1
|
Chintala SK, Pan J, Satapathy S, Condruti R, Hao Z, Liu PW, O’Conner CF, Barr JT, Wilson MR, Jeong S, Fini ME. Recombinant Human Clusterin Seals Damage to the Ocular Surface Barrier in a Mouse Model of Ophthalmic Preservative-Induced Epitheliopathy. Int J Mol Sci 2023; 24:981. [PMID: 36674497 PMCID: PMC9861099 DOI: 10.3390/ijms24020981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
There is a significant unmet need for therapeutics to treat ocular surface barrier damage, also called epitheliopathy, due to dry eye and related diseases. We recently reported that the natural tear glycoprotein CLU (clusterin), a molecular chaperone and matrix metalloproteinase inhibitor, seals and heals epitheliopathy in mice subjected to desiccating stress in a model of aqueous-deficient/evaporative dry eye. Here we investigated CLU sealing using a second model with features of ophthalmic preservative-induced dry eye. The ocular surface was stressed by topical application of the ophthalmic preservative benzalkonium chloride (BAC). Then eyes were treated with CLU and sealing was evaluated immediately by quantification of clinical dye uptake. A commercial recombinant form of human CLU (rhCLU), as well as an rhCLU form produced in our laboratory, designed to be compatible with U.S. Food and Drug Administration guidelines on current Good Manufacturing Practices (cGMP), were as effective as natural plasma-derived human CLU (pCLU) in sealing the damaged ocular surface barrier. In contrast, two other proteins found in tears: TIMP1 and LCN1 (tear lipocalin), exhibited no sealing activity. The efficacy and selectivity of rhCLU for sealing of the damaged ocular surface epithelial barrier suggests that it could be of therapeutic value in treating BAC-induced epitheliopathy and related diseases.
Collapse
Affiliation(s)
- Shravan K. Chintala
- USC Institute for Genetic Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - Jinhong Pan
- New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Sandeep Satapathy
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rebecca Condruti
- Training Program in Cell, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Zixuan Hao
- Training Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Pei-wen Liu
- Training Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Christian F. O’Conner
- Doctor of Medicine Training Program, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joseph T. Barr
- The Ohio State University College of Optometry, Columbus, OH 43210, USA
| | - Mark R. Wilson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Shinwu Jeong
- USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
| | - M. Elizabeth Fini
- New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
2
|
Fini ME, Jeong S, Wilson MR. Therapeutic Potential of the Molecular Chaperone and Matrix Metalloproteinase Inhibitor Clusterin for Dry Eye. Int J Mol Sci 2020; 22:E116. [PMID: 33374364 PMCID: PMC7794831 DOI: 10.3390/ijms22010116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022] Open
Abstract
Evidence is presented herein supporting the potential of the natural homeostatic glycoprotein CLU (clusterin) as a novel therapeutic for the treatment of dry eye. This idea began with the demonstration that matrix metalloproteinase MMP9 is required for damage to the ocular surface in mouse dry eye. Damage was characterized by degradation of OCLN (occludin), a known substrate of MMP9 and a key component of the paracellular barrier. Following up on this finding, a yeast two-hybrid screen was conducted using MMP9 as the bait to identify other proteins involved. CLU emerged as a strong interacting protein that inhibits the enzymatic activity of MMP9. Previously characterized as a molecular chaperone, CLU is expressed prominently by epithelia at fluid-tissue interfaces and secreted into bodily fluids, where it protects cells and tissues against damaging stress. It was demonstrated that CLU also protects the ocular surface in mouse dry eye when applied topically to replace the natural protein depleted from the dysfunctional tears. CLU is similarly depleted from tears in human dry eye. The most novel and interesting finding was that CLU binds selectively to the damaged ocular surface. In this position, CLU protects against epithelial cell death and barrier proteolysis, and dampens the autoimmune response, while the apical epithelial cell layer is renewed. When present at high enough concentration, CLU also blocks staining by vital dyes used clinically to diagnose dry eye. None of the current therapeutics have this combination of properties to "protect, seal, and heal". Future work will be directed towards human clinical trials to investigate the therapeutic promise of CLU.
