1
|
Wilson B, Peterson CM, Wei H, Ying M, Bartek J, Chen CC. "Doctor, What Would You do if You Were Me?" - A Survey of Physician Perspectives Toward Glioblastoma Resection. World Neurosurg 2024; 190:e249-e255. [PMID: 39038644 DOI: 10.1016/j.wneu.2024.07.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE How maximal safe resection of glioblastoma (GBM) is implemented in the clinical setting remains understudied. Here, we utilized a survey-based approach to understand physician perspectives on this matter. METHODS Scenarios involving GBMs were presented to physicians who were asked to select from planned subtotal resection, gross total resection (GTR), medical therapy only, or palliative care. Demographic, experience, and Likert scales of value assessment were collected. RESULTS In the scenario involving a corpus callosum GBM, 2.33% opted for GTR. For a right frontal GBM, 91.7% opted for GTR. In contrast, only 30.8% chose GTR of a right motor strip GBM (P < 0.001). When presented with a left motor strip GBM, fewer respondents (12.7%, P < 0.001) opted for GTR. Physicians who placed a high value on preserving physical independence were more likely to forgo GTR for right motor GBMs (hazard ratio = 0.068, 95% confidence interval: 0.47-0.97, P = 0.035), and physicians who placed a high value on their faith were more likely to opt for surgical treatments that differ from the general consensus, for instance opting for GTR of the corpus callosum GBM (hazard ratio = 4.18, 95% confidence interval: 1.63-10.74, P = 0.003). No other associations were found between the choice for GTR and other variables collected. CONCLUSIONS Our results suggest that while maximal safe resection remains a guiding principle for GBM resection, physician preference in terms of the extent of resection varies significantly as a function of tumor location and personal values.
Collapse
Affiliation(s)
- Bayard Wilson
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Crina M Peterson
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Hua Wei
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | - Mao Ying
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | - Jiri Bartek
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Clark C Chen
- Department of Neurosurgery, Warren Alpert School of Medicine, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
2
|
Ainslie K. Modifying Post-Surgical Immunity: Controlled Release of TLR7/8 Agonist for Immune Mediated Clearance of Glioblastoma. RESEARCH SQUARE 2024:rs.3.rs-5024510. [PMID: 39399681 PMCID: PMC11469459 DOI: 10.21203/rs.3.rs-5024510/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Glioblastoma is an aggressive brain cancer with a dismal prognosis despite current therapeutic interventions. Tumor resection is standard-of-care for glioblastoma and has profound immunostimulatory effects. Resulting in a nadir in tumor burden, resection offers a unique opportunity to break local immune tolerance and mount an effective anti-tumor immune response. Here, we explore the effect of local and controlled release of TLR7/8 agonist from a polymer scaffold implanted at the time of tumor resection. We find that sustained release of TLR7/8 agonist leads to clearance of residual post-resection tumor, improved survival, and subsequent protection from tumor challenge in mice bearing orthotopic GL261 or CT2A gliomas. We show that scaffold therapy boosts resection-mediated disruption to the tumor microenvironment, leading to an early inflammatory innate immune response both in the brain and cervical lymph node. This is followed by an influx of activated NK cells in the brain and effector T cells in the lymph node and brain. In sum, sustained local TLR7/8 agonism within the context of tumor resection is a promising approach for glioblastoma.
Collapse
|
3
|
Jahnke K, Struve N, Hofmann D, Gote MJ, Bach M, Kriegs M, Hausmann M. Formation of EGFRwt/EGFRvIII homo- and hetero-dimers in glioblastoma cells as detected by single molecule localization microscopy. NANOSCALE 2024; 16:15240-15255. [PMID: 39073345 DOI: 10.1039/d4nr01570c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Super-resolution microscopy has been used to show the formation of receptor clusters and adapted lipid organization of cell membranes for many members of the ErbB receptor family. The clustering behaviour depends on the receptor size and shape, possibly ligand binding or expression activity. Using single molecule localization microscopy (SMLM), we also showed this typical clustering for the epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma multiforme (GBM) cells. EGFRvIII is co-expressed with the wild type (EGFRwt) and both receptors are assumed to preferentially form hetero-dimers leading to transactivation and elevated oncogenic EGFR-signalling in GBM cells. Here, we analysed EGFRvIII and EGFRwt co-localization using our already described model system of the glioblastoma cell line DKMG, displaying endogenous EGFRvIII expression. Using EGFRvIII and EGFRwt specific antibodies, EGFR localization and their potential for dimerization in a given membrane cluster were analysed by dual colour SMLM supported by novel approaches of mathematic evaluations including Ripley statistics, persistent homology and similarity algorithms. Surprisingly, cluster analysis, Ripley point-to-point distance statistics for cluster geometry and persistent homology comparing cluster topology, revealed that both EGFRvIII and EGFRwt do primarily not form hetero-dimers but the results support the hypothesis that they tend to form homo-dimers. The ratio of homo-dimers obtained by this calculation was significantly higher (>5σ, standard deviation) than expected from randomly arranged points. In comparison, hetero-dimer formation was only slightly increased. We confirmed these data by immunoprecipitation, which show no co-precipitation of EGFRvIII and EGFRwt. Furthermore, we showed that the topology of the clusters was more similar among the same type than among the different types of receptors. Taken together, these data indicate that EGFRvIII does induce oncogenic signalling by homo-dimerisation and not preferentially by hetero-dimer formation with EGFRwt. These data offer a new perspective on EGFRvIII signalling which will lead to a better understanding of this tumour associated receptor variant in GBM.
Collapse
Affiliation(s)
- Kevin Jahnke
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Nina Struve
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg - Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Daniel Hofmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Martin Julius Gote
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Margund Bach
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| | - Malte Kriegs
- Department of Radiotherapy & Radiation Oncology, University Medical Center Hamburg - Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Sharma V, Vinchure OS, Yadav G, Sarkar C, Kulshreshtha R. A novel interplay between PRC2 and miR-3189 regulates epithelial-mesenchymal transition (EMT) via modulating COL6A2 in glioblastoma. J Cell Physiol 2024; 239:e31326. [PMID: 38860406 DOI: 10.1002/jcp.31326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Recent studies have shed light on disrupted collagen signaling in Gliomas, yet the regulatory landscape remains largely unexplored. This study enquired into the role of polycomb repressive complex-2 (PRC2)-mediated H3K27me3 modification, a key epigenetic factor in glioma. Using in-house data, we identified miRNAs downregulated in glioblastoma (GBM) with the potential to regulate Collagen VI family genes. Notably, miR-3189 emerged as a prime PRC2 target. Its expression was significantly downregulated in Indian GBM patients as well as other glioma cohorts. Mechanistic insights, involving Luciferase assays, mutagenesis, and Western blot analysis, confirmed direct targeting of Collagen VI member COL6A2 by miR-3189-3p. Functional assays demonstrated that miR-3189-3p restrained GBM malignancy by inhibiting proliferation, migration, and epithelial-mesenchymal transition (EMT). Conversely, COL6A2 overexpressed in GBM patients, countered miR-3189, and promoted the malignant phenotype. Gene set enrichment analysis highlighted EMT enrichment in GBM patients with elevated COL6A2 expression, carrying prognostic implications. This study uncovers intricate interactions between two epigenetic regulators-H3K27me3 and miR-3189-working synergistically to modulate Collagen VI gene; thus, influencing the malignancy of GBM. Targeting this H3K27me3|miR-3189-3p|COL6A2 axis presents a potential therapeutic avenue against GBM.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- Centralized Core Research Facility, All India Institute of Medical Sciences, New Delhi, India
| | - Omkar Suhas Vinchure
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Garima Yadav
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
5
|
Chang C, Chavarro VS, Gerstl JVE, Blitz SE, Spanehl L, Dubinski D, Valdes PA, Tran LN, Gupta S, Esposito L, Mazzetti D, Gessler FA, Arnaout O, Smith TR, Friedman GK, Peruzzi P, Bernstock JD. Recurrent Glioblastoma-Molecular Underpinnings and Evolving Treatment Paradigms. Int J Mol Sci 2024; 25:6733. [PMID: 38928445 PMCID: PMC11203521 DOI: 10.3390/ijms25126733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Glioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse. Cytoreductive treatment such as surgery has shown benefits in recurrent glioblastoma; however, its use remains controversial. Several innovative treatments are emerging for recurrent glioblastoma, including checkpoint inhibitors, chimeric antigen receptor T cell therapy, oncolytic virotherapy, nanoparticle delivery, laser interstitial thermal therapy, and photodynamic therapy. This review seeks to provide readers with an overview of (1) recent discoveries in the molecular basis of recurrence; (2) the role of surgery in treating recurrence; and (3) novel treatment paradigms emerging for recurrent glioblastoma.
Collapse
Affiliation(s)
- Christopher Chang
- Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
| | - Velina S. Chavarro
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Lennard Spanehl
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Daniel Dubinski
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Pablo A. Valdes
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Lily N. Tran
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA;
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Luisa Esposito
- Department of Medicine and Surgery, Unicamillus University, 00131 Rome, Italy;
| | - Debora Mazzetti
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
| | - Florian A. Gessler
- Department of Neurosurgery, University of Rostock, 18055 Rostock, Germany; (D.D.); (F.A.G.)
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Gregory K. Friedman
- Division of Pediatrics, Neuro-Oncology Section, MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA; (V.S.C.); (J.V.E.G.); (S.E.B.); (L.S.); (S.G.); (D.M.); (O.A.); (T.R.S.); (J.D.B.)
- Harvard Medical School, Harvard University, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Horváth L, Biri-Kovács B, Baranyai Z, Stipsicz B, Méhes E, Jezsó B, Krátký M, Vinšová J, Bősze S. New Salicylanilide Derivatives and Their Peptide Conjugates as Anticancer Compounds: Synthesis, Characterization, and In Vitro Effect on Glioblastoma. ACS OMEGA 2024; 9:16927-16948. [PMID: 38645331 PMCID: PMC11024950 DOI: 10.1021/acsomega.3c05727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 04/23/2024]
Abstract
Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.
