drugs 2019; 78:411-437. [PMID: 29396834 DOI: 10.1007/s40265-018-0865-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Migraine is a common and disabling neurological disorder, with a significant socioeconomic burden. Its pathophysiology involves abnormalities in complex neuronal networks, interacting at different levels of the central and peripheral nervous system, resulting in the constellation of symptoms characteristic of a migraine attack. Management of migraine is individualised and often necessitates the commencement of preventive medication. Recent advancements in the understanding of the neurobiology of migraine have begun to account for some parts of the symptomatology, which has led to the development of novel target-based therapies that may revolutionise how migraine is treated in the future. This review will explore recent advances in the understanding of migraine pathophysiology, and pharmacotherapeutic developments for migraine prevention, with particular emphasis on novel treatments targeted at the calcitonin gene-related peptide (CGRP) pathway.
Collapse
Affiliation(s)
- Jonathan Jia Yuan Ong
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.,Division of Neurology, Department of Medicine, National University Health System, University Medicine Cluster, Singapore, Singapore
| | - Diana Yi-Ting Wei
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK
| | - Peter J Goadsby
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,NIHR-Wellcome Trust King's Clinical Research Facility, King's College Hospital, Wellcome Foundation Building, London, SE5 9PJ, UK.
| |
Collapse
|
14
|
Lambru G, Andreou AP, Guglielmetti M, Martelletti P. Emerging drugs for migraine treatment: an update. Expert Opin Emerg Drugs 2018; 23:301-318. [PMID: 30484333 DOI: 10.1080/14728214.2018.1552939] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Migraine is a very frequent and disabling neurological disorder. The current treatment options are old, generally poorly tolerated and not migraine-specific, reflecting the low priority of migraine research and highlighting the vast unmet need in its management. Areas covered: Advancement in the understanding of migraine pathophysiological mechanisms and identification of novel potentially meaningful targets have resulted in a multitude of emerging acute and preventive treatments. Here we review the known putative migraine pathophysiological mechanisms in order to understand the rationale of the most promising novel treatments targeting the Calcitonin-Gene-Related Peptide receptor and ligand and the 5 hydroxytryptamine (5-HT)1F receptor. Key findings on the phase II and phase III clinical trials on these treatments will be summarized. Furthermore, a critical analysis on failed trials of potentially meaningful targets such the nitric oxide and the orexinergic pathways will be conducted. Future perspective will be outlined. Expert opinion: The recent approval of Erenumab and Fremanezumab is a major milestone in the therapy of migraine since the approval of triptans. Several more studies are needed to fully understand the clinical potential, long-term safety and cost-effectiveness of these therapies. This paramount achievement should stimulate the development of further research in the migraine field.
Collapse
Affiliation(s)
- Giorgio Lambru
- a The Headache Centre, Pain Management and Neuromodulation , Guy's and St Thomas NHS Foundation Trust , London , UK.,b The Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience , King's College London , London , UK
| | - Anna P Andreou
- a The Headache Centre, Pain Management and Neuromodulation , Guy's and St Thomas NHS Foundation Trust , London , UK.,b The Wolfson CARD, Institute of Psychology, Psychiatry and Neuroscience , King's College London , London , UK
| | - Martina Guglielmetti
- c Department of Clinical and Molecular Medicine , Sapienza" University, "Sant'Andrea" Hospital, Regional Referral Headache Centre , Rome , Italy
| | - Paolo Martelletti
- c Department of Clinical and Molecular Medicine , Sapienza" University, "Sant'Andrea" Hospital, Regional Referral Headache Centre , Rome , Italy
| |
Collapse
|
15
|
Abstract
Trigeminal autonomic cephalalgia (TAC) encompasses 4 unique primary headache types: cluster headache, paroxysmal hemicrania, hemicrania continua, and short-lasting unilateral neuralgiform headache attacks with conjunctival injection and tearing and short-lasting unilateral neuralgiform headache attacks with cranial autonomic symptoms. They are grouped on the basis of their shared clinical features of unilateral headache of varying durations and ipsilateral cranial autonomic symptoms. The shared clinical features reflect the underlying activation of the trigeminal-autonomic reflex. The treatment for TACs has been limited and not specific to the underlying pathogenesis. There is a proportion of patients who are refractory or intolerant to the current standard medical treatment. From instrumental bench work research and neuroimaging studies, there are new therapeutic targets identified in TACs. Treatment has become more targeted and aimed towards the pathogenesis of the conditions. The therapeutic targets range from the macroscopic and structural level down to the molecular and receptor level. The structural targets for surgical and noninvasive neuromodulation include central neuromodulation targets: posterior hypothalamus and, high cervical nerves, and peripheral neuromodulation targets: occipital nerves, sphenopalatine ganglion, and vagus nerve. In this review, we will also discuss the neuropeptide and molecular targets, in particular, calcitonin gene-related peptide, somatostatin, transient receptor potential vanilloid-1 receptor, nitric oxide, melatonin, orexin, pituitary adenylate cyclase-activating polypeptide, and glutamate.
Collapse
Affiliation(s)
- Diana Y Wei
- Headache Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Rigmor H Jensen
- Danish Headache Centre, Department of Neurology, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Dextromethorphan/Quinidine in Migraine Prophylaxis: An Open-label Observational Clinical Study. Clin Neuropharmacol 2018; 41:64-69. [DOI: 10.1097/wnf.0000000000000272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
|
18
|
Ferrari A, Rustichelli C, Baraldi C. Glutamate receptor antagonists with the potential for migraine treatment. Expert Opin Investig Drugs 2017; 26:1321-1330. [PMID: 29050521 DOI: 10.1080/13543784.2017.1395411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Preclinical, clinical, and other (e.g., genetic) evidence support the concept that migraine susceptibility may at least partially result from a glutamatergic system disorder. Therefore, the receptors of the glutamatergic system are considered relatively new targets for investigational drugs to treat migraine. Investigational and established glutamate receptor antagonists (GluRAs) have been shown to possess antinociceptive properties in preclinical models of trigeminovascular nociception and have been evaluated in clinical trials. This review focuses on preclinical and clinical studies of GluRAs for the treatment of migraine. Areas covered: A PubMed database search (from 1987 to December 2016) and a review of published studies on GluRAs in migraine were conducted. Expert opinion: All published clinical trials of investigational GluRAs have been unsuccessful in establishing benefit for acute migraine treatment. Clinical trial results contrast with the preclinical data, suggesting that glutamate (Glu) does not play a decisive role after the attack has already been triggered. These antagonists may instead be useful for migraine prophylaxis. Improving patient care requires further investigating and critically analyzing the role of Glu in migraine, designing experimental models to study more receptors and their corresponding antagonists, and identifying biomarkers to facilitate trials designed to target specific subgroups of migraine patients.