Collapse
Affiliation(s)
- M. Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine, Program in Pharmacology & Drug Development, Graduate School of Biomedical Sciences Tufts University, Boston, MA 02111, USA
| | - Shinwu Jeong
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90089, USA;
| | - Mark R. Wilson
- The Illawarra Health and Medical Research Institute, Molecular Horizons and the School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
3
|
Montoliu-Gaya L, Güell-Bosch J, Esquerda-Canals G, Roda AR, Serra-Mir G, Lope-Piedrafita S, Sánchez-Quesada JL, Villegas S. Differential effects of apoE and apoJ mimetic peptides on the action of an anti-Aβ scFv in 3xTg-AD mice. Biochem Pharmacol 2018; 155:380-392. [PMID: 30026023 DOI: 10.1016/j.bcp.2018.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022]
Abstract
Anti-Aβ immunotherapy has emerged as a promising approach to treat Alzheimer's disease (AD). The single-chain variable fragment scFv-h3D6 is an anti-Aβ antibody fragment that lacks the Fc region, which is associated with the induction of microglial reactivity by the full-length monoclonal antibody bapineuzumab. ScFv-h3D6 was previously shown to restore the levels of apolipoprotein E (apoE) and apolipoprotein J (apoJ) in a triple-transgenic-AD (3xTg-AD) mouse model. Since apoE and apoJ play an important role in the development of AD, we aimed to study the in vivo effect of the combined therapy of scFv-h3D6 with apoE and apoJ mimetic peptides (MPs). Four-and-a-half-month-old 3xTg-AD mice were treated for six weeks with scFv-h3D6, apoE-MP, apoJ-MP, or a combination of scFv-h3D6 with each of the MPs, or a vehicle, and then the results were compared to non-transgenic mice. Magnetic Resonance Imaging showed a general tendency of the different treatments to protect against the reduction in brain volume. Aβ burden decreased after treatment with scFv-h3D6, apoE-MP, or apoJ-MP, but the effect was not as evident with the combined therapies. In terms of glial reactivity, apoE-MP showed a potent anti-inflammatory effect that was eased by the presence of scFv-h3D6, whereas the combination of apoJ-MP and scFv-h3D6 was not detrimental. ScFv-h3D6 alone did not induce microglial reactivity, as full-length antibodies do; rather, it reduced it. Endogenous apoE and apoJ levels were decreased by scFv-h3D6, but the MPs lead to a simultaneous increase of both apolipoproteins. While apoE-MP and apoJ-MP demonstrated different effects in the combined therapies with scFv-h3D6, they did not improve the overall protective effect of scFv-h3D6 in reducing the Aβ burden, apolipoproteins levels or microglial reactivity.
Collapse
Affiliation(s)
- Laia Montoliu-Gaya
- Protein Folding and Stability Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Jofre Güell-Bosch
- Protein Folding and Stability Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Gisela Esquerda-Canals
- Protein Folding and Stability Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Alejandro R Roda
- Protein Folding and Stability Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Gabriel Serra-Mir
- Protein Folding and Stability Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| | - Silvia Lope-Piedrafita
- Servei de Ressonància Magnètica Nuclear, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Jose Luis Sánchez-Quesada
- Cardiovascular Biochemistry Group, Research Institute of the Hospital de Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBER of Diabetes and Metabolic Diseases (CIBERDEM), Spain.
| | - Sandra Villegas
- Protein Folding and Stability Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
4
|
Affiliation(s)
- Alan M Fogelman
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Srinivasa T Reddy
- Department Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
5
|
Cameron SJ, Morrell CN, Bao C, Swaim AF, Rodriguez A, Lowenstein CJ. A Novel Anti-Inflammatory Effect for High Density Lipoprotein. PLoS One 2015; 10:e0144372. [PMID: 26680360 PMCID: PMC4683005 DOI: 10.1371/journal.pone.0144372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/17/2015] [Indexed: 11/21/2022] Open
Abstract
High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis.