Collapse
Affiliation(s)
- Lilla Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Beáta Biri-Kovács
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Zsuzsa Baranyai
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Bence Stipsicz
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
- Institute
of Biology, Doctoral School of Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Előd Méhes
- Institute
of Physics, Department of Biological Physics, Eötvös Loránd University, Budapest 1117, Hungary
| | - Bálint Jezsó
- Research
Centre for Natural Sciences, Institute of
Enzymology, Budapest 1053, Hungary
- ELTE-MTA
“Momentum” Motor Enzymology Research Group, Department
of Biochemistry, Eötvös Loránd
University, Budapest 1117, Hungary
| | - Martin Krátký
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Jarmila Vinšová
- Department
of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec
Králové, Charles University, 500 03 Hradec Králové, Czech Republic
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Budapest 1117, Hungary
| |
Collapse
|
7
|
Barnett AE, Ozair A, Bamashmos AS, Li H, Bosler DS, Yeaney G, Ali A, Peereboom DM, Lathia JD, Ahluwalia MS. MGMT Methylation and Differential Survival Impact by Sex in Glioblastoma. Cancers (Basel) 2024; 16:1374. [PMID: 38611052 PMCID: PMC11011031 DOI: 10.3390/cancers16071374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Introduction: Sex differences in glioblastoma (GBM) have been observed in incidence, genetic and epigenetic alterations, and immune response. These differences have extended to the methylation of the MGMT promoter, which critically impacts temozolomide resistance. However, the association between sex, MGMT methylation, and survival is poorly understood, which this study sought to evaluate. Methods: A retrospective cohort study was conducted and reported following STROBE guidelines, based on adults with newly diagnosed GBM who received their first surgical intervention at Cleveland Clinic (Ohio, USA) between 2012 and 2018. Kaplan-Meier and multivariable Cox proportional hazards models were used to analyze the association between sex and MGMT promoter methylation status on overall survival (OS). MGMT was defined as methylated if the mean of CpG 1-5 ≥ 12. Propensity score matching was performed on a subset of patients to evaluate the effect of individual CpG site methylation. Results: A total of 464 patients had documented MGMT methylation status with a mean age of 63.4 (range 19-93) years. A total of 170 (36.6%) were female, and 133 (28.7%) received gross total resection as a first intervention. A total of 42.5% were MGMT methylated, with females more often having MGMT methylation than males (52.1% vs. 37.4%, p = 0.004). In univariable analysis, OS was significantly longer for MGMT promoter methylated than un-methylated groups for females (2 yr: 36.8% vs. 11.1%; median: 18.7 vs. 9.5 months; p = 0.001) but not for males (2 yr: 24.3% vs. 12.2%; median: 12.4 vs. 11.3 months; p = 0.22, p for MGMT-sex interaction = 0.02). In multivariable analysis, MGMT un-methylated versus methylated promoter females (2.07; 95% CI, 1.45-2.95; p < 0.0001) and males (1.51; 95% CI, 1.14-2.00; p = 0.004) had worse OS. Within the MGMT promoter methylated group, males had significantly worse OS than females (1.42; 95% CI: 1.01-1.99; p = 0.04). Amongst patients with data on MGMT CpG promoter site methylation values (n = 304), the median (IQR) of CpG mean methylation was 3.0% (2.0, 30.5). Females had greater mean CpG methylation than males (11.0 vs. 3.0, p < 0.002) and higher per-site CpG methylation with a significant difference at CPG 1, 2, and 4 (p < 0.008). After propensity score matching, females maintained a significant survival benefit (18.7 vs. 10.0 months, p = 0.004) compared to males (13.0 vs. 13.6 months, p = 0.76), and the pattern of difference was significant (P for CpG-sex interaction = 0.03). Conclusions: In this study, females had higher mean and individual CpG site methylation and received a greater PFS and OS benefit by MGMT methylation that was not seen in males despite equal degrees of CpG methylation.
Collapse
Affiliation(s)
- Addison E. Barnett
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
| | - Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA;
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Anas S. Bamashmos
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
- NYU Langone Health, New York, NY 10016, USA
| | - Hong Li
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - David S. Bosler
- Robert J. Tomisch Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (D.S.B.); (G.Y.)
| | - Gabrielle Yeaney
- Robert J. Tomisch Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (D.S.B.); (G.Y.)
| | - Assad Ali
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
| | - David M. Peereboom
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
| | - Justin D. Lathia
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Manmeet S. Ahluwalia
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH 44106, USA; (A.E.B.); (A.S.B.); (A.A.); (D.M.P.); (J.D.L.)
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA;
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
8
|
Serafim RB, Cardoso C, Storti CB, da Silva P, Qi H, Parasuram R, Navegante G, Peron JPS, Silva WA, Espreafico EM, Paçó-Larson ML, Price BD, Valente V. HJURP is recruited to double-strand break sites and facilitates DNA repair by promoting chromatin reorganization. Oncogene 2024; 43:804-820. [PMID: 38279062 DOI: 10.1038/s41388-024-02937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
HJURP is overexpressed in several cancer types and strongly correlates with patient survival. However, the mechanistic basis underlying the association of HJURP with cancer aggressiveness is not well understood. HJURP promotes the loading of the histone H3 variant, CENP-A, at the centromeric chromatin, epigenetically defining the centromeres and supporting proper chromosome segregation. In addition, HJURP is associated with DNA repair but its function in this process is still scarcely explored. Here, we demonstrate that HJURP is recruited to DSBs through a mechanism requiring chromatin PARylation and promotes epigenetic alterations that favor the execution of DNA repair. Incorporation of HJURP at DSBs promotes turnover of H3K9me3 and HP1, facilitating DNA damage signaling and DSB repair. Moreover, HJURP overexpression in glioma cell lines also affected global structure of heterochromatin independently of DNA damage induction, promoting genome-wide reorganization and assisting DNA damage response. HJURP overexpression therefore extensively alters DNA damage signaling and DSB repair, and also increases radioresistance of glioma cells. Importantly, HJURP expression levels in tumors are also associated with poor response of patients to radiation. Thus, our results enlarge the understanding of HJURP involvement in DNA repair and highlight it as a promising target for the development of adjuvant therapies that sensitize tumor cells to irradiation.
Collapse
Affiliation(s)
- Rodolfo B Serafim
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
| | - Cibele Cardoso
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Camila B Storti
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Patrick da Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Hongyun Qi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ramya Parasuram
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Geovana Navegante
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil
| | - Jean Pierre S Peron
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Wilson A Silva
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Enilza M Espreafico
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Maria L Paçó-Larson
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Valeria Valente
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, 14049-900, Brazil.
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Rodovia Araraquara - Jaú, Km 01 - s/n, Campos Ville, Araraquara, SP, 14800-903, Brazil.
- Center for Cell-Based Therapy-CEPID/FAPESP, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, 14051-140, Brazil.
| |
Collapse
|
9
|
Mahmoudi K, Kim DH, Tavakkol E, Kihira S, Bauer A, Tsankova N, Khan F, Hormigo A, Yedavalli V, Nael K. Multiparametric Radiogenomic Model to Predict Survival in Patients with Glioblastoma. Cancers (Basel) 2024; 16:589. [PMID: 38339340 PMCID: PMC10854536 DOI: 10.3390/cancers16030589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Clinical, histopathological, and imaging variables have been associated with prognosis in patients with glioblastoma (GBM). We aimed to develop a multiparametric radiogenomic model incorporating MRI texture features, demographic data, and histopathological tumor biomarkers to predict prognosis in patients with GBM. METHODS In this retrospective study, patients were included if they had confirmed diagnosis of GBM with histopathological biomarkers and pre-operative MRI. Tumor segmentation was performed, and texture features were extracted to develop a predictive radiomic model of survival (<18 months vs. ≥18 months) using multivariate analysis and Least Absolute Shrinkage and Selection Operator (LASSO) regularization to reduce the risk of overfitting. This radiomic model in combination with clinical and histopathological data was inserted into a backward stepwise logistic regression model to assess survival. The diagnostic performance of this model was reported for the training and external validation sets. RESULTS A total of 116 patients were included for model development and 40 patients for external testing validation. The diagnostic performance (AUC/sensitivity/specificity) of the radiomic model generated from seven texture features in determination of ≥18 months survival was 0.71/69.0/70.3. Three variables remained as independent predictors of survival, including radiomics (p = 0.004), age (p = 0.039), and MGMT status (p = 0.025). This model yielded diagnostic performance (AUC/sensitivity/specificity) of 0.77/81.0/66.0 (training) and 0.89/100/78.6 (testing) in determination of survival ≥ 18 months. CONCLUSIONS Results show that our radiogenomic model generated from radiomic features at baseline MRI, age, and MGMT status can predict survival ≥ 18 months in patients with GBM.
Collapse
Affiliation(s)
- Keon Mahmoudi
- Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Daniel H. Kim
- Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Elham Tavakkol
- Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Shingo Kihira
- Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Adam Bauer
- Department of Radiology, Kaiser Permanente Fontana Medical Center, Fontana, CA 92335, USA
| | - Nadejda Tsankova
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fahad Khan
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Adilia Hormigo
- Department of Oncology, Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vivek Yedavalli
- Department of Radiology and Radiological Science, Johns Hopkins Bayview Medical Center, Baltimore, MD 21224, USA
| | - Kambiz Nael
- Department of Radiological Sciences, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Majumder R, Karmakar S, Mishra S, Mallick AB, Das Mukhopadhyay C. Functionalized Carbon Nano-Onions as a Smart Drug Delivery System for the Poorly Soluble Drug Carmustine for the Management of Glioblastoma. ACS APPLIED BIO MATERIALS 2024; 7:154-167. [PMID: 38088856 DOI: 10.1021/acsabm.3c00688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The drug delivery system for transporting anticancer agents to targeted tissues in the body is a challenging issue. In search of a suitable biocompatible carrier having controlled and sustained drug release properties of poorly soluble drugs, carbon nano-onions (CNOs) were loaded with an anticancer drug, bis-chloroethyl nitrosourea (BCNU/carmustine). CNOs being autofluorescent, drug-loaded functionalized CNOs (f-CNO-BCNU) can be detected in vivo. Transmission electron microscopy (TEM) and differential light scattering (DLS) techniques were used to analyze the sizes of these f-CNOs. The molecular study revealed that the f-CNO-BCNU readily and noncovalently binds with the folate receptors present on the cancer cell surface in excess. Computer modeling and molecular dynamics simulation followed by binding free energy calculation shows f-CNOs have -29.9 kcal/mol binding free energy, and it noncovalently binds the receptor FRα using loop dynamics of three essential loops present in the protein along with polar stabilization interactions provided by Asp55 and Glu86 residues present in the active site. The f-CNO effectively decreased cancer cell viability with a low IC50 value (the concentration that led to 50% killing of the cells). The cell-based Franz diffusion assay was performed to study the drug release profile. The f-CNO-BCNUs also decreased the mitochondrial membrane potential of U87 cells, increased reactive oxygen species release, and caused a loss of mitochondrial membrane integrity. The f-CNOs also increased the percentage of apoptotic cells observed by the Annexin V assay. Based on observed results, it can be concluded that the f-CNO-BCNU efficiently targets the cancer cells, enhances the bioavailability of carmustine, and can be used as a smart chemotherapeutic agent. This strategy offers better patient compliance and greater bioavailability of the drug.
Collapse
Affiliation(s)
- Rabindranath Majumder
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amitava Basu Mallick
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India
| |
Collapse
|
11
|
Rehman YU, Iqbal A, Ali G, Alotaibi G, Ahmed A, Ayaz M. Phytochemical analysis, radical scavenging and glioblastoma U87 cells toxicity studies of stem bark of buckthorn (Rhamnus pentapomica R. Parker). BMC Complement Med Ther 2024; 24:12. [PMID: 38167318 PMCID: PMC10759440 DOI: 10.1186/s12906-023-04309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND During the past two decades, the correlation between oxidative stress and a variety of serious illnesses such as atherosclerosis, chronic obstructive pulmonary disease (COPD), Alzheimer disease (AD) and cancer has been established. Medicinal plants and their derived phytochemicals have proven efficacy against free radicals and their associated diseases. The current work was aimed to evaluate the phytochemical constituents of Rhamnus pentapomica R. Parker via Gas Chromatography-Mass Spectrometry (GC-MS) and its antioxidant and anti-glioblastoma potentials. METHODS The bioactive compounds were analysed in Rhamnus pentapomica R. Parker stem bark extracts by GC-MS analysis, and to evaluate their antioxidant and anti-glioblastoma effects following standard procedures. The stem bark was extracted with 80% methanol for 14 days to get crude methanolic extract (Rp.Cme) followed by polarity directed fractionation using solvents including ethyl acetate, chloroform, butanol to get ethyl acetate fraction (Rp.EtAc), chloroform fraction (Rp.Chf) and butanol fraction (Rp.Bt) respectively. Antioxidant assay was performed using DPPH free radicals and cell viability assay against U87 glioblastoma cancer cell lines was performed via MTT assay. RESULTS In GC-MS analysis, thirty-one compounds were detected in Rp.Cme, 22 in Rp.Chf, 24 in Rp.EtAc and 18 compounds were detected in Rp.Bt. Among the identified compounds in Rp.Cme, 9-Octadecenoic acid (Z)-methyl ester (7.73%), Octasiloxane (5.13%) and Heptasiloxane (5.13%), Hexadecanoic acid, methyl ester (3.76%) and Pentadecanoic acid, 14-methyl-, methyl Ester (3.76%) were highly abundant.. In Rp.Chf, Benzene, 1,3-dimethyl- (3.24%) and in Rp.EtAc Benzene, 1,3-dimethyl-(11.29%) were highly abundant compounds. Antioxidant studies revealed that Rp.Cme and Rp.EtAc exhibit considerable antioxidant potentials with IC50 values of 153.53 μg/ml and 169.62 μg/ml respectively. Both fractions were also highly effective against glioblastoma cells with IC50 of 147.64 μg/ml and 76.41ug/ml respectively. CONCLUSION Phytochemical analysis revealed the presence of important metabolites which might be active against free radicals and glioblastoma cells. Various samples of the plant exhibited considerable antioxidant and anti-glioblastoma potentials warranting further detailed studies.