Collapse
Affiliation(s)
- Anna Ferrari
- a Unit of Medical Toxicology, Headache and Drug Abuse Centre; Department of Diagnostic, Clinical and Public Health Medicine , University of Modena and Reggio Emilia , Modena , Italy
| | - Cecilia Rustichelli
- b Department of Life Sciences , University of Modena and Reggio Emilia , Modena , Italy
| | - Carlo Baraldi
- a Unit of Medical Toxicology, Headache and Drug Abuse Centre; Department of Diagnostic, Clinical and Public Health Medicine , University of Modena and Reggio Emilia , Modena , Italy
| |
Collapse
|
19
|
Antonaci F, Ghiotto N, Wu S, Pucci E, Costa A. Recent advances in migraine therapy. SPRINGERPLUS 2016; 5:637. [PMID: 27330903 PMCID: PMC4870579 DOI: 10.1186/s40064-016-2211-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/22/2016] [Indexed: 01/03/2023]
Abstract
Migraine is a common and highly disabling neurological disorder associated with a high socioeconomic burden. Effective migraine management depends on adequate patient education: to avoid unrealistic expectations, the condition must be carefully explained to the patient soon as it is diagnosed. The range of available acute treatments has increased over time. At present, abortive migraine therapy can be classed as specific (ergot derivatives and triptans) or non-specific (analgesics and non-steroidal anti-inflammatory drugs). Even though acute symptomatic therapy can be optimised, migraine continues to be a chronic and potentially progressive condition. In addition to the drugs officially approved for migraine prevention by international governmental regulatory agencies, numerous different agents are commonly used for this indication, showing various levels of evidence of efficacy and tolerability. Guidelines published in recent years, based on evidence-based medicine data on migraine prophylaxis, are a useful source of guidance, especially for primary care physicians and neurologists without specific expertise in headache medicine. Although the field of pharmacological migraine prevention has seen few advances in recent years, potential novel approaches are now being developed. This review looks at emerging pharmacological strategies for acute and preventive migraine treatment that are nearing or have already entered the clinical trial phase. Specifically, it discusses preclinical and clinical data on compounds acting on calcitonin gene-related peptide or its receptor, the serotonin 5-HT1F receptor, nitric oxide synthase, and acid-sensing ion channel blockers.
Collapse
Affiliation(s)
- Fabio Antonaci
- Headache Center, C. Mondino National Neurological Institute, Pavia, Italy ; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Natascia Ghiotto
- Headache Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Shizheng Wu
- China Qinghai Provincial People's Hospital, Xining, China
| | - Ennio Pucci
- Headache Center, C. Mondino National Neurological Institute, Pavia, Italy ; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Headache Center, C. Mondino National Neurological Institute, Pavia, Italy ; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Fang J, An X, Chen S, Yu Z, Ma Q, Qu H. Case-control study of GRIA1 and GRIA3 gene variants in migraine. J Headache Pain 2016; 17:2. [PMID: 26800698 PMCID: PMC4723374 DOI: 10.1186/s10194-016-0592-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
Background As the most abundant excitatory neurotransmitter in the central nervous system, glutamate has been accepted to play a major role in the pathophysiology of migraine. The previous studies have reported the glutamate receptor ionotropic GRIA1 and GRIA3 genes variants associated with migraine. The project aims to investigate the polymorphisms in both genes for their association with migraine in the Chinese Han population. Methods A Han-Chinese case-control population, including 331 unrelated female migraine patients and 330 matched controls, was studied. Variants in genes (GRIA1 and GRIA3) were genotyped by Multiplex SNaPshot assay. Results In the group of patients, the frequency of allele C was 84.1 % (557 C alleles) and allele T was 15.9 % (105 T alleles) for the GRIA1 (rs2195450) in migraineurs, this was significantly as compared with the controls (P = .001, OR = 1.786, 95 % CI: 1.28–2.49). And an association was also seen in the migraine with aura (MA) subtype (P = .012, OR = 2.092, 95 % CI: 1.17–3.76) and migraine without aura (MO) subtype (P = .002, OR = 1.737, 95 % CI: 1.23–2.45). However, no evidence was found that GRIA1 (rs548294) or GRIA3 (rs3761555) is associated with migraine. Conclusion Our data of this study confirmed the association of GRIA1 (rs2195450) to female migraine (MA, MO) susceptibility in the Chinese Han population. The result provides evidence that the glutamatergic system is implicated in the pathophysiology of migraine.