Collapse
Affiliation(s)
- Scott J. Cameron
- Departments of Medicine, Division of Cardiology, University of Rochester School of Medicine, Box 679, 601 Elmwood Avenue, Rochester, NY, 14652, United States of America
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Box CVRI, 601 Elmwood Avenue, Rochester, NY, 14652, United States of America
- * E-mail:
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Box CVRI, 601 Elmwood Avenue, Rochester, NY, 14652, United States of America
- Department of Comparative Medicine, The Johns Hopkins University School of Medicine 733 N. Broadway, MRB 827, Baltimore, MD, 21205, United States of America
| | - Clare Bao
- Department of Medicine, The Johns Hopkins University School of Medicine, 950 Ross Building, 720 Rutland Ave, Baltimore, MD, 21205, United States of America
| | - AnneMarie F. Swaim
- Department of Comparative Medicine, The Johns Hopkins University School of Medicine 733 N. Broadway, MRB 827, Baltimore, MD, 21205, United States of America
| | - Annabelle Rodriguez
- Department of Cell Biology, University of Connecticut School of Medicine, E5050, 263 Farmington Avenue, Farmington, CT, 06030, United States of America
| | - Charles J. Lowenstein
- Departments of Medicine, Division of Cardiology, University of Rochester School of Medicine, Box 679, 601 Elmwood Avenue, Rochester, NY, 14652, United States of America
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine, Box CVRI, 601 Elmwood Avenue, Rochester, NY, 14652, United States of America
| |
Collapse
|
6
|
Lee EH, Lee EJ, Kim HJ, Jang AS, Koh ES, Uh ST, Kim YH, Park SW, Park CS. Overexpression of apolipoprotein A1 in the lung abrogates fibrosis in experimental silicosis. PLoS One 2013; 8:e55827. [PMID: 23409054 PMCID: PMC3568133 DOI: 10.1371/journal.pone.0055827] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/02/2013] [Indexed: 01/25/2023] Open
Abstract
The inhalation of silica particles induces silicosis, an inflammatory and fibrotic lung disease characterized by the early accumulation of macrophages and neutrophils in the airspace and subsequent appearance of silicotic nodules as a result of progressive fibrosis. This study evaluated whether apolipoprotein A1 (ApoA1) protects against ongoing fibrosis and promotes the resolution of established experimental lung silicosis. Crystallized silica was intratracheally administered to 6- to 8-week-old transgenic mice expressing human ApoA1 in their alveolar epithelial cells (day 0). ApoA1 was overexpressed beginning on day 7 (ApoA1_D7 group) or day 15 (ApoA1_D15 group). The mice were sacrificed on day 30 for an evaluation of lung histology; the measurement of collagen, transforming growth factor-b1 and lipoxin A4; and a TUNEL assay for apoptotic cells. The ApoA1_D7 and D15 groups showed significant reductions in the silica-induced increase in inflammatory cells, silicotic nodule area, and collagen deposition compared with the silica-treated ApoA1 non-overexpressing mice. The level of transforming growth factor-b1 decreased in the bronchoalveolar lavage fluid, whereas lipoxin A4 was increased in the ApoA1_D7 and D15 groups compared with the silica-treated ApoA1 non-overexpressing mice. The silica-induced increase in the number of apoptotic cells was significantly reduced in the lungs of mice overexpressing ApoA1. Overexpression of ApoA1 decreased silica-induced lung inflammation and fibrotic nodule formation. The restoration of lipoxin A4 may contribute to the protective effect of ApoA1 overexpression against silica-induced lung fibrosis.
Collapse
Affiliation(s)
- Eun hee Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeonggi-Do, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Buga GM, Fogelman AM. Peptide Mimetics of Apolipoproteins Improve HDL Function. J Clin Lipidol 2012; 1:142-7. [PMID: 18449337 DOI: 10.1016/j.jacl.2007.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the past decade evidence has accumulated that suggests that the anti-inflammatory properties of HDL may be at least as important as the levels of HDL-cholesterol. The recent failure of the torcetrapib clinical trails has highlighted the potential differences between HDL-cholesterol levels and HDL function. Agents to improve HDL function including HDL anti-inflammatory properties provide a new therapeutic strategy for ameliorating atherosclerosis and other chronic inflammatory conditions related to dyslipidemia. Seeking guidance from the structure of the apolipoproteins of the plasma lipoproteins has allowed the creation of a series of polypeptides that have interesting functionality with therapeutic implications. In animal models of atherosclerosis, peptide mimetics of apolipoproteins have been shown to improve the anti-inflammatory properties of HDL, significantly reduce lesions and improve vascular inflammation and function without necessarily altering HDL-cholesterol levels. Some of these are now entering the clinical arena as interventions in pharmacologic and pharmacodynamic studies.