Collapse
Affiliation(s)
- Yaseen Ur Rehman
- Department of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Arshad Iqbal
- Department of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Kingdom of Saudi Arabia.
| | - Alshebli Ahmed
- Public Health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
- Faculty of Public and Environmental Health, UofK, Khartoum, Sudan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Dir (L), KP, 18000, Pakistan.
- Department of Pharmacy, University of Malakand, Dir (L), Khyber Pakhtunkhwa, 18800, Pakistan.
| |
Collapse
|
12
|
Ullah A, Ullah S, Waqas M, Khan M, Rehman NU, Khalid A, Jan A, Aziz S, Naeem M, Halim SA, Khan A, Al-Harrasi A. Novel Natural Inhibitors for Glioblastoma by Targeting Epidermal Growth Factor Receptor and Phosphoinositide 3-kinase. Curr Med Chem 2024; 31:6596-6613. [PMID: 38616761 DOI: 10.2174/0109298673293279240404080046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND/AIM Glioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations. METHODS Approximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, i.e., epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively. RESULTS Among those hits, four natural products (SBEH-40, QUER, QTME-12, and HCFR) exerted dual inhibitory effects on EGFR and PI3K in our in-silico analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds SBEH-40, QUER, and QTME-12 exhibited significant anti-proliferative capability with IC50 values of 11.97 ± 0.73 μM, 28.27 ± 1.52 μM, and 22.93 ± 1.63 μM respectively, while HCFR displayed weak inhibitory potency (IC50 = 74.97 ± 2.30 μM). CONCLUSION This study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.
Collapse
Affiliation(s)
- Atta Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia
| | - Afnan Jan
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Shahkaar Aziz
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar 25130, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| |
Collapse
|
13
|
Kumar N, Khurana B, Arora D. Nose-to-brain drug delivery for the treatment of glioblastoma multiforme: nanotechnological interventions. Pharm Dev Technol 2023; 28:1032-1047. [PMID: 37975846 DOI: 10.1080/10837450.2023.2285506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor with a short survival rate. Extensive research is underway for the last two decades to find an effective treatment for GBM but the tortuous pathophysiology, development of chemoresistance, and presence of BBB are the major challenges, prompting scientists to look for alternative targets and delivery strategies. Therefore, the nose to brain delivery emerged as an unorthodox and non-invasive route, which delivers the drug directly to the brain via the olfactory and trigeminal pathways and also bypasses the BBB and hepatic metabolism of the drug. However, mucociliary clearance, low administration volume, and less permeability of nasal mucosa are the obstacles retrenching the brain drug concentration. Thus, nanocarrier delivery through this route may conquer these limitations because of their unique surface characteristics and smaller size. In this review, we have emphasized the advantages and limitations of nanocarrier technologies such as polymeric, lipidic, inorganic, and miscellaneous nanoparticles used for nose-to-brain drug delivery against GBM in the past 10 years. Furthermore, recent advances, patents, and clinical trials are highlighted. However, most of these studies are in the early stages, so translating their outcomes into a marketed formulation would be a milestone in the better progression and survival of glioma patients.
Collapse
Affiliation(s)
- Nitish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Bharat Khurana
- Department of Pharmaceutics, Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
| | - Daisy Arora
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, Haryana, India
| |
Collapse
|
14
|
Jodeiry Zaer S, Aghamaali M, Amini M, Doustvandi MA, Hosseini SS, Baradaran B, Najafi S, Baghay Esfandyari Y, Mokhtarzadeh A. Cooperatively inhibition effect of miR-143-5p and miR-145-5p in tumorigenesis of glioblastoma cells through modulating AKT signaling pathway. BIOIMPACTS : BI 2023; 14:29913. [PMID: 38938754 PMCID: PMC11199930 DOI: 10.34172/bi.2023.29913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 06/29/2024]
Abstract
Introduction As the most common aggressive primary brain tumor, glioblastoma is inevitably a recurrent malignancy whose patients' prognosis is poor. miR-143 and miR-145, as tumor suppressor miRNAs, are downregulated through tumorigenesis of multiple human cancers, including glioblastoma. These two miRNAs regulate numerous cellular processes, such as proliferation and migration. This research was intended to explore the simultaneous replacement effect of miR-143, and miR-145 on in vitro tumorgenicity of U87 glioblastoma cells. Methods U87 cells were cultured, and transfected with miR-143-5p and miR-145-5p. Afterward, the changes in cell viability, and apoptosis induction were determined by MTT assay and Annexin V/PI staining. The accumulation of cells at the cell cycle phases was assessed using the flow cytometry. Wound healing and colony formation assays were performed to study cell migration. qRT-PCR and western blot techniques were utilized to quantify gene expression levels. Results Our results showed that miR-143-5p and 145-5p exogenous upregulation cooperatively diminished cell viability, and enhanced U-87 cell apoptosis by modulating Caspase-3/8/9, Bax, and Bcl-2 protein expression. The combination therapy increased accumulation of cells at the sub-G1 phase by modulating CDK1, Cyclin D1, and P53 protein expression. miR-143/145-5p significantly decreased cell migration, and reduced colony formation ability by the downregulation of c-Myc and CD44 gene expression. Furthermore, the results showed the combination therapy of these miRNAs could remarkably downregulate phosphorylated-AKT expression levels. Conclusion In conclusion, miR-143 and miR-145 were indicated to show cooperative anti- cancer effects on glioblastoma cells via modulating AKT signaling as a new therapeutic approach.
Collapse
Affiliation(s)
- Sheyda Jodeiry Zaer
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Lee Y, Ha J, Kim M, Kang S, Kang M, Lee M. Antisense-oligonucleotide co-micelles with tumor targeting peptides elicit therapeutic effects by inhibiting microRNA-21 in the glioblastoma animal models. J Adv Res 2023; 53:249-260. [PMID: 36632887 PMCID: PMC10658310 DOI: 10.1016/j.jare.2023.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION miRNA-21 (miR-21) is highly expressed in glioblastoma, facilitating tumor growth by blocking the expression of apoptosis-related genes. Therefore, an antisense microRNA oligonucleotide (AMO) against miR-21 was suggested as a therapeutic nucleic acid for glioblastoma. OBJECTIVES AMO21 co-micelles were developed with tumor-targeting T7 peptides as an AMO21 delivery system by intranasal administration. METHODS Cholesterol-conjugated AMO21 (AMO21c) was mixed with cholesterol-conjugated T7 peptides (T7c) to produce tumor-targeted co-micelles. Physical characterization was performed by dynamic light scattering, gel retardation assay, scanning electron microscope and heparin competition assay. In vitro transfection efficiency to C6 glioblastoma cells was measured by flow cytometry. The AMO21c/T7c co-micelles were administered by intranasal instillation into the brain of intracranial glioblastoma rat models. Scrambled T7 (scrT7) and scrambled AMO21c (scrAMO21c) were used as a negative control. The therapeutic effects of the AMO21c/T7c co-micelles were evaluated by real time RT-PCR, immunohistochemistry, TUNEL assay, and Nissl staining. RESULTS The formation of the AMO21c/T7c co-micelles was confirmed in gel retardation and heparin competition assays. The highest delivery efficiency in vitro was achieved at a 1:10 wt ratio of AMO21c/T7c. The AMO21c/T7c co-micelles had higher delivery efficiency into C6 glioblastoma cells than naked AMO21c or AMO21c/lipofectamine complexes. After intranasal administration into the intracranial glioblastoma models, the delivery efficiency of the co-micelles into the brain was also higher than those of naked AMO21c and AMO21c/scrambled T7c. Thanks to their enhanced delivery efficiency, the AMO21c/T7c co-micelles downregulated miR-21, inducing the production of the pro-apoptotic phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4) proteins in the tumor tissues. The tumor size was reduced by the AMO21c/T7c co-micelles more effectively than naked AMO21c, AMO21c/lipofectamine, or scrAMO21c/T7c treatment. CONCLUSION The results suggest that the co-micelles of AMO21c and T7c may be an efficient delivery system into a brain tumor through intranasal administration.
Collapse
Affiliation(s)
- Youngki Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Junkyu Ha
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Minkyung Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Subin Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Minji Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
16
|
Strack C, Pomykala KL, Schlemmer HP, Egger J, Kleesiek J. "A net for everyone": fully personalized and unsupervised neural networks trained with longitudinal data from a single patient. BMC Med Imaging 2023; 23:174. [PMID: 37907876 PMCID: PMC10619304 DOI: 10.1186/s12880-023-01128-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND With the rise in importance of personalized medicine and deep learning, we combine the two to create personalized neural networks. The aim of the study is to show a proof of concept that data from just one patient can be used to train deep neural networks to detect tumor progression in longitudinal datasets. METHODS Two datasets with 64 scans from 32 patients with glioblastoma multiforme (GBM) were evaluated in this study. The contrast-enhanced T1w sequences of brain magnetic resonance imaging (MRI) images were used. We trained a neural network for each patient using just two scans from different timepoints to map the difference between the images. The change in tumor volume can be calculated with this map. The neural networks were a form of a Wasserstein-GAN (generative adversarial network), an unsupervised learning architecture. The combination of data augmentation and the network architecture allowed us to skip the co-registration of the images. Furthermore, no additional training data, pre-training of the networks or any (manual) annotations are necessary. RESULTS The model achieved an AUC-score of 0.87 for tumor change. We also introduced a modified RANO criteria, for which an accuracy of 66% can be achieved. CONCLUSIONS We show a novel approach to deep learning in using data from just one patient to train deep neural networks to monitor tumor change. Using two different datasets to evaluate the results shows the potential to generalize the method.
Collapse
Affiliation(s)
- Christian Strack
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Girardetstraße 2, 45131, Essen, Germany.