Collapse
Affiliation(s)
- Jie Fang
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Xingkai An
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Shuai Chen
- The First Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Zhenzhen Yu
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China. .,The First Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Hongli Qu
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
21
|
Andreou AP, Holland PR, Lasalandra MP, Goadsby PJ. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors. Pain 2015; 156:439-450. [PMID: 25679470 DOI: 10.1097/01.j.pain.0000460325.25762.c0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Migraine is a common and disabling neurologic disorder, with important psychiatric comorbidities. Its pathophysiology involves activation of neurons in the trigeminocervical complex (TCC). Kainate receptors carrying the glutamate receptor subunit 5 (GluK1) are present in key brain areas involved in migraine pathophysiology. To study the influence of kainate receptors on trigeminovascular neurotransmission, we determined the presence of GluK1 receptors within the trigeminal ganglion and TCC with immunohistochemistry. We performed in vivo electrophysiologic recordings from TCC neurons and investigated whether local or systemic application of GluK1 receptor antagonists modulated trigeminovascular transmission. Microiontophoretic application of a selective GluK1 receptor antagonist, but not of a nonspecific ionotropic glutamate receptor antagonist, markedly attenuated cell firing in a subpopulation of neurons activated in response to dural stimulation, consistent with selective inhibition of postsynaptic GluK1 receptor-evoked firing seen in all recorded neurons. In contrast, trigeminovascular activation was significantly facilitated in a different neuronal population. The clinically active kainate receptor antagonist LY466195 attenuated trigeminovascular activation in all neurons. In addition, LY466195 demonstrated an N-methyl-d-aspartate receptor-mediated effect. This study demonstrates a differential role of GluK1 receptors in the TCC, antagonism of which can inhibit trigeminovascular activation through postsynaptic mechanisms. Furthermore, the data suggest a novel, possibly presynaptic, modulatory role of trigeminocervical kainate receptors in vivo. Differential activation of kainate receptors suggests unique roles for this receptor in pro- and antinociceptive mechanisms in migraine pathophysiology.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Group, Department of Neurology, University of California, San Francisco, CA, USA Headache Research-Section of Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK, Headache Group, Basic and Clinical Neurosciences, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
22
|
Abstract
Migraine is a neurovascular disorder that is associated with severe headache and neurologic symptoms. The pathogenesis of migraine is believed to involve trigeminovascular system activation with the primary dysfunction located in brainstem. Glutamate, the major excitatory neurotransmitter in the central nervous system, and its receptors have since long been suggested in migraine pathophysiology. Different preclinical studies have confirmed their potential role in migraine. Moreover, several glutamate receptor modulators have been studied in clinical studies, some with promising results. In this review, we will give an overview of what is known about the role of glutamate in the pathogenesis of migraine, which will be followed by an overview of available efficacy, safety and tolerability data for glutamate receptor inhibitors in clinical development for the treatment of migraine.
Collapse
|
23
|
Carreira RJ, Shyti R, Balluff B, Abdelmoula WM, van Heiningen SH, van Zeijl RJ, Dijkstra J, Ferrari MD, Tolner EA, McDonnell LA, van den Maagdenberg AMJM. Large-scale mass spectrometry imaging investigation of consequences of cortical spreading depression in a transgenic mouse model of migraine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:853-61. [PMID: 25877011 PMCID: PMC4422864 DOI: 10.1007/s13361-015-1136-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/10/2015] [Accepted: 03/10/2015] [Indexed: 05/04/2023]
Abstract
Cortical spreading depression (CSD) is the electrophysiological correlate of migraine aura. Transgenic mice carrying the R192Q missense mutation in the Cacna1a gene, which in patients causes familial hemiplegic migraine type 1 (FHM1), exhibit increased propensity to CSD. Herein, mass spectrometry imaging (MSI) was applied for the first time to an animal cohort of transgenic and wild type mice to study the biomolecular changes following CSD in the brain. Ninety-six coronal brain sections from 32 mice were analyzed by MALDI-MSI. All MSI datasets were registered to the Allen Brain Atlas reference atlas of the mouse brain so that the molecular signatures of distinct brain regions could be compared. A number of metabolites and peptides showed substantial changes in the brain associated with CSD. Among those, different mass spectral features showed significant (t-test, P < 0.05) changes in the cortex, 146 and 377 Da, and in the thalamus, 1820 and 1834 Da, of the CSD-affected hemisphere of FHM1 R192Q mice. Our findings reveal CSD- and genotype-specific molecular changes in the brain of FHM1 transgenic mice that may further our understanding about the role of CSD in migraine pathophysiology. The results also demonstrate the utility of aligning MSI datasets to a common reference atlas for large-scale MSI investigations.
Collapse
Affiliation(s)
- Ricardo J. Carreira
- />Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Reinald Shyti
- />Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Benjamin Balluff
- />Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Walid M. Abdelmoula
- />Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Rene J. van Zeijl
- />Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Jouke Dijkstra
- />Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel D. Ferrari
- />Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Else A. Tolner
- />Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liam A. McDonnell
- />Center for Proteomics and Metabolomics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- />Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Arn M. J. M. van den Maagdenberg
- />Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- />Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
24
|
Eftekhari S, Salvatore CA, Johansson S, Chen TB, Zeng Z, Edvinsson L. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood–brain barrier. Brain Res 2015; 1600:93-109. [DOI: 10.1016/j.brainres.2014.11.031] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 01/06/2023]
|
25
|
Solly K, Klein R, Rudd M, Holloway MK, Johnson EN, Henze D, Finley MFA. High-Throughput Screen of GluK1 Receptor Identifies Selective Inhibitors with a Variety of Kinetic Profiles Using Fluorescence and Electrophysiology Assays. ACTA ACUST UNITED AC 2015; 20:708-19. [PMID: 25700884 DOI: 10.1177/1087057115570580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/11/2015] [Indexed: 11/16/2022]
Abstract
GluK1, a kainate subtype of ionotropic glutamate receptors, exhibits an expression pattern in the CNS consistent with involvement in pain processing and migraine. Antagonists of GluK1 have been shown to reduce pain signaling in the spinal cord and trigeminal nerve, and are predicted to provide pain and migraine relief. We developed an ultra-high-throughput small-molecule screen to identify antagonists of GluK1. Using the calcium indicator dye fluo-4, a multimillion-member small-molecule library was screened in 1536-well plate format on the FLIPR (Fluorescent Imaging Plate Reader) Tetra against cells expressing a calcium-permeable GluK1. Following confirmation in the primary assay and subsequent counter-screen against the endogenous Par-1 receptor, 6100 compounds were selected for dose titration to assess potency and selectivity. Final triage of 1000 compounds demonstrating dose-dependent inhibition with IC50 values of less than 12 µM was performed in an automated whole-cell patch clamp electrophysiology assay. Although a weak correlation between electrophysiologically active and calcium-imaging active compounds was observed, the identification of electrophysiologically active compounds with a range of kinetic profiles revealed a broad spectrum of mechanisms of action.