Collapse
Affiliation(s)
- Mohamad Navab
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1679
| | | | | | | | | | | |
Collapse
|
8
|
Kelley WP, Chen S, Floyd PD, Hu P, Kapsi SG, Kord AS, Sun M, Vogt FG. Analytical Characterization of an Orally-Delivered Peptide Pharmaceutical Product. Anal Chem 2012; 84:4357-72. [DOI: 10.1021/ac203478r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wayne P. Kelley
- Biopharmaceutical R&D, GlaxoSmithKline llc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Shujun Chen
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| | - Philip D. Floyd
- Product Development, GlaxoSmithKline plc. 5 Moore Drive, Research Triangle Park, North Carolina
27709, United States
| | - Ping Hu
- Biopharmaceutical R&D, GlaxoSmithKline llc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Shiva G. Kapsi
- Product Development, GlaxoSmithKline plc. 1250, South Collegeville Road,
Collegeville, Pennsylvania 19426, United States
| | - Alireza S. Kord
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| | - Mingjiang Sun
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| | - Frederick G. Vogt
- Product Development, GlaxoSmithKline plc. 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United
States
| |
Collapse
|
9
|
Su F, Grijalva V, Navab K, Ganapathy E, Meriwether D, Imaizumi S, Navab M, Fogelman AM, Reddy ST, Farias-Eisner R. HDL mimetics inhibit tumor development in both induced and spontaneous mouse models of colon cancer. Mol Cancer Ther 2012; 11:1311-9. [PMID: 22416044 DOI: 10.1158/1535-7163.mct-11-0905] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies suggest that high-density lipoprotein (HDL) levels are inversely related to colon cancer risk. HDL mimetics constructed from a number of peptides and proteins with varying structures possess anti-inflammatory and antioxidant properties reminiscent of HDL. In this article, we examined whether HDL mimetics, L-4F (an apolipoprotein A-I mimetic peptide) and G* (an apolipoprotein J mimetic peptide) affect tumor growth and development in mouse models of colon cancer. HDL mimetics reduced viability and proliferation of CT26 cells, a mouse colon adenocarcinoma cell line, and decreased CT26 cell-mediated tumor burden in BALB/c mice when administered subcutaneously or orally. Plasma levels of lysophosphatidic acid (LPA), a serum biomarker for colon cancer, were significantly reduced in mice that received HDL mimetics, suggesting that binding and removal of proinflammatory lipids is a potential mechanism for the inhibition of tumor development by HDL mimetics. Furthermore, L-4F significantly reduced size and number of polyps in APC(min/+) mice, a mouse model for human familial adenomatous polyposis, suggesting that HDL mimetics are effective in inhibiting the development of both induced and spontaneous cancers of the colon. Our results, for the first time, identify HDL mimetics as a novel therapeutic strategy for the treatment of colon cancer.
Collapse
Affiliation(s)
- Feng Su
- Department of Obstetrics and Gynecology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides inhibit tumor development in a mouse model of ovarian cancer. Proc Natl Acad Sci U S A 2010; 107:19997-20002. [PMID: 21041624 DOI: 10.1073/pnas.1009010107] [Citation(s) in RCA: 160] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We examined whether reduced levels of Apolipoprotein A-I (apoA-I) in ovarian cancer patients are causal in ovarian cancer in a mouse model. Mice expressing a human apoA-I transgene had (i) increased survival (P < 0.0001) and (ii) decreased tumor development (P < 0.01), when compared with littermates, following injection of mouse ovarian epithelial papillary serous adenocarcinoma cells (ID-8 cells). ApoA-I mimetic peptides reduced viability and proliferation of ID8 cells and cis-platinum-resistant human ovarian cancer cells, and decreased ID-8 cell-mediated tumor burden in C57BL/6J mice when administered subcutaneously or orally. Serum levels of lysophosphatidic acid, a well-characterized modulator of tumor cell proliferation, were significantly reduced (>50% compared with control mice, P < 0.05) in mice that received apoA-I mimetic peptides (administered either subcutaneously or orally), suggesting that binding and removal of lysophosphatidic acid is a potential mechanism for the inhibition of tumor development by apoA-I mimetic peptides, which may serve as a previously unexplored class of anticancer agents.
Collapse
|
11
|
Nuutinen T, Suuronen T, Kauppinen A, Salminen A. Clusterin: a forgotten player in Alzheimer's disease. ACTA ACUST UNITED AC 2009; 61:89-104. [PMID: 19651157 DOI: 10.1016/j.brainresrev.2009.05.007] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 11/16/2022]
Abstract
Clusterin, also known as apolipoprotein J, is a versatile chaperone molecule which contains several amphipathic and coiled-coil alpha-helices, typical characteristics of small heat shock proteins. In addition, clusterin has three large intrinsic disordered regions, so-called molten globule domains, which can stabilize stressed protein structures. Twenty years ago, it was demonstrated that the expression of clusterin was clearly increased in Alzheimer's disease (AD). Later it was observed that clusterin can bind amyloid-beta peptides and prevent their fibrillization. Clusterin is also involved in the clearance of amyloid-beta peptides and fibrils by binding to megalin receptors and enhancing their endocytosis within glial cells. Clusterin is a complement inhibitor and can suppress complement activation observed in AD. Clusterin is also present in lipoprotein particles and regulates cholesterol and lipid metabolism of brain which is disturbed in AD. Clusterin is a stress-induced chaperone which is normally secreted but in conditions of cellular stress, it can be transported to cytoplasm where it can bind to Bax protein and inhibit neuronal apoptosis. Clusterin can also bind to Smad2/3 proteins and potentiate the neuroprotective TGFbeta signaling. An alternative splicing can produce a variant isoform of clusterin which can be translocated to nuclei where it induces apoptosis. The role of nuclear clusterin in AD needs to be elucidated. We will review here the extensive literature linking clusterin to AD and examine the recent progress in clusterin research with the respect to AD pathology. Though clusterin can be viewed as a multipotent guardian of brain, it is unable to prevent the progressive neuropathology in chronic AD.