- Division of Radiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Medical Faculty Heidelberg, Heidelberg University, 69120, Heidelberg, Germany.
| | - Kelsey L Pomykala
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Girardetstraße 2, 45131, Essen, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jan Egger
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Girardetstraße 2, 45131, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Jens Kleesiek
- Institute for AI in Medicine (IKIM), University Hospital Essen (AöR), Girardetstraße 2, 45131, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen, Hufelandstraße 55, 45147, Essen, Germany
- Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, 45147, Essen, Germany
- Department of Physics, TU Dortmund University, Otto-Hahn-Straße 4, D-44227, Dortmund, Germany
| |
Collapse
|
17
|
Nahar Metu CL, Sutihar SK, Sohel M, Zohora F, Hasan A, Miah MT, Rani Kar T, Hossain MA, Rahman MH. Unraveling the signaling mechanism behind astrocytoma and possible therapeutics strategies: A comprehensive review. Cancer Rep (Hoboken) 2023; 6:e1889. [PMID: 37675821 PMCID: PMC10598261 DOI: 10.1002/cnr2.1889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/09/2023] [Accepted: 07/28/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND A form of cancer called astrocytoma can develop in the brain or spinal cord and sometimes causes death. A detailed overview of the precise signaling cascade underlying astrocytoma formation has not yet been revealed, although various factors have been investigated. Therefore, our objective was to unravel and summarize our current understanding of molecular genetics and associated signaling pathways with some possible therapeutic strategies for astrocytoma. RECENT FINDINGS In general, four different forms of astrocytoma have been identified in individuals, including circumscribed, diffuse, anaplastic, and multiforme glioblastoma, according to a recent literature review. All types of astrocytoma have a direct connection with some oncogenic signaling cascade. Common signaling is MAPK cascade, including Ras-Raf-ERK, up-regulated with activating EGFR/AKT/PTEN/mTOR and PDGFR. Recent breakthrough studies found that BRAF mutations, including KIAA1549: BRAF and BRAF V600E are responsible for astrocytoma progression. Additionally, cancer progression is influenced by mutations in some tumor suppressor genes, such as the Tp53/ATRX and MGMT mutant. As synthetic medications must cross the blood-brain barrier (BBB), modulating signal systems such as miRNA is the primary option for treating patients with astrocytoma. However, available surgery, radiation therapy, and experimental therapies such as adjuvant therapy, anti-angiogenic therapy, and EGFR-targeting antibody drug are the usual treatment for most types of astrocytoma. Similar to conventional anticancer medications, some phytochemicals slow tumor growth by simultaneously controlling several cellular proteins, including those involved in cell cycle regulation, apoptosis, metastatic spread, tyrosine kinase, growth factor receptor, and antioxidant-related proteins. CONCLUSION In conclusion, cellular and molecular signaling is directly associated with the development of astrocytoma, and a combination of conventional and alternative therapies can improve the malignancy of cancer patients.
Collapse
Affiliation(s)
- Chowdhury Lutfun Nahar Metu
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Sunita Kumari Sutihar
- Biochemistry and Molecular BiologyBangabandhu Sheikh Mujibur Rahman Science and Technology UniversityGopalganjBangladesh
| | - Md Sohel
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Fatematuz Zohora
- Department of Pharmacy, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
| | - Akayed Hasan
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Thandu Miah
- Department of PharmacyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Tanu Rani Kar
- Department of Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | - Md. Arju Hossain
- Department of Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Habibur Rahman
- Department of Computer Science and EngineeringIslamic UniversityKushtiaBangladesh
| |
Collapse
|
18
|
Davodabadi F, Mirinejad S, Fathi-Karkan S, Majidpour M, Ajalli N, Sheervalilou R, Sargazi S, Rozmus D, Rahdar A, Diez-Pascual AM. Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: A comprehensive overview of recent trends. Biotechnol Prog 2023; 39:e3366. [PMID: 37222166 DOI: 10.1002/btpr.3366] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Aptamers (Apts) are synthetic nucleic acid ligands that can be engineered to target various molecules, including amino acids, proteins, and pharmaceuticals. Through a series of adsorption, recovery, and amplification steps, Apts are extracted from combinatorial libraries of synthesized nucleic acids. Using aptasensors in bioanalysis and biomedicine can be improved by combining them with nanomaterials. Moreover, Apt-associated nanomaterials, including liposomes, polymeric, dendrimers, carbon nanomaterials, silica, nanorods, magnetic NPs, and quantum dots (QDs), have been widely used as promising nanotools in biomedicine. Following surface modifications and conjugation with appropriate functional groups, these nanomaterials can be successfully used in aptasensing. Advanced biological assays can use Apts immobilized on QD surfaces through physical interaction and chemical bonding. Accordingly, modern QD aptasensing platforms rely on interactions between QDs, Apts, and targets to detect them. QD-Apt conjugates can be used to directly detect prostate, ovarian, colorectal, and lung cancers or simultaneously detect biomarkers associated with these malignancies. Tenascin-C, mucin 1, prostate-specific antigen, prostate-specific membrane antigen, nucleolin, growth factors, and exosomes are among the cancer biomarkers that can be sensitively detected using such bioconjugates. Furthermore, Apt-conjugated QDs have shown great potential for controlling bacterial infections such as Bacillus thuringiensis, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Campylobacter jejuni, Staphylococcus aureus, and Salmonella typhimurium. This comprehensive review discusses recent advancements in the design of QD-Apt bioconjugates and their applications in cancer and bacterial theranostics.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahdi Majidpour
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Dominika Rozmus
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ana M Diez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analitica, Quimica Fisica e Ingenieria Quimica, Madrid, Spain
| |
Collapse
|
19
|
Clements N, Esplen N, Bazalova-Carter M. A feasibility study of ultra-high dose rate mini-GRID therapy using very-high-energy electron beams for a simulated pediatric brain case. Phys Med 2023; 112:102637. [PMID: 37454482 DOI: 10.1016/j.ejmp.2023.102637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Ultra-high dose rate (UHDR, >40 Gy/s), spatially-fractionated minibeam GRID (mini-GRID) therapy using very-high-energy electrons (VHEE) was investigated using Monte Carlo simulations. Multi-directional VHEE treatments with and without mini-GRID-fractionation were compared to a clinical 6 MV volumetric modulated arc therapy (VMAT) plan for a pediatric glioblastoma patient using dose-volume histograms, volume-averaged dose rates in critical patient structures, and planning target volume D98s. Peak-to-valley dose ratios (PVDRs) and dose rates in organs at risk (OARs) were evaluated due to their relevance for normal-tissue sparing in FLASH and spatially-fractionated techniques. Depths of convergence, defined where the PVDR is first ≤1.1, and depths at which dose rates fall below the UHDR threshold were also evaluated. In a water phantom, the VHEE mini-GRID treatments presented a surface (5 mm depth) PVDR of (51±2) and a depth of convergence of 42 mm at 150 MeV and a surface PVDR of (33±1) with a depth of convergence of 57 mm at 250 MeV. For a pediatric GBM case, VHEE treatments without mini-GRID-fractionation produced 25% and 22% lower volume-averaged doses to OARs compared to the 6 MV VMAT plan and 8/9 and 9/9 of the patient structures were exposed to volume-averaged dose rates >40 Gy/s for the 150 MeV and 250 MeV plans, respectively. The 150 MeV and 250 MeV mini-GRID treatments produced 17% and 38% higher volume-averaged doses to OARs and 3/9 patient structures had volume-averaged dose rates above 40 Gy/s. VHEE mini-GRID plans produced many comparable dose metrics to the clinical VMAT plan, encouraging further optimization.
Collapse
Affiliation(s)
- Nathan Clements
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.
| | - Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
20
|
Zhang H, Du Y, Qi L, Xiao S, Braun FK, Kogiso M, Huang Y, Huang F, Abdallah A, Suarez M, Karthick S, Ahmed NM, Salsman VS, Baxter PA, Su JM, Brat DJ, Hellenbeck PL, Teo WY, Patel AJ, Li XN. Targeting GBM with an Oncolytic Picornavirus SVV-001 alone and in combination with fractionated Radiation in a Novel Panel of Orthotopic PDX models. J Transl Med 2023; 21:444. [PMID: 37415222 PMCID: PMC10324131 DOI: 10.1186/s12967-023-04237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Animal models representing different molecular subtypes of glioblastoma multiforme (GBM) is desired for developing new therapies. SVV-001 is an oncolytic virus selectively targeting cancer cells. It's capacity of passing through the blood brain barrier makes is an attractive novel approach for GBM. MATERIALS AND METHODS 23 patient tumor samples were implanted into the brains of NOD/SCID mice (1 × 105 cells/mouse). Tumor histology, gene expression (RNAseq), and growth rate of the developed patient-derived orthotopic xenograft (PDOX) models were compared with the originating patient tumors during serial subtransplantations. Anti-tumor activities of SVV-001 were examined in vivo; and therapeutic efficacy validated in vivo via single i.v. injection (1 × 1011 viral particle) with or without fractionated (2 Gy/day x 5 days) radiation followed by analysis of animal survival times, viral infection, and DNA damage. RESULTS PDOX formation was confirmed in 17/23 (73.9%) GBMs while maintaining key histopathological features and diffuse invasion of the patient tumors. Using differentially expressed genes, we subclassified PDOX models into proneural, classic and mesenchymal groups. Animal survival times were inversely correlated with the implanted tumor cells. SVV-001 was active in vitro by killing primary monolayer culture (4/13 models), 3D neurospheres (7/13 models) and glioma stem cells. In 2/2 models, SVV-001 infected PDOX cells in vivo without harming normal brain cells and significantly prolonged survival times in 2/2 models. When combined with radiation, SVV-001 enhanced DNA damages and further prolonged animal survival times. CONCLUSION A panel of 17 clinically relevant and molecularly annotated PDOX modes of GBM is developed, and SVV-001 exhibited strong anti-tumor activities in vitro and in vivo.
Collapse
Affiliation(s)
- Huiyuan Zhang
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Department of Pharmacology, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Lin Qi
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Sophie Xiao
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mari Kogiso
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery, Dushou Lake Hospital, Soochow University Medical School, Suzhou, Jiangsu, China
| | - Frank Huang
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Aalaa Abdallah
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Sekar Karthick
- Pediatric Brain Tumor Research Office, Cancer and Stem Cell Biology Program, SingHealth Duke-NUS Academic Medical Center, Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Duke-NUS Medical School, 169610, Singapore, Singapore
| | | | | | - Patricia A Baxter
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack M Su
- Texas Children's Cancer Center, Houston, TX, USA
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel J Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Wan-Yee Teo
- Texas Children's Cancer Center, Houston, TX, USA
- Pediatric Brain Tumor Research Office, Cancer and Stem Cell Biology Program, SingHealth Duke-NUS Academic Medical Center, Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Duke-NUS Medical School, 169610, Singapore, Singapore
| | - Akash J Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA.
- Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Xiao-Nan Li
- Texas Children's Cancer Center, Houston, TX, USA.
- Laboratory of Molecular Neuro-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, 60611, USA.
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
21
|
Mehrdadi S. Drug Delivery of Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) to Target Brain Tumors. Adv Pharm Bull 2023; 13:512-520. [PMID: 37646057 PMCID: PMC10460802 DOI: 10.34172/apb.2023.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/28/2022] [Accepted: 11/02/2022] [Indexed: 09/01/2023] Open
Abstract
Brain, predisposed to local and metastasized tumors, has always been the focus of oncological studies. Glioblastoma multiforme (GBM), the most common invasive primary tumor of the brain, is responsible for 4% of all cancer-related deaths worldwide. Despite novel technologies, the average survival rate is 2 years. Physiological barriers such as blood-brain barrier (BBB) prevent drug molecules penetration into brain. Most of the pharmaceuticals present in the market cannot infiltrate BBB to have their maximum efficacy and this in turn imposes a major challenge. This mini review discusses GBM and physiological and biological barriers for anticancer drug delivery, challenges for drug delivery across BBB, drug delivery strategies focusing on SLNs and NLCs and their medical applications in on-going clinical trials. Numerous nanomedicines with various characteristics have been introduced in the last decades to overcome the delivery challenge. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) were introduced as oral drug delivery nanomedicines which can be encapsulated by both hydrophilic and lipophilic pharmaceutical compounds. Their biocompatibility, biodegradability, lower toxicity and side effects, enhanced bioavailability, solubility and permeability, prolonged half-life and stability and finally tissue-targeted drug delivery makes them unique among all.