Collapse
Affiliation(s)
- Kelli Solly
- Screening and Protein Sciences, Merck Research Laboratories, North Wales, PA, USA
| | - Rebecca Klein
- Pain & Migraine Pharmacology, Merck Research Laboratories, West Point, PA, USA
| | - Michael Rudd
- Exploratory Chemistry, Merck Research Laboratories, West Point, PA, USA
| | | | - Eric N Johnson
- Screening and Protein Sciences, Merck Research Laboratories, North Wales, PA, USA Wuxi AppTec, Plainsboro, NJ, USA
| | - Darrell Henze
- Pain & Migraine Pharmacology, Merck Research Laboratories, West Point, PA, USA
| | - Michael F A Finley
- Screening and Protein Sciences, Merck Research Laboratories, North Wales, PA, USA
| |
Collapse
|
26
|
|
27
|
Sokolov AY, Lyubashina OA, Berkovich RR, Panteleev SS. Intravenous dextromethorphan/quinidine inhibits activity of dura-sensitive spinal trigeminal neurons in rats. Eur J Pain 2014; 19:1086-94. [PMID: 25410439 DOI: 10.1002/ejp.631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND Migraine is a chronic neurological disorder characterized by episodes of throbbing headaches. Practically all medications currently used in migraine prophylaxis have a number of substantial disadvantages and use limitations. Therefore, the further search for principally new prophylactic antimigraine agents remains an important task. The objective of our study was to evaluate the effects of a fixed combination of dextromethorphan hydrobromide and quinidine sulphate (DM/Q) on activity of the spinal trigeminal neurons in an electrophysiological model of trigemino-durovascular nociception. METHODS The study was performed in 15 male Wistar rats, which were anaesthetized with urethane/α-chloralose and paralysed using pipecuronium bromide. The effects of cumulative intravenous infusions of DM/Q (three steps performed 30 min apart, 15/7.5 mg/kg of DM/Q in 0.5 mL of isotonic saline per step) on ongoing and dural electrical stimulation-induced neuronal activities were tested in a group of eight rats over 90 min. Other seven animals received cumulative infusion of equal volumes of saline and served as control. RESULTS Cumulative administration of DM/Q produced steady suppression of both the ongoing activity of the spinal trigeminal neurons and their responses to electrical stimulation of the dura mater. CONCLUSIONS It is evident that the observed DM/Q-induced suppression of trigeminal neuron excitability can lead to a reduction in nociceptive transmission from meninges to higher centres of the brain. Since the same mechanism is believed to underlie the pharmacodynamics of many well-known antimigraine drugs, results of the present study enable us to anticipate the potential efficacy of DM/Q in migraine.
Collapse
Affiliation(s)
- A Y Sokolov
- Department of Neuropharmacology, Valdman Institute of Pharmacology, First St. Petersburg Pavlov State Medical University, Russia.,Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - O A Lyubashina
- Department of Neuropharmacology, Valdman Institute of Pharmacology, First St. Petersburg Pavlov State Medical University, Russia.,Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - R R Berkovich
- Keck School of Medicine, Department of Neurology, University of Southern California, Los Angeles, USA
| | - S S Panteleev
- Department of Neuropharmacology, Valdman Institute of Pharmacology, First St. Petersburg Pavlov State Medical University, Russia.,Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
28
|
Tajti J, Csáti A, Vécsei L. Novel strategies for the treatment of migraine attacks via the CGRP, serotonin, dopamine, PAC1, and NMDA receptors. Expert Opin Drug Metab Toxicol 2014; 10:1509-20. [PMID: 25253587 DOI: 10.1517/17425255.2014.963554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Migraine is a common, paroxysmal, and disabling primary headache with a high personal and socioeconomic impact. It involves ∼ 16% of the general population. During the years, a number of hypotheses have been put forward concerning the exact pathomechanism, but the final solution is still undiscovered. AREAS COVERED Although the origin is enigmatic, parallel therapeutic efforts have been developed. Current attack therapy does not meet the expectations of the patients or the doctors. This article, based on a PubMed search, reviews the novel pharmacological possibilities that influence the peripheral and central sensitization involved in the disease. EXPERT OPINION In order to overcome the therapeutic insufficiency, a calcitonin gene-related peptide receptor antagonist without the side-effect of liver transaminase elevation is required. Another therapeutic option is to develop a neurally acting antimigraine agent, such as a serotonin-1F receptor agonist, with low adverse central nervous system events. Development of a potent dopamine receptor antagonist is necessary to diminish the premonitory symptoms of migraine. A further option is to decrease the headache intensity with a pituitary adenylate cyclase-activating polypeptide type 1 receptor blocker which can cross the blood-brain barrier. Finally, synthetic kynurenine analogues are required to block the pain transmission in the activated trigeminal system.
Collapse
Affiliation(s)
- János Tajti
- University of Szeged, Department of Neurology , Semmelweis u. 6, H-6725, Szeged , Hungary
| | | | | |
Collapse
|
29
|
Abstract
OPINION STATEMENT The shift in our understanding of migraine as a vascular disorder to a brain disorder has opened new avenues for the development of novel therapeutics with neural targets. The advent of 5-HT1B/1D receptor agonists, the triptans, in the 1990s was a crucial step in the modern evolution of treatment. The use of triptans, like their predecessors, is limited by their vasoconstrictor effects, and new development has been slowed by poor academic research funding to identify new targets. The development of agents without vascular effects, such as calcitonin gene-related peptide receptor antagonists and selective serotonin 5-HT1F receptor agonists, will bring more effective treatments to a population currently without migraine-specific options. In addition, advances in understanding migraine pathophysiology have identified new potential pharmacologic targets such as acid-sensing ion channels, glutamate and orexin receptors, nitric oxide synthase (NOS), and transient receptor potential (TRP) channels. Although previous attempts to block subtypes of glutamate receptors, NOS, and TRP channels have had mixed outcomes, new molecules for the same targets are currently under investigation. Finally, an entirely new approach to migraine treatment with noninvasive neuromodulation via transcutaneous neurostimulation or transcranial magnetic stimulation is just beginning. Hopefully in the coming years we will see a new era of migraine therapy, with multiple classes of better-tolerated, more effective agents targeting diverse yet specific migraine mechanisms.