Collapse
Affiliation(s)
- Tapio Nuutinen
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | | | | | |
Collapse
|
12
|
White CR, Datta G, Mochon P, Zhang Z, Kelly O, Curcio C, Parks D, Palgunachari M, Handattu S, Gupta H, Garber DW, Anantharamaiah GM. Vasculoprotective Effects of Apolipoprotein Mimetic Peptides: An Evolving Paradigm In Hdl Therapy (Vascular Disease Prevention, In Press.). ACTA ACUST UNITED AC 2009; 6:122-130. [PMID: 20084185 DOI: 10.2174/1567270000906010122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Anti-atherogenic effects of high density lipoprotein (HDL) and its major protein component apolipoprotein A-I (apoA-I) are principally thought to be due to their ability to mediate reverse cholesterol transport. These agents also possess anti-oxidant properties that prevent the oxidative modification of low density lipoprotein (LDL) and anti-inflammatory properties that include inhibition of endothelial cell adhesion molecule expression. Results of the Framingham study revealed that a reduction in HDL levels is an independent risk factor for coronary artery disease (CAD). Accordingly, there has been considerable interest in developing new therapies that specifically elevate HDL cholesterol. However, recent evidence suggests that increasing circulating HDL cholesterol levels alone is not sufficient as a mode of HDL therapy. Rather, therapeutic approaches that increase the functional properties of HDL may be superior to simply raising the levels of HDL per se. Our laboratory has pioneered the development of synthetic, apolipoprotein mimetic peptides which are structurally and functionally similar to apoA-I but possess unique structural homology to the lipid-associating domains of apoA-I. The apoA-I mimetic peptide 4F inhibits atherogenic lesion formation in murine models of atherosclerosis. This effect is related to the ability of 4F to induce the formation of pre-β HDL particles that are enriched in apoA-I and paraoxonase. 4F also possesses anti-inflammatory and anti-oxidant properties that are independent of its effect on HDL quality per se. Recent studies suggest that 4F stimulates the expression of the antioxidant enzymes heme oxygenase and superoxide dismutase and inhibits superoxide anion formation in blood vessels of diabetic, hypercholesterolemic and sickle cell disease mice. The goal of this review is to discuss HDL-dependent and -independent mechanisms by which apoA-I mimetic peptides reduce vascular injury in experimental animal models.
Collapse
Affiliation(s)
- C Roger White
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
White CR, Datta G, Zhang Z, Gupta H, Garber DW, Mishra VK, Palgunachari MN, Handattu SP, Chaddha M, Anantharamaiah GM. HDL therapy for cardiovascular diseases: the road to HDL mimetics. Curr Atheroscler Rep 2008; 10:405-12. [PMID: 18706282 DOI: 10.1007/s11883-008-0063-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are currently the drug of choice for the clinical management of elevated low-density lipoprotein (LDL) cholesterol. Although statin treatment provides an overall improvement in outcomes, clinical trial data reveal a significant number of cardiac events despite reaching targeted LDL levels. A low serum high-density lipoprotein (HDL) cholesterol level is an independent predictor of cardiovascular risk. Accordingly, there has been interest in determining whether HDL elevation, in addition to LDL lowering, further reduces risk in patients with coronary artery disease. Several commonly prescribed lipid-lowering therapies modestly raise HDL, but their use may be limited by the development of adverse reactions. Emerging data suggest that HDL quality and function may also be significantly reduced by atherosclerosis and other inflammatory diseases. The goal of this review is to discuss the current status of HDL therapeutics, with emphasis on a novel class of agent, the apolipoprotein A-I mimetic peptides, which improve the functional properties of HDL cholesterol.