Collapse
Affiliation(s)
- Soheil Mehrdadi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
22
|
Huang F, Li S, Wang X, Wang C, Pan X, Chen X, Zhang W, Hong J. Serum lipids concentration on prognosis of high-grade glioma. Cancer Causes Control 2023:10.1007/s10552-023-01710-1. [PMID: 37258987 DOI: 10.1007/s10552-023-01710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVE To investigate the effect of serum lipids concentration on the prognosis of high-grade glioma patients undergoing postoperative radiotherapy. METHODS Retrospective analysis of the patients with high-grade glioma who received postoperative Intensity Modulated Radiotherapy between 13 May 2013 and 12 September 2018 was performed. The patients were grouped according to the average values of serum total cholesterol, LDL, and HDL concentration in peripheral blood (before surgery, 6 months after therapy). Cox proportional hazards model was performed to determine whether the total cholesterol concentration, LDL concentration, and HDL concentration in peripheral blood before therapy and their changes after therapy were factors influencing the prognosis. RESULTS The results of COX regression analysis showed that the independent prognostic factors of high-grade glioma patients were pathological grade, the extent of resection, serum cholesterol concentration pre-surgery, and the change of LDL concentration from pre-surgery to post-therapy. The prognosis of patients with high serum total cholesterol concentration before therapy was worse than those of patients with low total cholesterol concentration. The 5-year survival rate and the median survival time of patients with high serum total cholesterol concentration before therapy were 4.9% and 23.6 months, but the low cholesterol concentration group were 19.6% and 24.5 months, respectively. Besides, the average serum LDL concentration in high-grade glioma patients gradually increased after therapy. The 5-year survival rate of patients and the median survival time with elevated LDL concentration after therapy is 11.8% and 20.4 months, but the reduced LDL concentration group was 16.7% and 28.4 months, respectively. The total cholesterol and LDL concentration increased significantly after therapy in Grade IV patients while Grade III patients did not. CONCLUSIONS The cholesterol concentration before therapy and LDL concentration change from pre-surgery to post-therapy are the factors that affect the prognosis of high-grade glioma patients who have undergone postoperative radiotherapy. In the final analysis, the high serum cholesterol pre-surgery and the increased in serum LDL concentration from pre-surgery to post-therapy were associated with worse survival of patients.
Collapse
Affiliation(s)
- Fei Huang
- Central Lab, First Affiliated Hospital, Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Central Laboratory, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Shan Li
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Caihong Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xiaoxian Pan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Xiuying Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Weijian Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affliated Hospital, Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer (Fujian Medical University), No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
23
|
Gupta T, Sahoo RK, Singh H, Katke S, Chaurasiya A, Gupta U. Lipid-Based Nanocarriers in the Treatment of Glioblastoma Multiforme (GBM): Challenges and Opportunities. AAPS PharmSciTech 2023; 24:102. [PMID: 37041350 DOI: 10.1208/s12249-023-02555-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Glioblastoma multiforme (also known as glioblastoma; GBM) is one of the most malignant types of brain tumors that occurs in the CNS. Treatment strategies for glioblastoma are majorly comprised of surgical resection, radiotherapy, and chemotherapy along with combination therapy. Treatment of GBM is itself a tedious task but the involved barriers in GBM are one of the main impediments to move one step closer to the treatment of GBM. Basically, two of the barriers are of utmost importance in this regard, namely blood brain barrier (BBB) and blood brain tumor barrier (BBTB). This review will address different challenges and barriers in the treatment of GBM along with their etiology. The role and recent progress of lipid-based nanocarriers like liposomes, solid lipid nanocarriers (SLNs), nanostructured lipid carriers (NLCs), lipoplexes, and lipid hybrid carriers in the effective management of GBM will be discussed in detail.
Collapse
Affiliation(s)
- Tanisha Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Rakesh K Sahoo
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Himani Singh
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Sumeet Katke
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| | - Akash Chaurasiya
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India
| | - Umesh Gupta
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
24
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
25
|
Lee Y, Kim M, Ha J, Lee M. Brain-targeted exosome-mimetic cell membrane nanovesicles with therapeutic oligonucleotides elicit anti-tumor effects in glioblastoma animal models. Bioeng Transl Med 2023; 8:e10426. [PMID: 36925699 PMCID: PMC10013800 DOI: 10.1002/btm2.10426] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022] Open
Abstract
The brain-targeted delivery of therapeutic oligonucleotides has been investigated as a new treatment modality for various brain diseases, such as brain tumors. However, delivery efficiency into the brain has been limited due to the blood-brain barrier. In this research, brain-targeted exosome-mimetic cell membrane nanovesicles (CMNVs) were designed to enhance the delivery of therapeutic oligonucleotides into the brain. First, CMNVs were produced by extrusion with isolated C6 cell membrane fragments. Then, CMNVs were decorated with cholesterol-linked T7 peptides as a targeting ligand by hydrophobic interaction, producing T7-CMNV. T7-CMNV was in aqueous solution maintained its nanoparticle size for over 21 days. The targeting and delivery effects of T7-CMNVs were evaluated in an orthotopic glioblastoma animal model. 2'-O-metyl and cholesterol-TEG modified anti-microRNA-21 oligonucleotides (AMO21c) were loaded into T7-CMNVs, and biodistribution experiments indicated that T7-CMNVs delivered AMO21c more efficiently into the brain than CMNVs, scrambled T7-CMNVs, lipofectamine, and naked AMO21c after systemic administration. In addition, AMO21c down-regulated miRNA-21 (miR-21) levels in glioblastoma tissue most efficiently in the T7-CMNVs group. This enhanced suppression of miR-21 resulted in the up-regulation of PDCD4 and PTEN. Eventually, brain tumor size was reduced in the T7-CMNVs group more efficiently than in the other control groups. With stability, low toxicity, and targeting efficiency, T7-CMNVs may be useful to the development of oligonucleotide therapy for brain tumors.
Collapse
Affiliation(s)
- Youngki Lee
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| | - Minkyung Kim
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| | - Junkyu Ha
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| | - Minhyung Lee
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| |
Collapse
|
26
|
Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci 2023; 24:3521. [PMID: 36834933 PMCID: PMC9965735 DOI: 10.3390/ijms24043521] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, poorly promising primary brain tumor. GBM is characterized by an infiltrating growth nature, abundant vascularization, and a rapid and aggressive clinical course. For many years, the standard treatment of gliomas has invariably been surgical treatment supported by radio- and chemotherapy. Due to the location and significant resistance of gliomas to conventional therapies, the prognosis of glioblastoma patients is very poor and the cure rate is low. The search for new therapy targets and effective therapeutic tools for cancer treatment is a current challenge for medicine and science. microRNAs (miRNAs) play a key role in many cellular processes, such as growth, differentiation, cell division, apoptosis, and cell signaling. Their discovery was a breakthrough in the diagnosis and prognosis of many diseases. Understanding the structure of miRNAs may contribute to the understanding of the mechanisms of cellular regulation dependent on miRNA and the pathogenesis of diseases underlying these short non-coding RNAs, including glial brain tumors. This paper provides a detailed review of the latest reports on the relationship between changes in the expression of individual microRNAs and the formation and development of gliomas. The use of miRNAs in the treatment of this cancer is also discussed.
Collapse
Affiliation(s)
- Marianna Makowska
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
27
|
Venkatesham P, Ranjan N, Mudiraj A, Kuchana V, Chedupaka R, Manga V, Babu PP, Vedula RR. New class of fused [3,2-b][1,2,4]triazolothiazoles for targeting glioma in vitro. Bioorg Med Chem Lett 2023; 80:129103. [PMID: 36494051 DOI: 10.1016/j.bmcl.2022.129103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/28/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Glioma is aggressive malignant tumor with limited therapeutic interventions. Herein we report the synthesis of fused bicyclic 1,2,4-triazolothiazoles by a one-pot multi-component approach and their activity against C6 rat and LN18 human glioma cell lines. The target compounds 2-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl) isoindoline-1,3-diones and (E)-1-phenyl-N-(6-phenylthiazolo[3,2-b][1,2,4]triazol-2-yl) methanimines were obtained by the reaction of 5-amino-4H-1,2,4-triazole-3-thiol with substituted phenacyl bromide, phthalic anhydride, and different aromatic aldehydes in EtOH/HCl under reflux conditions. In C6 rat glioma cell lines, compounds 4g and 6i showed good cytotoxic activity with IC50 values of 8.09 and 8.74 μM, respectively, resulting in G1 and G2-M phase arrest of the cell cycle and activation of apoptosis by modulating phosphorylation of ERK and AKT pathway.
Collapse
Affiliation(s)
- Papisetti Venkatesham
- Department of Chemistry National Institute of Technology, Warangal, Telangana 506004, India
| | - Nikhil Ranjan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Anwita Mudiraj
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Vinutha Kuchana
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, 500007 Hyderabad, Telangana, India
| | - Raju Chedupaka
- Department of Chemistry National Institute of Technology, Warangal, Telangana 506004, India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry, University College of Science, Osmania University, 500007 Hyderabad, Telangana, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| | - Rajeswar Rao Vedula
- Department of Chemistry National Institute of Technology, Warangal, Telangana 506004, India.
| |
Collapse
|
28
|
Zaidi SAA, Amanullah, Jafri SKK, Sharif S. Glioblastoma multiforme at internal auditory canal. Surg Neurol Int 2023; 14:2. [PMID: 36751450 PMCID: PMC9899477 DOI: 10.25259/sni_815_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Background Glioblastomas are the most common adult primary brain tumor present supratentorially. The presence of true extra-axial GBM infratentorially, especially in the internal auditory canal, is extremely rare with only three cases reported previously in the literature. We report the fourth case of primary internal auditory canal/cerebellopontine angle (CPA) glioblastoma which initially mimicked vestibular schwannoma on the basis of its location and presentation. Case Description A 65-year-old male presented with headache, vertigo, and progressive right ear deafness for 5 months. His preoperative magnetic resonance imaging findings were consistent with vestibular schwannoma. Maximum safe resection (near total) was done. The final histopathology report showed glioblastoma multiforme. Conclusion As per our knowledge, this is the fourth reported case of an extra-axial VIII cranial nerve glioblastoma located in internal auditory canal. Hence, despite being very rare, they should be considered as a differential in tumors at CPA.
Collapse
Affiliation(s)
- Syeda Alisha Ali Zaidi
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan,Corresponding author: Syeda Alisha Ali Zaidi, Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan.
| | - Amanullah
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| | | | - Salman Sharif
- Department of Neurosurgery, Liaquat National Hospital, Karachi, Pakistan
| |
Collapse
|
29
|
Caglar HO, Duzgun Z. Identification of upregulated genes in glioblastoma and glioblastoma cancer stem cells using bioinformatics analysis. Gene X 2023; 848:146895. [DOI: 10.1016/j.gene.2022.146895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
|
30
|
Dahis D, Azagury DM, Obeid F, Dion MZ, Cryer AM, Riquelme MA, Dosta P, Abraham AW, Gavish M, Artzi N, Shamay Y, Azhari H. Focused Ultrasound Enhances Brain Delivery of Sorafenib Nanoparticles. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Daniel Dahis
- Department of Biomedical Engineering Technion Institute of Technology Haifa 3200003 Israel
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
| | - Dana Meron Azagury
- Department of Biomedical Engineering Technion Institute of Technology Haifa 3200003 Israel
| | - Fadi Obeid
- The Ruth and Bruce Rappaport Faculty of Medicine Technion Institute of Technology Haifa 31096 Israel
| | - Michelle Z. Dion
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
- Institute for Medical Engineering & Science MIT Cambridge 02139 MA USA
| | - Alexander M. Cryer
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
- Institute for Medical Engineering & Science MIT Cambridge 02139 MA USA
| | - Mariana Alonso Riquelme
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
| | - Pere Dosta
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
- Institute for Medical Engineering & Science MIT Cambridge 02139 MA USA
| | - Ariel William Abraham
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
| | - Moshe Gavish
- The Ruth and Bruce Rappaport Faculty of Medicine Technion Institute of Technology Haifa 31096 Israel
| | - Natalie Artzi
- Department of Medicine Engineering of Medicine Division Brigham and Women's Hospital Harvard Medical School Cambridge 02115 MA USA
- Wyss Institute for Biologically Inspired Engineering Harvard University Boston MA 02115 USA
- Broad Institute of Harvard and MIT Cambridge MA USA
| | - Yosi Shamay
- Department of Biomedical Engineering Technion Institute of Technology Haifa 3200003 Israel
| | - Haim Azhari
- Department of Biomedical Engineering Technion Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
31
|
Djoudi A, Molina-Peña R, Ferreira N, Ottonelli I, Tosi G, Garcion E, Boury F. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. Int J Mol Sci 2022; 23:12174. [PMID: 36293030 PMCID: PMC9602826 DOI: 10.3390/ijms232012174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.