Collapse
Affiliation(s)
- Amy R Tso
- Headache Group, Department of Neurology, University of California San Francisco, 2330 Post Street, 6th floor, San Francisco, CA, 94115, USA,
| | | |
Collapse
|
30
|
Akerman S, Romero-Reyes M. Insights into the pharmacological targeting of the trigeminocervical complex in the context of treatments of migraine. Expert Rev Neurother 2014; 13:1041-59. [DOI: 10.1586/14737175.2013.827472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Gasparini CF, Sutherland HG, Haupt LM, Griffiths LR. Genetic analysis of GRIA2 and GRIA4 genes in migraine. Headache 2013; 54:303-12. [PMID: 24512576 DOI: 10.1111/head.12234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Migraine is a brain disorder affecting ∼12% of the Caucasian population. Genes involved in neurological, vascular, and hormonal pathways have all been implicated in predisposing individuals to developing migraine. The migraineur presents with disabling head pain and varying symptoms of nausea, emesis, photophobia, phonophobia, and occasionally visual sensory disturbances. Biochemical and genetic studies have demonstrated dysfunction of neurotransmitters: serotonin, dopamine, and glutamate in migraine susceptibility. Glutamate mediates the transmission of excitatory signals in the mammalian central nervous system that affect normal brain function including cognition, memory and learning. The aim of this study was to investigate polymorphisms in the GRIA2 and GRIA4 genes, which encode subunits of the ionotropic AMPA receptor for association in an Australian Caucasian population. METHODS Genotypes for each polymorphism were determined using high resolution melt analysis and the RFLP method. RESULTS Statistical analysis showed no association between migraine and the GRIA2 and GRIA4 polymorphisms investigated. CONCLUSIONS Although the results of this study showed no significant association between the tested GRIA gene variants and migraine in our Australian Caucasian population further investigation of other components of the glutamatergic system may help to elucidate if there is a relationship between glutamatergic dysfunction and migraine.
Collapse
Affiliation(s)
- Claudia F Gasparini
- Genomics Research Centre, Griffith Health Institute, Griffith University, Gold Coast, QLD, Australia
| | | | | | | |
Collapse
|
32
|
Oláh G, Herédi J, Menyhárt A, Czinege Z, Nagy D, Fuzik J, Kocsis K, Knapp L, Krucsó E, Gellért L, Kis Z, Farkas T, Fülöp F, Párdutz A, Tajti J, Vécsei L, Toldi J. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood-brain barrier permeability. DRUG DESIGN DEVELOPMENT AND THERAPY 2013; 7:981-7. [PMID: 24068867 PMCID: PMC3782408 DOI: 10.2147/dddt.s44496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cortical spreading depression (CSD) involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA) and dizocilpine, on CSD and the related blood-brain barrier (BBB) permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid). We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease the permeability of the BBB during CSD. These results suggest that KYNA itself or its derivatives may offer a new approach in the therapy of migraines.
Collapse
Affiliation(s)
- Gáspár Oláh
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Közép fasor 52, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Goadsby PJ. Pathophysiology and Genetics of Migraine. Headache 2013. [DOI: 10.1002/9781118678961.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Ramírez Rosas MB, Labruijere S, Villalón CM, Maassen Vandenbrink A. Activation of 5-hydroxytryptamine1B/1D/1F receptors as a mechanism of action of antimigraine drugs. Expert Opin Pharmacother 2013; 14:1599-610. [PMID: 23815106 DOI: 10.1517/14656566.2013.806487] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The introduction of the triptans (5-hydroxytryptamine (5-HT)1B/1D receptor agonists) was a great improvement in the acute treatment of migraine. However, shortcomings of the triptans have prompted research on novel serotonergic targets for the treatment of migraine. AREAS COVERED In this review the different types of antimigraine drugs acting at 5-HT receptors, their discovery and development are discussed. The first specific antimigraine drugs were the ergot alkaloids, consisting of ergotamine, dihydroergotamine and methysergide, which are agonists at 5-HT receptors, but can also bind α-adrenoceptors and dopamine receptors. In the 1990s, the triptans became available on the market. They are 5-HT1B/1D receptor agonists, showing fewer side effects due to their receptor specificity. In the last years, compounds that bind specifically to 5-HT1D, 5-HT1F and 5-HT7 receptors have been explored for their antimigraine potential. Furthermore, the serotonergic system seems to act in tight connection with the glutamatergic as well as the CGRP-ergic systems, which may open novel therapeutic avenues. EXPERT OPINION Although the triptans are very effective in treating migraine attacks, their shortcomings have stimulated the search for novel drugs. Currently, the focus is on 5-HT1F receptor agonists, which seem devoid of vascular side effects. Moreover, novel compounds that affect multiple transmitter and/or neuropeptide systems that are involved in migraine could be of therapeutic relevance.
Collapse
Affiliation(s)
- Martha B Ramírez Rosas
- Erasmus Medical Centre, Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
35
|
Maher BH, Lea RA, Follett J, Cox HC, Fernandez F, Esposito T, Gianfrancesco F, Haupt LM, Griffiths LR. Association of aGRIA3Gene Polymorphism With Migraine in an Australian Case-Control Cohort. Headache 2013; 53:1245-9. [DOI: 10.1111/head.12151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Bridget H. Maher
- Genomics Research Centre; Griffith Health Institute; Griffith University; Southport; QLD; Australia
| | - Rod A. Lea
- Genomics Research Centre; Griffith Health Institute; Griffith University; Southport; QLD; Australia
| | - Jordan Follett
- Genomics Research Centre; Griffith Health Institute; Griffith University; Southport; QLD; Australia
| | - Hannah C. Cox
- Genomics Research Centre; Griffith Health Institute; Griffith University; Southport; QLD; Australia
| | - Francesca Fernandez
- School of Health Sciences; Illawarra Health and Medical Research Institute; University of Wollongong; NSW; Australia
| | - Teresa Esposito
- Institute of Genetics and Biophysics; Italian National Research Council; Naples; Italy
| | | | - Larisa M. Haupt
- Genomics Research Centre; Griffith Health Institute; Griffith University; Southport; QLD; Australia
| | - Lyn R. Griffiths
- Genomics Research Centre; Griffith Health Institute; Griffith University; Southport; QLD; Australia
| |
Collapse
|
36
|
Eising E, de Vries B, Ferrari MD, Terwindt GM, van den Maagdenberg AMJM. Pearls and pitfalls in genetic studies of migraine. Cephalalgia 2013; 33:614-25. [DOI: 10.1177/0333102413484988] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose of review Migraine is a prevalent neurovascular brain disorder with a strong genetic component, and different methodological approaches have been implemented to identify the genes involved. This review focuses on pearls and pitfalls of these approaches and genetic findings in migraine. Summary Common forms of migraine (i.e. migraine with and without aura) are thought to have a polygenic make-up, whereas rare familial hemiplegic migraine (FHM) presents with a monogenic pattern of inheritance. Until a few years ago only studies in FHM yielded causal genes, which were identified by a classical linkage analysis approach. Functional analyses of FHM gene mutations in cellular and transgenic animal models suggest abnormal glutamatergic neurotransmission as a possible key disease mechanism. Recently, a number of genes were discovered for the common forms of migraine using a genome-wide association (GWA) approach, which sheds first light on the pathophysiological mechanisms involved. Conclusions Novel technological strategies such as next-generation sequencing, which can be implemented in future genetic migraine research, may aid the identification of novel FHM genes and promote the search for the missing heritability of common migraine.