Collapse
Affiliation(s)
- C Roger White
- Vascular Biology and Hypertension Program, University of Alabama, Birmingham, 1046 Zeigler Research Building, 703 South 19th Street, Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
For more than a decade now, a search for answers to the following two questions has taken us on a new and exciting journey into the world of beta- and gamma-peptides: What happens if the oxygen atoms in a 3i-helix of a polymeric chain composed of (R)-3-hydroxybutanoic acid are replaced by NH units? What happens if one or two CH2 groups are introduced into each amino acid building block in the chain of a peptide or protein, thereby providing homologues of the proteinogenic alpha-amino acids? Our journey has repeatedly thrown up surprises, continually expanding the potential of these classes of compound and deepening our understanding of the structures, properties, and multifaceted functions of the natural "models" to which they are related. Beta-peptides differ from their natural counterparts, the alpha-peptides, by having CH2 groups inserted into every amino acid residue, either between the C=O groups and the alpha-carbon atoms (beta(3)) or between the alpha-carbon and nitrogen atoms (beta(2)). The synthesis of these homologated proteinogenic amino acids and their assembly into beta-peptides can be performed using known methods. Despite the increased number of possible conformers, the beta-peptides form secondary structures (helices, turns, sheets) even when the chain lengths are as short as four residues. Furthermore, they are stable toward degrading and metabolizing enzymes in living organisms. Linear, helical, and hairpin-type structures of beta-peptides can now be designed in such a way that they resemble the characteristic and activity-related structural features ("epitopes") of corresponding natural peptides or protein sections. This Account presents examples of beta-peptidic compounds binding, as agonists or antagonists (inhibitors), to (i) major histocompatibility complex (MHC) proteins (immune response), (ii) the lipid-transport protein SR-B1 (cholesterol uptake from the small intestine), (iii) the core (1-60) of interleukin-8 (inflammation), (iv) the oncoprotein RDM2, (v) the HIVgp41 fusion protein, (vi) G-protein-coupled somatostatin hsst receptors, (vii) the TNF immune response receptor CD40 (apoptosis), and (viii) DNA. Short-chain beta-peptides may be orally bioavailable and excreted from the body of mammals; long-chain beta-peptides may require intravenous administration but will have longer half-lives of clearance. It has been said that an interesting field of research distinguishes itself in that the results always throw up new questions; in this sense, the structural and biological investigation of beta-peptides has been a gold mine. We expect that these peptidic peptidomimetics will play an increasing role in biomedical research and drug development in the near future.
Collapse
Affiliation(s)
- Dieter Seebach
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - James Gardiner
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
15
|
Weiss HM, Wirz B, Schweitzer A, Amstutz R, Rodriguez Perez MI, Andres H, Metz Y, Gardiner J, Seebach D. ADME Investigations of Unnatural Peptides: Distribution of a14C-Labeledβ3-Octaarginine in Rats. Chem Biodivers 2007; 4:1413-37. [PMID: 17638323 DOI: 10.1002/cbdv.200790121] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The highly positively charged, cell-penetrating beta3-octaarginine has been prepared with a radioactive label by acetylation at the N-terminus with a doubly (14)C-labeled acetyl group ((14)CH3-(14)CO). With the radioactive compound, an ADME study (Absorption, Distribution, Metabolism, Excretion) was performed in male rats following an intravenous or oral dose of 1 mg/kg. Sampling was carried out after periods ranging from 5 min to 4 d or 7 d for blood/excretia and quantitative whole-body autoradioluminography (QWBA), respectively. After p.o. dosing, no systemic exposure to peptide-related radioactivity was observed, and the dose was completely excreted in the feces within 24 h suggesting the absence of relevant absorption; less than 3% of the i.v. dose was excreted from the animals within 4 d. Blood levels, after i.v. dosing, dropped within 4 d to less than 2% of Cmax and decreased afterwards only very slowly. No metabolites were observed in the systemic circulation. QWBA Data indicated that the distribution of the acetyl-beta-octaarginine-related radioactivity in the organs and tissues shifted over time. Notably, after 7 d, the highest concentration was measured in the lymph nodes, and the largest amount was found in the liver. A comparison with the results of two previous ADME investigations of beta-peptides (cf. Table 1) reveals that the distribution of the compounds within the animals is structure-dependent, and that there is a full range from oral availability with rather rapid excretion (of a tetrapeptide) to essentially complete lack of both oral absorption and excretion after i.v. administration (of a highly charged octapeptide). A discussion is presented about the in vivo stability and 'drug-ability' of peptides. In general, beta-peptides bearing proteinogenic side chains are compared with peptides consisting entirely of D-alpha-amino acid residues (the enantiomers of the 'natural' building blocks), and suggestions are made regarding a possible focus of future biomedical investigations with beta-peptides.