Collapse
Affiliation(s)
- Amel Djoudi
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Rodolfo Molina-Peña
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Natalia Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| |
Collapse
|
32
|
Gheidari F, Arefian E, Saadatpour F, Kabiri M, Seyedjafari E, Teimoori-Toolabi L, Soleimani M. The miR-429 suppresses proliferation and migration in glioblastoma cells and induces cell-cycle arrest and apoptosis via modulating several target genes of ERBB signaling pathway. Mol Biol Rep 2022; 49:11855-11866. [PMID: 36219319 DOI: 10.1007/s11033-022-07903-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/31/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive and lethal brain cancer, which is incurable with standard cancer treatments. miRNAs have great potential to be used for gene therapy due to their ability to modulate several target genes simultaneously. We found miR-429 is downregulated in GBM and has several predicted target genes from the ERBB signaling pathway using bioinformatics tools. ERBB is the most over-activated genetic pathway in GBM patients, which is responsible for augmented cell proliferation and migration in GBM. METHODS AND RESULTS Here, miR-429 was overexpressed using lentiviral vectors in U-251 and U-87 GBM cells and it was observed that the expression level of several oncogenes of the ERBB pathway, EGFR, PIK3CA, PIK3CB, KRAS, and MYC significantly decreased, as shown by real-time PCR and western blotting. Using the luciferase assay, we showed that miR-429 directly targets MYC, BCL2, and EGFR. In comparison to scrambled control, miR-429 had a significant inhibitory effect on cell proliferation and migration as deduced from MTT and scratch wound assays and induced cell-cycle arrest and apoptosis in flow cytometry. CONCLUSIONS Altogether, miR-429 seems to be an efficient suppressor of the ERBB genetic signaling pathway and a potential therapeutic for GBM.
Collapse
Affiliation(s)
- Fatemeh Gheidari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.,Stem Cell Technology Research Center, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran. .,Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ladan Teimoori-Toolabi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
33
|
The Reactive Astrocytes After Surgical Brain Injury Potentiates the Migration, Invasion, and Angiogenesis of C6 Glioma. World Neurosurg 2022; 168:e595-e606. [DOI: 10.1016/j.wneu.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
|
34
|
Magnetic resonance imaging analysis predicts nanoparticle concentration delivered to the brain parenchyma. Commun Biol 2022; 5:964. [PMID: 36109574 PMCID: PMC9477799 DOI: 10.1038/s42003-022-03881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Ultrasound in combination with the introduction of microbubbles into the vasculature effectively opens the blood brain barrier (BBB) to allow the passage of therapeutic agents. Increased permeability of the BBB is typically demonstrated with small-molecule agents (e.g., 1-nm gadolinium salts). Permeability to small-molecule agents, however, cannot reliably predict the transfer of remarkably larger molecules (e.g., monoclonal antibodies) required by numerous therapies. To overcome this issue, we developed a magnetic resonance imaging analysis based on the ΔR2* physical parameter that can be measured intraoperatively for efficient real-time treatment management. We demonstrate successful correlations between ΔR2* values and parenchymal concentrations of 3 differently sized (18 nm–44 nm) populations of liposomes in a rat model. Reaching an appropriate ΔR2* value during treatment can reflect the effective delivery of large therapeutic agents. This prediction power enables the achievement of desirable parenchymal drug concentrations, which is paramount to obtaining effective therapeutic outcomes. ΔR2* values from MRI analysis correlate with concentrations of liposomes in the size range of 18–44 nm in a rat model.
Collapse
|
35
|
Satterlee AB, Dunn DE, Valdivia A, Malawsky D, Buckley A, Gershon T, Floyd S, Hingtgen S. Spatiotemporal analysis of induced neural stem cell therapy to overcome advanced glioblastoma recurrence. Mol Ther Oncolytics 2022; 26:49-62. [PMID: 35784402 PMCID: PMC9217992 DOI: 10.1016/j.omto.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
Genetically engineered neural stem cells (NSCs) are a promising therapy for the highly aggressive brain cancer glioblastoma (GBM); however, treatment durability remains a major challenge. We sought to define the events that contribute to dynamic adaptation of GBM during treatment with human skin-derived induced NSCs releasing the pro-apoptotic agent TRAIL (iNSC-TRAIL) and develop strategies that convert initial tumor kill into sustained GBM suppression. In vivo and ex vivo analysis before, during, and after treatment revealed significant shifts in tumor transcriptome and spatial distribution as the tumors adapted to treatment. To address this, we designed iNSC delivery strategies that increased spatiotemporal TRAIL coverage and significantly decreased GBM volume throughout the brain, reducing tumor burden 100-fold as quantified in live ex vivo brain slices. The varying impact of different strategies on treatment durability and median survival of both solid and invasive tumors provides important guidance for optimizing iNSC therapy.
Collapse
Affiliation(s)
- Andrew B. Satterlee
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Denise E. Dunn
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27704, USA
| | - Alain Valdivia
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel Malawsky
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Andrew Buckley
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Scott Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27704, USA
| | - Shawn Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
36
|
Allyl Isothiocyanate (AITC) Induces Apoptotic Cell Death In Vitro and Exhibits Anti-Tumor Activity in a Human Glioblastoma GBM8401/luc2 Model. Int J Mol Sci 2022; 23:ijms231810411. [PMID: 36142326 PMCID: PMC9499574 DOI: 10.3390/ijms231810411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Some clinically used anti-cancer drugs are obtained from natural products. Allyl isothiocyanate (AITC), a plant-derived compound abundant in cruciferous vegetables, has been shown to possess an anti-cancer ability in human cancer cell lines in vitro, including human brain glioma cells. However, the anti-cancer effects of AITC in human glioblastoma (GBM) cells in vivo have not yet been examined. In the present study, we used GBM8401/luc2 human glioblastoma cells and a GBM8401/luc2-cell-bearing animal model to identify the treatment efficacy of AITC. Here, we confirm that AITC reduced total cell viability and induced cell apoptosis in GBM8401/luc2 cells in vitro. Furthermore, Western blotting also showed that AITC induced apoptotic cell death through decreased the anti-apoptotic protein BCL-2, MCL-1 expression, increased the pro-apoptotic protein BAX expression, and promoted the activities of caspase-3, -8, and -9. Therefore, we further investigated the anti-tumor effects of AITC on human GBM8401/luc2 cell xenograft mice. The human glioblastoma GBM8401/luc2 cancer cells were subcutaneously injected into the right flank of BALB/c nude mice to generate glioblastoma xenograft mice. The animals were randomly divided into three groups: group I was treated without AITC (control); group II with 0.1 mg/day of AITC; and group III with 0.2 mg/day of AITC every 3 days for 27 days. Bodyweight, and tumor volume (size) were recorded every 3 days. Tumors exhibiting Luc2 intensity were measured, and we quantified intensity using Living Image software on days 0, 12, and 24. After treatment, tumor weight from each mouse was recorded. Tumor tissues were examined for histopathological changes using H&E staining, and we analyzed the protein levels via immunohistochemical analysis. Our results indicate that AITC significantly inhibited tumor growth at both doses of AITC due to the reduction in tumor size and weight. H&E histopathology analysis of heart, liver, spleen, and kidney samples revealed that AITC did not significantly induce toxicity. Body weight did not show significant changes in any experiment group. AITC significantly downregulated the protein expression levels of MCL-1, XIAP, MMP-9, and VEGF; however, it increased apoptosis-associated proteins, such as cleaved caspase-3, -8, and -9, in the tumor tissues compared with the control group. Based on these observations, AITC exhibits potent anti-cancer activity in the human glioblastoma cell xenograft model via inhibiting tumor cell proliferation and the induction of cell apoptosis. AITC may be a potential anti-GBM cancer drug that could be used in the future.
Collapse
|
37
|
Jatyan R, Singh P, Sahel DK, Karthik YG, Mittal A, Chitkara D. Polymeric and small molecule-conjugates of temozolomide as improved therapeutic agents for glioblastoma multiforme. J Control Release 2022; 350:494-513. [PMID: 35985493 DOI: 10.1016/j.jconrel.2022.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/31/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022]
Abstract
Temozolomide (TMZ), an imidazotetrazine, is a second-generation DNA alkylating agent used as a first-line treatment of glioblastoma multiforme (GBM). It was approved by FDA in 2005 and declared a blockbuster drug in 2008. Although TMZ has shown 100% oral bioavailability and crosses the blood-brain barrier effectively, however it suffers from limitations such as a short half-life (∼1.8 h), rapid metabolism, and lesser accumulation in the brain (∼10-20%). Additionally, development of chemoresistance has been associated with its use. Since it is a potential chemotherapeutic agent with an unmet medical need, advanced delivery strategies have been explored to overcome the associated limitations of TMZ. Nanocarriers including liposomes, solid lipid nanoparticles (SLNs), nanostructure lipid carriers (NLCs), and polymeric nanoparticles have demonstrated their ability to improve its circulation time, stability, tissue-specific accumulation, sustained release, and cellular uptake. Because of the appreciable water solubility of TMZ (∼5 mg/mL), the physical loading of TMZ in these nanocarriers is always challenging. Alternatively, the conjugation approach, wherein TMZ has been conjugated to polymers or small molecules, has been explored with improved outcomes in vitro and in vivo. This review emphasized the practical evidence of the conjugation strategy to improve the therapeutic potential of TMZ in the treatment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Reena Jatyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Prabhjeet Singh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Kumar Sahel
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Y G Karthik
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani, Vidya Vihar, Pilani 333031, Rajasthan, India.
| |
Collapse
|
38
|
Madani F, Esnaashari SS, Webster TJ, Khosravani M, Adabi M. Polymeric nanoparticles for drug delivery in glioblastoma: State of the art and future perspectives. J Control Release 2022; 349:649-661. [PMID: 35878729 DOI: 10.1016/j.jconrel.2022.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is an aggressive, fatal and malignant primary brain tumor. Despite the current standard treatment for glioblastoma patients including neurosurgical resection, followed by concomitant radiation and chemotherapy, the median survival rate is only about 15 months. An unresolved challenge for current therapies is related to getting drugs through the blood-brain barrier (BBB), which hinders many chemotherapeutic agents from reaching tumors cells. Although a large amount of research has been done to circumvent the BBB and deliver drugs to the brain, with nanoparticles (NPs) taking the lead, the challenge is still high. In this regard, the BBB and how to transfer drug pathways through the BBB, especially using NPs, are introduced here. Afterwards, the latest advances in drug delivery, co-drug delivery, and combination modalities are described specifically for GBM treatments using natural and synthetic polymeric NPs and adjuvant therapies including hyperthermia, photodynamic therapy and also ketogenic regimens. In addition, receptor-mediated endocytosis agents that exist in endothelial capillary cells of the brain are explained. Lastly, future directions to finally deliver drugs through the BBB for GBM treatment are emphasized. It is the hope that this review can provide a number of practical pathways for the future development of BBB permeable nanochemotherapeutics against GBM.