Collapse
Affiliation(s)
- Else Eising
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| |
Collapse
|
37
|
Abstract
Migraine is a common disabling brain disorder whose pathophysiology is now being better understood. The study of anatomy and physiology of pain producing structures in the cranium and the central nervous system modulation of the input have led to the conclusion that migraine involves alterations in the sub-cortical aminergic sensory modulatory systems that influence the brain widely.
Collapse
Affiliation(s)
- Peter J. Goadsby
- Headache Group, Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
38
|
Park JW, Suh GI, Shin HE, Park GE. Influence of memantine on nociceptive responses of the trigeminocervical complex after formalin injection. Cephalalgia 2012; 32:308-16. [PMID: 22290557 DOI: 10.1177/0333102411435986] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Glutamate receptors are implicated in central nervous system (CNS) pain pathways, including trigeminovascular activation, central sensitization, and cortical spreading depression. METHODS We investigated the influence of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine on pain pathways involving trigeminocervical complex (TCC) using a formalin injection model. In Sprague Dawley rats, formalin was delivered into the left periorbital area. Memantine (10 mg/kg) or vehicle was injected intraperitoneally 30 min before the formalin injection. The sensory threshold for mechanical stimulation, assessed by the von Frey monofilament threshold (VFMF), was measured 1 h and 2 h after formalin injection. Formalin-induced pain behavior was measured by monitoring the time spent rubbing the injected area during 60 min after formalin injection. The brainstem was then removed, and sections that spanned the TCC were cut, and stained with a Fos antibody. RESULTS Pretreatment with memantine significantly attenuated formalin-induced pain behavior (p < 0.01) and the sensory threshold for VFMF (p < 0.001). In the TCC, the increase in formalin-induced Fos immunoreactivity was significantly attenuated in the memantine group (p < 0.01). CONCLUSION The present study demonstrated that the NMDA receptor antagonist memantine inhibits the nociceptive process from trigemino-ophthalmic nerve endings to the TCC.
Collapse
|
39
|
Functional analysis of missense variants in the TRESK (KCNK18) K channel. Sci Rep 2012; 2:237. [PMID: 22355750 PMCID: PMC3266952 DOI: 10.1038/srep00237] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 12/23/2011] [Indexed: 01/13/2023] Open
Abstract
A loss of function mutation in the TRESK K2P potassium channel (KCNK18), has recently been linked with typical familial migraine with aura. We now report the functional characterisation of additional TRESK channel missense variants identified in unrelated patients. Several variants either had no apparent functional effect, or they caused a reduction in channel activity. However, the C110R variant was found to cause a complete loss of TRESK function, yet is present in both sporadic migraine and control cohorts, and no variation in KCNK18 copy number was found. Thus despite the previously identified association between loss of TRESK channel activity and migraine in a large multigenerational pedigree, this finding indicates that a single non-functional TRESK variant is not alone sufficient to cause typical migraine and highlights the genetic complexity of this disorder.
Collapse
|
40
|
Esserlind AL, Kirchmann M, Hauge AW, Le H, Olesen J. A genotype-phenotype analysis of the 8q22.1 variant in migraine with aura. Eur J Neurol 2011; 19:603-9. [DOI: 10.1111/j.1468-1331.2011.03588.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Schürks M. Genetics of migraine in the age of genome-wide association studies. J Headache Pain 2011; 13:1-9. [PMID: 22072275 PMCID: PMC3253157 DOI: 10.1007/s10194-011-0399-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/24/2011] [Indexed: 12/12/2022] Open
Abstract
Genetic factors importantly contribute to migraine. However, unlike for rare monogenic forms of migraine, approaches to identify genes for common forms of migraine have been of limited success. Candidate gene association studies were often negative and positive results were often not replicated or replication failed. Further, the significance of positive results from linkage studies remains unclear owing to the inability to pinpoint the genes under the peaks that may be involved in migraine. Problems hampering these studies include limited sample sizes, methods of migraine ascertainment, and the heterogeneous clinical phenotype. Three genome-wide association studies are available now and have successfully identified four new genetic variants associated with migraine. One new variant (rs1835740) modulates glutamate homeostasis, thus integrates well with current concepts of neurotransmitter disturbances. This variant may be more specific for severe forms of migraine such as migraine with aura than migraine without aura. Another variant (rs11172113) implicates the lipoprotein receptor LRP1, which may interact with neuronal glutamate receptors, thus also providing a link to the glutamate pathway. In contrast, rs10166942 is in close proximity to TRPM8, which codes for a cold and pain sensor. For the first time this links a gene explicitly implicated in pain related pathways to migraine. The potential function of the fourth variant rs2651899 (PRDM16) in migraine is unclear. All these variants only confer a small to moderate change in risk for migraine, which concurs with migraine being a heterogeneous disorder. Ongoing large international collaborations will likely identify additional gene variants for migraine.