Collapse
Affiliation(s)
- H Markus Weiss
- Drug Metabolism and Pharmacokinetics, Novartis Pharma AG, Postfach, CH-4002 Basel
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Narasimha A, Watanabe J, Lin J, Hama S, Langenbach R, Navab M, Fogelman AM, Reddy ST. A novel anti-atherogenic role for COX-2--potential mechanism for the cardiovascular side effects of COX-2 inhibitors. Prostaglandins Other Lipid Mediat 2007; 84:24-33. [PMID: 17643885 PMCID: PMC2701232 DOI: 10.1016/j.prostaglandins.2007.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 03/08/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by lipid accumulation, lipoprotein oxidation, and inflammation. Products of the cyclooxygenase (COX) pathway participate in acute and chronic inflammation. The inducible form of COX, COX-2, generates lipid mediators of inflammation that are pro-inflammatory and COX-2-selective inhibitors are potent anti-inflammatory agents. However, clinical data suggest an increased risk of cardiovascular side effects in patients using COX-2-selective inhibitors. In this paper, we sought to determine the effect of COX-2 deficiency on atherosclerosis-related lipoprotein metabolism in mice. We demonstrate that COX-2 deficiency resulted in (i) accumulation of lipids in circulation and liver, (ii) pro-inflammatory properties of HDL as measured by HDL's increased reactive oxygen species (ROS) content, decreased paraoxonase 1 (PON1) activity, decreased serum apoA-1, reduced ability to efflux cholesterol and to prevent LDL oxidizability, and (iii) increased TXB(2) in circulation. Moreover, when placed on an atherogenic diet, COX-2 deficiency resulted in (i) increased lipid deposition in the aorta, (ii) a further dramatic imbalance in circulating eicosanoids, i.e. decreased serum PGI(2) coupled with increased PGE(2) and TXB(2), and (iii) a marked elevation of pro-inflammatory cytokines, TNF and IL-6. Our results suggest, for the first time, that COX-2 deficiency contributes to the pro-atherogenic properties of HDL in mice.
Collapse
Affiliation(s)
- Ajay Narasimha
- Department of Molecular and Medical Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Junji Watanabe
- Department of Molecular and Medical Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- Atherosclerosis Research Unit, Department of Medicine/Cardiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - James Lin
- Department of Pediatrics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Susan Hama
- Atherosclerosis Research Unit, Department of Medicine/Cardiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Robert Langenbach
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Mohamad Navab
- Atherosclerosis Research Unit, Department of Medicine/Cardiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alan M. Fogelman
- Atherosclerosis Research Unit, Department of Medicine/Cardiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Srinivasa T. Reddy
- Department of Molecular and Medical Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- Atherosclerosis Research Unit, Department of Medicine/Cardiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
17
|
Navab M, Anantharamaiah GM, Reddy ST, Fogelman AM. Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. ACTA ACUST UNITED AC 2006; 3:540-7. [PMID: 16990839 DOI: 10.1038/ncpcardio0661] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 06/23/2006] [Indexed: 11/09/2022]
Abstract
The importance of apolipoprotein A-I (apoA-I) in atherosclerosis was established by testing in animal models, and its potential usefulness in humans has been confirmed in preliminary studies. ApoA-I is a large protein comprising 243 amino acids, which means that venous administration is necessary. In addition, manufacture of apoA-I is difficult and expensive. Research has, therefore, been directed towards finding smaller peptide mimetics that produce similar results to apoA-I, but that are easier to manufacture and administer. The earliest peptides mimicked some of the lipid-binding properties of apoA-I but did not prevent atherosclerosis in mice. A detailed study of the physical-chemical characteristics of these peptides led to the realization that the hydrophobic region of the peptide was critical in determining bioactivity. A potent peptide, 4F, which was synthesized wholly from D-amino acids, could be given orally. Use of 4F significantly improved the function of HDL in mice and monkeys. When 4F was administered in combination with a statin, lesion size and macrophage content were reduced in mice with atherosclerosis, and lesions regressed in older mice. Vasoreactivity and endothelial sloughing were also improved in other rodent studies. Early human clinical trials are now being carried out on 4F. Here, we review the studies on apoA-I mimetic peptides that have been carried out so far.
Collapse
Affiliation(s)
- Mohamad Navab
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
18
|
Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Datta G, Garber D, Fogelman AM. Potential clinical utility of high-density lipoprotein-mimetic peptides. Curr Opin Lipidol 2006; 17:440-4. [PMID: 16832169 DOI: 10.1097/01.mol.0000236371.27508.d4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To determine the potential clinical utility of high-density lipoprotein-mimetic peptides. RECENT FINDINGS Oral administration of D-4F together with pravastatin caused lesion regression in old apoE null mice. Administration of D-4F to low-density lipoprotein receptor null mice fed a Western diet reduced the association of myeloperoxidase with apoA-I and reduced the 3-nitrotyrosine content of apoA-I. Oral D-4F improved arterial vasoreactivity independent of apoA-I. Mice genetically lacking apoA-I showed significant improvement in vasoreactivity but, in contrast to mice with apoA-I, did not demonstrate reduced arterial wall thickness after D-4F treatment. In a rat model of diabetes, D-4F administration induced heme oxygenase-1 and extracellular superoxide dismutase, prevented endothelial sloughing, and dramatically improved arterial vasoreactivity. A peptide with 10 D-amino acid residues taken from the sequence of apoJ rendered high-density lipoprotein anti-inflammatory in mice and monkeys, and dramatically reduced atherosclerosis in apoE null mice. Oral administration of tetrapeptides synthesized from either L-amino acids or D-amino acids rendered high-density lipoprotein anti-inflammatory in mice and monkeys, and reduced atherosclerosis in apoE null mice. SUMMARY Peptides that sequester lipoprotein lipid hydroperoxides release a series of high-density lipoprotein-associated antioxidant enzymes such as paraoxonase from inhibition and protect apoA-I from oxidative damage that would impair cholesterol efflux.