Collapse
Affiliation(s)
- Fatemeh Madani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Lubanska D, Alrashed S, Mason GT, Nadeem F, Awada A, DiPasquale M, Sorge A, Malik A, Kojic M, Soliman MAR, deCarvalho AC, Shamisa A, Kulkarni S, Marquardt D, Porter LA, Rondeau-Gagné S. Impairing proliferation of glioblastoma multiforme with CD44+ selective conjugated polymer nanoparticles. Sci Rep 2022; 12:12078. [PMID: 35840697 PMCID: PMC9287456 DOI: 10.1038/s41598-022-15244-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Glioblastoma is one of the most aggressive types of cancer with success of therapy being hampered by the existence of treatment resistant populations of stem-like Tumour Initiating Cells (TICs) and poor blood-brain barrier drug penetration. Therapies capable of effectively targeting the TIC population are in high demand. Here, we synthesize spherical diketopyrrolopyrrole-based Conjugated Polymer Nanoparticles (CPNs) with an average diameter of 109 nm. CPNs were designed to include fluorescein-conjugated Hyaluronic Acid (HA), a ligand for the CD44 receptor present on one population of TICs. We demonstrate blood-brain barrier permeability of this system and concentration and cell cycle phase-dependent selective uptake of HA-CPNs in CD44 positive GBM-patient derived cultures. Interestingly, we found that uptake alone regulated the levels and signaling activity of the CD44 receptor, decreasing stemness, invasive properties and proliferation of the CD44-TIC populations in vitro and in a patient-derived xenograft zebrafish model. This work proposes a novel, CPN- based, and surface moiety-driven selective way of targeting of TIC populations in brain cancer.
Collapse
Affiliation(s)
- Dorota Lubanska
- Department of Biomedical Sciences, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| | - Sami Alrashed
- Department of Biomedical Sciences, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| | - Gage T Mason
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| | - Fatima Nadeem
- Department of Biomedical Sciences, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| | - Angela Awada
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| | - Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| | - Alexandra Sorge
- Department of Biomedical Sciences, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| | - Aleena Malik
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| | - Monika Kojic
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| | - Mohamed A R Soliman
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ana C deCarvalho
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Abdalla Shamisa
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Swati Kulkarni
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
- Department of Physics, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada
| | - Lisa A Porter
- Department of Biomedical Sciences, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada.
| | - Simon Rondeau-Gagné
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave., Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
40
|
Neutrophils Promote Glioblastoma Tumor Cell Migration after Biopsy. Cells 2022; 11:cells11142196. [PMID: 35883641 PMCID: PMC9324761 DOI: 10.3390/cells11142196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma is diagnosed by biopsy or, if clinically feasible, tumor resection. However, emerging evidence suggests that this surgical intervention may increase the risk of tumor cell spread. It has been hypothesized that the damage to the tumor leads to infiltration of immune cells that consequently form an environment that favors tumor cell motility. In mouse glioma models, it was previously found that biopsy induced migration of tumor cells in vivo and that recruitment of monocytes from the blood was involved in this effect. However, the role of neutrophils in this process is still unclear. Here, we study the contribution of neutrophils on the pro-migratory effect of surgical interventions in glioma. Using repetitive intravital microscopy, in vivo migration of glioma tumor cells before and after biopsy was compared in mice systemically depleted of neutrophils. Interestingly, macrophages/microglia were almost completely absent from neutrophil-depleted tumors, indicating that neutrophils may be indirectly involved in biopsy-induced migration of glioma tumor cells through the recruitment of macrophages to the tumor. To further investigate whether neutrophils have the potential to also directly promote glioblastoma tumor cell migration, we performed in vitro migration assays using human neutrophils. Indeed, wound-healing of human primary glioblastoma tumor cell lines was promoted by human neutrophils. The pro-migratory effects of human neutrophils on glioblastoma tumor cells could also be recapitulated in transwell migration assays, indicating that soluble factor(s) are involved. We therefore provide evidence for both an indirect and direct involvement of neutrophils in tumor spread following biopsy of glioblastoma tumors.
Collapse
|
41
|
Guerra DB, Oliveira EMN, Sonntag AR, Sbaraine P, Fay AP, Morrone FB, Papaléo RM. Intercomparison of radiosensitization induced by gold and iron oxide nanoparticles in human glioblastoma cells irradiated by 6 MV photons. Sci Rep 2022; 12:9602. [PMID: 35688846 PMCID: PMC9187689 DOI: 10.1038/s41598-022-13368-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
In this work, an intercomparison of sensitization effects produced by gold (GNP) and dextran-coated iron oxide (SPION-DX) nanoparticles in M059J and U87 human glioblastoma cells was performed using 6 MV-photons. Three variables were mapped: the nanoparticle material, treatment concentration, and cell radiosensitivity. For U87, GNP treatments resulted in high sensitization enhancement ratios (SER[Formula: see text] up to 2.04). More modest effects were induced by SPION-DX, but still significant reductions in survival were achieved (maximum SER[Formula: see text] ). For the radiosensitive M059J, sensitization by both NPs was poor. SER[Formula: see text] increased with the degree of elemental uptake in the cells, but not necessarily with treatment concentration. For GNP, where exposure concentration and elemental uptake were found to be proportional, SER[Formula: see text] increased linearly with concentration in both cell lines. For SPION-DX, saturation of sensitization enhancement and metal uptake occurred at high exposures. Fold change in the [Formula: see text] ratios extracted from survival curves are reduced by the presence of SPION-DX but strongly increased by GNPs , suggesting that sensitization by GNPs occurs mainly via promotion of lethal damage, while for SPION-DX repairable damage dominates. The NPs were more effective in eliminating the radioresistant glioblastoma cells, an interesting finding, as resistant cells are key targets to improve treatment outcome.
Collapse
Affiliation(s)
- Danieli B Guerra
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil.
| | - Elisa M N Oliveira
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Amanda R Sonntag
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Patricia Sbaraine
- Division of Radiotherapy, São Lucas Hospital of PUCRS, Porto Alegre, 90610-000, Brazil
| | - Andre P Fay
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Fernanda B Morrone
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| | - Ricardo M Papaléo
- Interdisciplinary Center of Nanoscience and Micro-Nanotechnology, School of Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, 90619-900, Brazil
| |
Collapse
|
42
|
Ratti S, Marvi MV, Mongiorgi S, Obeng EO, Rusciano I, Ramazzotti G, Morandi L, Asioli S, Zoli M, Mazzatenta D, Suh PG, Manzoli L, Cocco L. Impact of phospholipase C β1 in glioblastoma: a study on the main mechanisms of tumor aggressiveness. Cell Mol Life Sci 2022; 79:195. [PMID: 35303162 PMCID: PMC8933313 DOI: 10.1007/s00018-022-04198-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
Abstract
Glioblastoma represents the most lethal brain tumor in adults. Several studies have shown the key role of phospholipase C β1 (PLCβ1) in the regulation of many mechanisms within the central nervous system suggesting PLCβ1 as a novel signature gene in the molecular classification of high-grade gliomas. This study aims to determine the pathological impact of PLCβ1 in glioblastoma, confirming that PLCβ1 gene expression correlates with glioma's grade, and it is lower in 50 glioblastoma samples compared to 20 healthy individuals. PLCβ1 silencing in cell lines and primary astrocytes, leads to increased cell migration and invasion, with the increment of mesenchymal transcription factors and markers, as Slug and N-Cadherin and metalloproteinases. Cell proliferation, through increased Ki-67 expression, and the main survival pathways, as β-catenin, ERK1/2 and Stat3 pathways, are also affected by PLCβ1 silencing. These data suggest a potential role of PLCβ1 in maintaining a normal or less aggressive glioma phenotype.
Collapse
Affiliation(s)
- Stefano Ratti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Maria Vittoria Marvi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Sara Mongiorgi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Eric Owusu Obeng
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Isabella Rusciano
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy
| | - Luca Morandi
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy.,Anatomic Pathology Unit, Azienda USL Di Bologna, 40124, Bologna, Italy.,Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy.,Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
| | - Diego Mazzatenta
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy.,Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, 40139, Bologna, Italy
| | - Pann-Ghill Suh
- Korea Brain Research Institute, Daegu, 41062, Korea.,School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, Korea
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy.
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126, Bologna, Italy.
| |
Collapse
|
43
|
Sahayasheela VJ, Yu Z, Hirose Y, Pandian GN, Bando T, Sugiyama H. Inhibition of GLI-mediated Transcription by Cyclic Pyrrole-Imidazole Polyamide in Cancer Stem Cells. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Zutao Yu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
44
|
Hsia TC, Peng SF, Chueh FS, Lu KW, Yang JL, Huang AC, Hsu FT, Wu RSC. Bisdemethoxycurcumin Induces Cell Apoptosis and Inhibits Human Brain Glioblastoma GBM 8401/ Luc2 Cell Xenograft Tumor in Subcutaneous Nude Mice In Vivo. Int J Mol Sci 2022; 23:ijms23010538. [PMID: 35008959 PMCID: PMC8745075 DOI: 10.3390/ijms23010538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Bisdemethoxycurcumin (BDMC) has biological activities, including anticancer effects in vitro; however, its anticancer effects in human glioblastoma (GBM) cells have not been examined yet. This study aimed to evaluate the tumor inhibitory effect and molecular mechanism of BDMC on human GBM 8401/luc2 cells in vitro and in vivo. In vitro studies have shown that BDMC significantly reduced cell viability and induced cell apoptosis in GBM 8401/luc2 cells. Furthermore, BDMC induced apoptosis via inhibited Bcl-2 (anti-apoptotic protein) and increased Bax (pro-apoptotic proteins) and cytochrome c release in GBM 8401/luc2 cells in vitro. Then, twelve BALB/c-nude mice were xenografted with human glioblastoma GBM 8401/luc2 cancer cells subcutaneously, and the xenograft nude mice were treated without and with BDMC (30 and 60 mg/kg of BDMC treatment) every 3 days. GBM 8401/luc2 cell xenografts experiment showed that the growth of the tumors was significantly suppressed by BDMC administration at both doses based on the reduction of tumor size and weights. BDMC did not change the body weight and the H&E histopathology analysis of liver samples, indicating that BDMC did not induce systemic toxicity. Meanwhile, treatment with BDMC up-regulated the expressions of BAX and cleaved caspase-3, while it down-regulated the protein expressions of Bcl-2 and XIAP in the tumor tissues compared with the control group. This study has demonstrated that BDMC presents potent anticancer activity on the human glioblastoma GBM 8401/luc2 cell xenograft model by inducing apoptosis and inhibiting tumor cell proliferation and shows the potential for further development to the anti-GBM cancer drug.
Collapse
Affiliation(s)
- Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung 406, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan;
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Kung-Wen Lu
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 406, Taiwan;
| | - Jiun-Long Yang
- Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan; (J.-L.Y.); (A.-C.H.)
| | - An-Cheng Huang
- Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan; (J.-L.Y.); (A.-C.H.)
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
- Correspondence: (F.-T.H.); (R.S.-C.W.); Tel.: +886-4-2205-3366 (ext. 2532) (F.-T.H.); +886-4-2205-2121 (ext. 5242) (R.S.-C.W.); Fax: +886-4-2205-3764 (F.-T.H.); +886-4-2205-2121 (ext. 5237) (R.S.-C.W.)