Collapse
Affiliation(s)
- Markus Schürks
- Department of Neurology, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
| |
Collapse
|
42
|
Christensen AF, Le H, Kirchmann M, Olesen J. Genotype-phenotype correlation in migraine without aura focusing on the rs1835740 variant on 8q22.1. J Headache Pain 2011; 13:21-7. [PMID: 21964821 PMCID: PMC3253151 DOI: 10.1007/s10194-011-0386-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/02/2011] [Indexed: 11/27/2022] Open
Abstract
A large two-stage GWAS by Antilla et al. reported the minor allele of rs1835740 on 8q22.1 to be associated with common types of migraine. The objective of the present study was to determine the clinical correlate of the variant in migraine without aura (MO). Clinical data on 339 successfully genotyped MO patients (patients with attacks of migraine without aura and no attacks of migraine with aura) were obtained by an extensive validated semi-structured telephone interview performed by a physician or a trained senior medical student. Reliable, systematic and extensive data on symptoms, age of onset, attack frequencies and duration, relevant comorbidity, specific provoking factors including different hormonal factors in females, and effect and use of medication, both abortive and prophylactic, were thereby obtained. A comparison of carriers and non-carriers were performed. Comparison of homozygotes with heterozygotes was not performed as the number of homozygotes was too small for statistical purposes. Data from other MO populations in the GWAS by Antilla et al. were not included as phenotype and clinical data were obtained differently. While thousands of patients are needed to detect a genetic variant like rs1835740, 339 are sufficient to detect meaningful clinical differences. 136 of 339 patients were carriers of the variant, 15 were homozygous. Comparison of carriers with non-carriers showed no significant difference in any of the parameters studied. In conclusion, the rs1835740 variant has no significant influence on the clinical expression of MO.
Collapse
Affiliation(s)
- Anne Francke Christensen
- Department of Neurology, Danish Headache Center, University of Copenhagen, Glostrup University Hospital, Nordre Ringvej 57, Glostrup, 2600, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
43
|
Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci 2011; 12:570-84. [DOI: 10.1038/nrn3057] [Citation(s) in RCA: 385] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Andreou AP, Goadsby PJ. Topiramate in the treatment of migraine: A kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia 2011; 31:1343-58. [DOI: 10.1177/0333102411418259] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background: The development of new agents for the preventive treatment of migraine is the greatest unmet need in the therapeutics of primary headaches. Topiramate, an anticonvulsant drug, is an effective anti-migraine preventive whose mechanism of action is not fully elucidated. Since glutamate plays a major role in migraine pathophysiology, the potential action of topiramate through glutamatergic mechanisms is of considerable interest. Methods: Recordings of neurons in the trigeminocervical complex (TCC) and the ventroposteromedial thalamic nucleus (VPM) of anesthetized rats were made using electrophysiological techniques. The effects of intravenous or microiontophorezed topiramate on trigeminovascular activation of second- and third-order neurons in the trigeminothalamic pathway were characterized. The potential interactions of topiramate with the ionotropic glutamate receptors were studied using microiontophoresis. Results: Both intravenous and microiontophorized topiramate significantly inhibited trigeminovascular activity in the TCC and VPM. In both nuclei microiontophoretic application of topiramate significantly attenuated kainate receptor-evoked firing but had no effect on N-methyl-d-aspartic acid or α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor activation. Conclusion: The data demonstrate for the first time that topiramate modulates trigeminovascular transmission within the trigeminothalamic pathway with the kainate receptor being a potential target. Understanding the mechanism of action of topiramate may help in the design of new medications for migraine prevention, with the data pointing to glutamate-kainate receptors as a fruitful target to pursue.
Collapse
|
45
|
Gazquez I, Lopez-Escamez JA. Genetics of recurrent vertigo and vestibular disorders. Curr Genomics 2011; 12:443-50. [PMID: 22379397 PMCID: PMC3178912 DOI: 10.2174/138920211797248600] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 11/22/2022] Open
Abstract
We present recent advances in the genetics of recurrent vertigo, including familial episodic ataxias, migraneous vertigo, bilateral vestibular hypofunction and Meniere's disease.Although several vestibular disorders are more common within families, the genetics of vestibulopathies is largely not known. Genetic loci and clinical features of familial episodic ataxias have been defined in linkage disequilibrium studies with mutations in neuronal genes KCNA1 and CACNA1A. Migrainous vertigo is a clinical disorder with a high comorbidity within families much more common in females with overlapping features with episodic ataxia and migraine. Bilateral vestibular hypofunction is a heterogeneous clinical group defined by episodes of vertigo leading to progressive loss of vestibular function which also can include migraine. Meniere's disease is a clinical syndrome characterized by spontaneous episodes of recurrent vertigo, sensorineural hearing loss, tinnitus and aural fullness and familial Meniere's disease in around 10-20% of cases. An international collaborative effort to define the clinical phenotype and recruiting patients with migrainous vertigo and Meniere's disease is ongoing for genome-wide association studies.
Collapse
Affiliation(s)
- Irene Gazquez
- Otology & Neurotology Group, CTS495, Centro de Genómica e Investigación Oncológica –GENyO Pfizer-Universidad de Granada- Junta de Andalucia, Granada
| | - Jose A Lopez-Escamez
- Otology & Neurotology Group, CTS495, Centro de Genómica e Investigación Oncológica –GENyO Pfizer-Universidad de Granada- Junta de Andalucia, Granada
- Department of Otolaryngology, Hospital de Poniente, El Ejido, Almería, Spain
| |
Collapse
|
46
|
Bekkelund SI, Alstadhaug KB. Migraine prophylactic drugs – something new under the sun? Expert Opin Investig Drugs 2011; 20:1201-10. [DOI: 10.1517/13543784.2011.601741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Monteith TS, Goadsby PJ. Acute migraine therapy: new drugs and new approaches. Curr Treat Options Neurol 2011; 13:1-14. [PMID: 21110235 PMCID: PMC3016076 DOI: 10.1007/s11940-010-0105-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OPINION STATEMENT The conceptual shift of our understanding of migraine from a vascular disorder to a brain disorder has dramatically altered the approach to the development of new medicines in the field. Current pharmacologic treatments of acute migraine consist of nonspecific and relatively specific agents. Migraine-specific drugs comprise two classes, the ergot alkaloid derivatives and the triptans, serotonin 5-HT(1B/1D) receptor agonists. The ergots, consisting of ergotamine and dihydroergotamine (DHE), are the oldest specific antimigraine drugs available and are considered relatively safe and effective. Ergotamine has been used less extensively because of its adverse effects; DHE is better tolerated. The triptan era, beginning in the 1990s, was a period of considerable change, although these medicines retained vasoconstrictor actions. New methods of delivering older drugs include orally inhaled DHE and the transdermal formulation of sumatriptan, both currently under study. Novel medicines being developed are targeted at neural sites of action. Serotonin 5-HT(1F) receptor agonists have proven effective in phase II studies and have no vascular actions. Calcitonin gene-related peptide (CGRP) receptor antagonists are another promising nonvasoconstrictor approach to treating acute migraine. Olcegepant (BIBN4096BS) and telcagepant (MK-0974) have been shown to be safe and effective in phase I, II, and (for telcagepant) phase III clinical trials. Other targets under investigation include glutamate (AMPA/kainate), TRPV1, prostanoid EP4, and nitric oxide synthase. With new neural targets and the potential for therapeutic advances, the next era of antimigraine medications is near.