Collapse
Affiliation(s)
- Mohamad Navab
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Anantharamaiah G, Navab M, Reddy ST, Garber DW, Datta G, Gupta H, White CR, Handattu SP, Palgunachari MN, Chaddha M, Mishra VK, Segrest JP, Fogelman AM. Synthetic peptides: managing lipid disorders. Curr Opin Lipidol 2006; 17:233-7. [PMID: 16680027 DOI: 10.1097/01.mol.0000226114.89812.75] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Recent publications related to the potential use of synthetic peptides for the management of lipid disorders and their vascular complications are reviewed. RECENT FINDINGS The potential use of synthetic peptides for the management of lipid disorders and their vascular complications has emerged in recent years. These peptides are models of apolipoproteins, but are much smaller in size than the apolipoproteins. Oral peptides that improve the antiinflammatory properties of HDLs have been shown to potently inhibit atherosclerosis in mouse models. Injection of a peptide with a class A amphipathic helix in a rat model of diabetes dramatically reduced endothelial sloughing and improved vasoreactivity. Injected synthetic peptides have also been described that dramatically lower plasma cholesterol and restore endothelial function in a rabbit model of familial hypercholesterolemia. These studies suggest the therapeutic potential for synthetic peptides in the management of lipid disorders and their vascular complications. SUMMARY Synthetic peptides much smaller than exchangeable human plasma apolipoproteins but with physical and chemical characteristics similar to the plasma apolipoproteins have shown promise in the management of lipid disorders and their vascular complications in animal models. The initial success of these animal studies suggests that synthetic peptides have the potential to emerge as a new therapeutic class of agents in the management of patients with lipid disorders.
Collapse
Affiliation(s)
- Gm Anantharamaiah
- Departments of Medicine, Biochemistry, and Molecular Genetics and the Atherosclerosis Research Unit, University of Alabama at Birmingham, Birmingham Alabama, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chapman MJ. Therapeutic elevation of HDL-cholesterol to prevent atherosclerosis and coronary heart disease. Pharmacol Ther 2006; 111:893-908. [PMID: 16574234 DOI: 10.1016/j.pharmthera.2006.02.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 02/20/2006] [Indexed: 11/24/2022]
Abstract
Innovative pharmacological approaches to raise anti-atherogenic high-density lipoprotein-cholesterol (HDL-C) are currently of considerable interest, particularly in atherogenic dyslipidemias characterized by low levels of HDL-C, such as type 2 diabetes, the metabolic syndrome, and mixed dyslipidemia, but equally among individuals with or at elevated risk for premature cardiovascular disease (CVD). Epidemiological and observational studies first demonstrated that HDL-C was a strong, independent predictor of coronary heart disease (CHD) risk, and suggested that raising HDL-C levels might afford clinical benefit. Accumulating data from clinical trials of pharmacological agents that raise HDL-C levels have supported this concept. In addition to the pivotal role that HDL-C plays in reverse cholesterol transport and cellular cholesterol efflux, HDL particles possess a spectrum of anti-inflammatory, anti-oxidative, anti-apoptotic, anti-thrombotic, vasodilatory and anti-infectious properties, all of which potentially contribute to their atheroprotective nature. Significantly, anti-atherogenic properties of HDL particles are attenuated in common metabolic diseases that are characterized by subnormal HDL-C levels, such as type 2 diabetes and metabolic syndrome. Inhibition of cholesteryl ester transfer protein (CETP), a key player in cholesterol metabolism and transport, constitutes an innovative target for HDL-C raising. In lipid efficacy trials, 2 CETP inhibitors-JTT-705 and torcetrapib-induced marked elevation in HDL-C levels, with torcetrapib displaying greater efficacy. Moreover, both agents attenuate aortic atherosclerosis in cholesterol-fed rabbits. Clinical trial data demonstrating the clinical benefits of these drugs on atherosclerosis and CHD are eagerly awaited.
Collapse
Affiliation(s)
- M John Chapman
- Dyslipoproteinemia and Atherosclerosis Research Unit (UMR-551), National Institute for Health and Medical Research (INSERM), France.
| |
Collapse
|