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung 404, Taiwan
- Department of Anesthesiology, China Medical University, Taichung 404, Taiwan
- Correspondence: (F.-T.H.); (R.S.-C.W.); Tel.: +886-4-2205-3366 (ext. 2532) (F.-T.H.); +886-4-2205-2121 (ext. 5242) (R.S.-C.W.); Fax: +886-4-2205-3764 (F.-T.H.); +886-4-2205-2121 (ext. 5237) (R.S.-C.W.)
| |
Collapse
|
45
|
Pandey M, Xiu J, Mittal S, Zeng J, Saul M, Kesari S, Azadi A, Newton H, Deniz K, Ladner K, Sumrall A, Korn WM, Lou E. Molecular alterations associated with improved outcome in patients with glioblastoma treated with Tumor-Treating Fields. Neurooncol Adv 2022; 4:vdac096. [PMID: 35821680 PMCID: PMC9270729 DOI: 10.1093/noajnl/vdac096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background The genomic and overall biologic landscape of glioblastoma (GB) has become clearer over the past 2 decades, as predictive and prognostic biomarkers of both de novo and transformed forms of GB have been identified. The oral chemotherapeutic agent temozolomide (TMZ) has been integral to standard-of-care treatment for nearly 2 decades. More recently, the use of non-pharmacologic interventions, such as application of alternating electric fields, called Tumor-Treating Fields (TTFields), has emerged as a complementary treatment option that increases overall survival (OS) in patients with newly diagnosed GB. The genomic factors associated with improved or lack of response to TTFields are unknown. Methods We performed comprehensive genomic analysis of GB tumors resected from 55 patients who went on to receive treatment using TTFields, and compared results to 57 patients who received standard treatment without TTFields. Results We found that molecular driver alterations in NF1, and wild-type PIK3CA and epidermal growth factor receptor (EGFR), were associated with increased benefit from TTFields as measured by progression-free survival (PFS) and OS. There were no differences when stratified by TP53 status. When NF1, PIK3CA, and EGFR status were combined as a Molecular Survival Score, the combination of the 3 factors significantly correlated with improved OS and PFS in TTFields-treated patients compared to patients not treated with TTFields. Conclusions These results shed light on potential driver and passenger mutations in GB that can be validated as predictive biomarkers of response to TTFields treatment, and provide an objective and testable genomic-based approach to assessing response.
Collapse
Affiliation(s)
- Manjari Pandey
- West Cancer Center and Research Institute, Memphis, Tennessee, USA
| | - Joanne Xiu
- Caris Life Sciences, Phoenix, Arizona, USA
| | - Sandeep Mittal
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Jia Zeng
- Caris Life Sciences, Phoenix, Arizona, USA
| | | | - Santosh Kesari
- Pacific Neuroscience Institute, Saint John's Cancer Institute, Santa Monica, California, USA
| | - Amir Azadi
- Arizona Oncology Biltmore, Phoenix, Arizona, USA
| | - Herbert Newton
- Neuro-Oncology Center, Advent Health Cancer Institute, Orlando, Florida, USA
| | - Karina Deniz
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katherine Ladner
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - W Michael Korn
- West Cancer Center and Research Institute, Memphis, Tennessee, USA
| | - Emil Lou
- Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
46
|
SENCAR L, YILMAZ DM, GÖKTÜRK D, ÖZANDAÇ POLAT S, COŞKUN G, ŞAKER D, SAPMAZ T, KARA S, ÇELENK A, POLAT S. Glioblastoma hücre hattında (U87) siklopamin ve temozolomid kombine tedavisinin miR-20a ekspresyonu üzerine etkileri. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.996520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
47
|
Zhou X, Li W, Yang J, Qi X, Chen Y, Yang H, Chu L. Tertiary lymphoid structure stratifies glioma into three distinct tumor subtypes. Aging (Albany NY) 2021; 13:26063-26094. [PMID: 34954691 PMCID: PMC8751592 DOI: 10.18632/aging.203798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Tertiary lymphoid structure (TLS), also known as ectopic lymphoid organs, are found in cancer, chronic inflammation, and autoimmune diseases. However, the heterogeneity of TLS in gliomas is unclear. Therefore, it is necessary to identify TLS differences and define TLS subtypes. METHODS The TLS gene profile of 697 gliomas from The Cancer Genome Atlas (TCGA) was used for consensus clustering to identify robust clusters, and the reproducibility of the stratification method was assessed in Chinese Glioma Genome Atlas (CGGA) cohort1, CGGA_cohort2, and GSE16011. Analyses of clinical characteristics, immune infiltration, and potential biological functions were performed for each subtype. RESULTS Three resulting clusters (A, B, and C) were identified based on consensus clustering on the gene expression profile of TLS genes. There was a significant prognostic difference among the clusters, with a shorter survival for C than B and A. In comparison with the A and B subtypes, the C subtype was significantly enriched in primary immunodeficiency, intestinal immune network for lgG production, antigen processing and presentation, natural killer cell-mediated cytotoxicity, complement and coagulation cascades, cytokine-cytokine receptor interaction, leukocyte transendothelial migration, and some immune-related diseases. The levels of 23 immune cell types were higher in the C subtype than in the A and B subtypes. Finally, we developed and validated a riskscore based on TLS subtypes with better performance of prognosis prediction. CONCLUSIONS This study presents a new stratification method according to the TLS gene profile and highlights TLS heterogeneity in gliomas.
Collapse
Affiliation(s)
- Xingwang Zhou
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Wenyan Li
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Jie Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Yimin Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Hua Yang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, PR China
| |
Collapse
|
48
|
Saha S, Zhang Y, Wilson B, Abounader R, Dutta A. The tumor-suppressive long noncoding RNA DRAIC inhibits protein translation and induces autophagy by activating AMPK. J Cell Sci 2021; 134:jcs259306. [PMID: 34746949 PMCID: PMC8729785 DOI: 10.1242/jcs.259306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are long RNA transcripts that do not code for proteins and have been shown to play a major role in cellular processes through diverse mechanisms. DRAIC, a lncRNA that is downregulated in castration-resistant advanced prostate cancer, inhibits the NF-κB pathway by inhibiting the IκBα kinase. Decreased DRAIC expression predicted poor patient outcome in gliomas and seven other cancers. We now report that DRAIC suppresses invasion, migration, colony formation and xenograft growth of glioblastoma-derived cell lines. DRAIC activates AMP-activated protein kinase (AMPK) by downregulating the NF-κB target gene GLUT1, and thus represses mTOR, leading to downstream effects, such as a decrease in protein translation and increase in autophagy. DRAIC, therefore, has an effect on multiple signal transduction pathways that are important for oncogenesis, namely, the NF-κB pathway and AMPK-mTOR-S6K/ULK1 pathway. The regulation of NF-κB, protein translation and autophagy by the same lncRNA explains the tumor-suppressive role of DRAIC in different cancers and reinforces the importance of lncRNAs as emerging regulators of signal transduction pathways. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shekhar Saha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22901, USA
| | - Ying Zhang
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22901, USA
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22901, USA
| | - Roger Abounader
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22901, USA
- Cancer Center, University of Virginia, Charlottesville, Virginia 22901, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22901, USA
- Cancer Center, University of Virginia, Charlottesville, Virginia 22901, USA
- Department of Genetics, University of Alabama, Birmingham, Alabama 35233, USA
| |
Collapse
|
49
|
Design of Biopolymer-Based Interstitial Therapies for the Treatment of Glioblastoma. Int J Mol Sci 2021; 22:ijms222313160. [PMID: 34884965 PMCID: PMC8658694 DOI: 10.3390/ijms222313160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of primary brain cancer and has the highest morbidity rate and current treatments result in a bleak 5-year survival rate of 5.6%. Interstitial therapy is one option to increase survival. Drug delivery by interstitial therapy most commonly makes use of a polymer implant encapsulating a drug which releases as the polymer degrades. Interstitial therapy has been extensively studied as a treatment option for GBM as it provides several advantages over systemic administration of chemotherapeutics. Primarily, it can be applied behind the blood–brain barrier, increasing the number of possible chemotherapeutic candidates that can be used and reducing systemic levels of the therapy while concentrating it near the cancer source. With interstitial therapy, multiple drugs can be released locally into the brain at the site of resection as the polymer of the implant degrades, and the release profile of these drugs can be tailored to optimize combination therapy or maintain synergistic ratios. This can bypass the blood–brain barrier, alleviate systemic toxicity, and resolve drug resistance in the tumor. However, tailoring drug release requires appropriate consideration of the complex relationship between the drug, polymer, and formulation method. Drug physicochemical properties can result in intermolecular bonding with the polymeric matrix and affect drug distribution in the implant depending on the formulation method used. This review is focused on current works that have applied interstitial therapy towards GBM, discusses polymer and formulation methods, and provides design considerations for future implantable biodegradable materials.
Collapse
|
50
|
Gonçalves FG, Viaene AN, Vossough A. Advanced Magnetic Resonance Imaging in Pediatric Glioblastomas. Front Neurol 2021; 12:733323. [PMID: 34858308 PMCID: PMC8631300 DOI: 10.3389/fneur.2021.733323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
The shortly upcoming 5th edition of the World Health Organization Classification of Tumors of the Central Nervous System is bringing extensive changes in the terminology of diffuse high-grade gliomas (DHGGs). Previously "glioblastoma," as a descriptive entity, could have been applied to classify some tumors from the family of pediatric or adult DHGGs. However, now the term "glioblastoma" has been divested and is no longer applied to tumors in the family of pediatric types of DHGGs. As an entity, glioblastoma remains, however, in the family of adult types of diffuse gliomas under the insignia of "glioblastoma, IDH-wildtype." Of note, glioblastomas still can be detected in children when glioblastoma, IDH-wildtype is found in this population, despite being much more common in adults. Despite the separation from the family of pediatric types of DHGGs, what was previously labeled as "pediatric glioblastomas" still remains with novel labels and as new entities. As a result of advances in molecular biology, most of the previously called "pediatric glioblastomas" are now classified in one of the four family members of pediatric types of DHGGs. In this review, the term glioblastoma is still apocryphally employed mainly due to its historical relevance and the paucity of recent literature dealing with the recently described new entities. Therefore, "glioblastoma" is used here as an umbrella term in the attempt to encompass multiple entities such as astrocytoma, IDH-mutant (grade 4); glioblastoma, IDH-wildtype; diffuse hemispheric glioma, H3 G34-mutant; diffuse pediatric-type high-grade glioma, H3-wildtype and IDH-wildtype; and high grade infant-type hemispheric glioma. Glioblastomas are highly aggressive neoplasms. They may arise anywhere in the developing central nervous system, including the spinal cord. Signs and symptoms are non-specific, typically of short duration, and usually derived from increased intracranial pressure or seizure. Localized symptoms may also occur. The standard of care of "pediatric glioblastomas" is not well-established, typically composed of surgery with maximal safe tumor resection. Subsequent chemoradiation is recommended if the patient is older than 3 years. If younger than 3 years, surgery is followed by chemotherapy. In general, "pediatric glioblastomas" also have a poor prognosis despite surgery and adjuvant therapy. Magnetic resonance imaging (MRI) is the imaging modality of choice for the evaluation of glioblastomas. In addition to the typical conventional MRI features, i.e., highly heterogeneous invasive masses with indistinct borders, mass effect on surrounding structures, and a variable degree of enhancement, the lesions may show restricted diffusion in the solid components, hemorrhage, and increased perfusion, reflecting increased vascularity and angiogenesis. In addition, magnetic resonance spectroscopy has proven helpful in pre- and postsurgical evaluation. Lastly, we will refer to new MRI techniques, which have already been applied in evaluating adult glioblastomas, with promising results, yet not widely utilized in children.
Collapse
Affiliation(s)
- Fabrício Guimarães Gonçalves
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Angela N Viaene
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arastoo Vossough
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|