Collapse
Affiliation(s)
- Teshamae S. Monteith
- Department of Neurology, UCSF Headache Center, 1701 Divisadero Street, Suite 480, San Francisco, CA 94115 USA
| | - Peter J. Goadsby
- Department of Neurology, UCSF Headache Center, 1701 Divisadero Street, Suite 480, San Francisco, CA 94115 USA
| |
Collapse
|
48
|
Chasman DI, Schürks M, Anttila V, de Vries B, Schminke U, Launer LJ, Terwindt GM, van den Maagdenberg A, Fendrich K, Völzke H, Ernst F, Griffiths LR, Buring JE, Kallela M, Freilinger T, Kubisch C, Ridker PM, Palotie A, Ferrari MD, Hoffmann W, Zee RYL, Kurth T. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet 2011; 43:695-8. [PMID: 21666692 PMCID: PMC3125402 DOI: 10.1038/ng.856] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/16/2011] [Indexed: 11/08/2022]
Abstract
Migraine is a common, heterogeneous and heritable neurological disorder. Its pathophysiology is incompletely understood, and its genetic influences at the population level are unknown. In a population-based genome-wide analysis including 5,122 migraineurs and 18,108 non-migraineurs, rs2651899 (1p36.32, PRDM16), rs10166942 (2q37.1, TRPM8) and rs11172113 (12q13.3, LRP1) were among the top seven associations (P < 5 × 10(-6)) with migraine. These SNPs were significant in a meta-analysis among three replication cohorts and met genome-wide significance in a meta-analysis combining the discovery and replication cohorts (rs2651899, odds ratio (OR) = 1.11, P = 3.8 × 10(-9); rs10166942, OR = 0.85, P = 5.5 × 10(-12); and rs11172113, OR = 0.90, P = 4.3 × 10(-9)). The associations at rs2651899 and rs10166942 were specific for migraine compared with non-migraine headache. None of the three SNP associations was preferential for migraine with aura or without aura, nor were any associations specific for migraine features. TRPM8 has been the focus of neuropathic pain models, whereas LRP1 modulates neuronal glutamate signaling, plausibly linking both genes to migraine pathophysiology.
Collapse
Affiliation(s)
- Daniel I. Chasman
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Donald W. Reynolds Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Markus Schürks
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Department of Neurology, University Hospital Essen, Germany
| | - Verneri Anttila
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
| | - Ulf Schminke
- Department of Neurology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Lenore J. Launer
- National Institute of Aging, Laboratory for Epidemiology, Demography, and Biometry, Bethesda, Maryland, USA
| | - Gisela M. Terwindt
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Arn van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Konstanze Fendrich
- Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, Section Clinical Epidemiological Research, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Florian Ernst
- Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Lyn R. Griffiths
- Genomics Research Centre, Griffith Health Institute, Griffith University, Gold Coast, 4222, Qld, Australia
| | - Julie E. Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Mikko Kallela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Tobias Freilinger
- Department of Neurology, Klinikum Großhadern, Ludwig-Maximilians-Universität and Institute for Stroke and Dementia Research, Klinikum der Universität München, Munich, Germany
| | | | - Paul M Ridker
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Donald W. Reynolds Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Aarno Palotie
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Helsinki University Central Hospital, Helsinki, Finland
- The Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Michel D. Ferrari
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Wolfgang Hoffmann
- Institute for Community Medicine, Section Epidemiology of Health Care and Community Health, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Robert Y. L. Zee
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Tobias Kurth
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- INSERM Unit 708 – Neuroepidemiology, Paris, France
- UPMC Univ Paris 06, F-75005, Paris, France
| |
Collapse
|
49
|
Ligthart L, de Vries B, Smith AV, Ikram MA, Amin N, Hottenga JJ, Koelewijn SC, Kattenberg VM, de Moor MHM, Janssens ACJW, Aulchenko YS, Oostra BA, de Geus EJC, Smit JH, Zitman FG, Uitterlinden AG, Hofman A, Willemsen G, Nyholt DR, Montgomery GW, Terwindt GM, Gudnason V, Penninx BWJH, Breteler M, Ferrari MD, Launer LJ, van Duijn CM, van den Maagdenberg AMJM, Boomsma DI. Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur J Hum Genet 2011; 19:901-7. [PMID: 21448238 PMCID: PMC3172930 DOI: 10.1038/ejhg.2011.48] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Migraine is a common neurological disorder with a genetically complex background. This paper describes a meta-analysis of genome-wide association (GWA) studies on migraine, performed by the Dutch–Icelandic migraine genetics (DICE) consortium, which brings together six population-based European migraine cohorts with a total sample size of 10 980 individuals (2446 cases and 8534 controls). A total of 32 SNPs showed marginal evidence for association at a P-value<10−5. The best result was obtained for SNP rs9908234, which had a P-value of 8.00 × 10−8. This top SNP is located in the nerve growth factor receptor (NGFR) gene. However, this SNP did not replicate in three cohorts from the Netherlands and Australia. Of the other 31 SNPs, 18 SNPs were tested in two replication cohorts, but none replicated. In addition, we explored previously identified candidate genes in the meta-analysis data set. This revealed a modest gene-based significant association between migraine and the metadherin (MTDH) gene, previously identified in the first clinic-based GWA study (GWAS) for migraine (Bonferroni-corrected gene-based P-value=0.026). This finding is consistent with the involvement of the glutamate pathway in migraine. Additional research is necessary to further confirm the involvement of glutamate.
Collapse
Affiliation(s)
- Lannie Ligthart
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Potential mechanisms of prospective antimigraine drugs: A focus on vascular (side) effects. Pharmacol Ther 2011; 129:332-51. [DOI: 10.1016/j.pharmthera.2010.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 12/13/2022]
|