1
|
Maddeboina K, Yada B, Kumari S, McHale C, Pal D, Durden DL. Recent advances in multitarget-directed ligands via in silico drug discovery. Drug Discov Today 2024; 29:103904. [PMID: 38280625 DOI: 10.1016/j.drudis.2024.103904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
To combat multifactorial refractory diseases, such as cancer, cardiovascular, and neurodegenerative diseases, multitarget drugs have become an emerging area of research aimed at 'synthetic lethality' (SL) relationships associated with drug-resistance mechanisms. In this review, we discuss the in silico design of dual and triple-targeted ligands, strategies by which specific 'warhead' groups are incorporated into a parent compound or scaffold with primary inhibitory activity against one target to develop one small molecule that inhibits two or three molecular targets in an effort to increase potency against multifactorial diseases. We also discuss the analytical exploration of structure-activity relationships (SARs), physicochemical properties, polypharmacology, scaffold feature extraction of US Food and Drug Administration (FDA)-approved multikinase inhibitors (MKIs), and updates regarding the clinical status of dual-targeted chemotypes.
Collapse
Affiliation(s)
- Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA; Department of Biochemistry, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | - Bharath Yada
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Shikha Kumari
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Cody McHale
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Dhananjaya Pal
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Donald L Durden
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA; Department of Biochemistry, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
2
|
Sarkar N, Singh A, Kumar P, Kaushik M. Protein kinases: Role of their dysregulation in carcinogenesis, identification and inhibition. Drug Res (Stuttg) 2023; 73:189-199. [PMID: 36822216 DOI: 10.1055/a-1989-1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Protein kinases belong to the phosphor-transferases superfamily of enzymes, which "activate" enzymes via phosphorylation. The kinome of an organism is the total set of genes in the genome, which encode for all the protein kinases. Certain mutations in the kinome have been linked to dysregulation of protein kinases, which in turn can lead to several diseases and disorders including cancer. In this review, we have briefly discussed the role of protein kinases in various biochemical processes by categorizing cancer associated phenotypes and giving their protein kinase examples. Various techniques have also been discussed, which are being used to analyze the structure of protein kinases, and associate their roles in the oncogenesis. We have also discussed protein kinase inhibitors and United States Federal Drug Administration (USFDA) approved drugs, which target protein kinases and can serve as a counter to protein kinase dysregulation and mitigate the effects of oncogenesis. Overall, this review briefs about the importance of protein kinases, their roles in oncogenesis on dysregulation and how their inhibition via various drugs can be used to mitigate their effects.
Collapse
Affiliation(s)
- Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.,Department of Environmental Studies, University of Delhi, Delhi, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Trends in kinase drug discovery: targets, indications and inhibitor design. Nat Rev Drug Discov 2021; 20:839-861. [PMID: 34354255 DOI: 10.1038/s41573-021-00252-y] [Citation(s) in RCA: 338] [Impact Index Per Article: 112.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
The FDA approval of imatinib in 2001 was a breakthrough in molecularly targeted cancer therapy and heralded the emergence of kinase inhibitors as a key drug class in the oncology area and beyond. Twenty years on, this article analyses the landscape of approved and investigational therapies that target kinases and trends within it, including the most popular targets of kinase inhibitors and their expanding range of indications. There are currently 71 small-molecule kinase inhibitors (SMKIs) approved by the FDA and an additional 16 SMKIs approved by other regulatory agencies. Although oncology is still the predominant area for their application, there have been important approvals for indications such as rheumatoid arthritis, and one-third of the SMKIs in clinical development address disorders beyond oncology. Information on clinical trials of SMKIs reveals that approximately 110 novel kinases are currently being explored as targets, which together with the approximately 45 targets of approved kinase inhibitors represent only about 30% of the human kinome, indicating that there are still substantial unexplored opportunities for this drug class. We also discuss trends in kinase inhibitor design, including the development of allosteric and covalent inhibitors, bifunctional inhibitors and chemical degraders.
Collapse
|
4
|
An experimental and computational study to evaluation of chitosan/gum tragacanth coated-natural lipid-based nanocarriers for sunitinib delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Role of rivaroxaban in sunitinib-induced renal injuries via inhibition of oxidative stress-induced apoptosis and inflammation through the tissue nacrosis factor-α induced nuclear factor-κappa B signaling pathway in rats. J Thromb Thrombolysis 2021; 50:361-370. [PMID: 32358665 DOI: 10.1007/s11239-020-02123-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rivaroxaban (RIVA) inhibits factor Xa and exhibits antithrombotic and anti-inflammatory activities by inhibiting several cellular signaling molecules. Sunitinib (SUN) is FDA approved first-line drug for metastatic renal cancers and advanced cancerous states of gastrointestinal tract. Present hypothesis was aimed to examine the nephroprotective potential of RIVA in SUN-induced nephrotoxicity, mediated through the inhibition of oxidative stress-induced apoptosis and inflammation, via the TNF-α/NFk-B signaling pathways. Wistar rats 200-250 g were selected and divided randomely in 5 groups (n = 6): Group 1 kept as normal control; Group 2 as disease control and exposed to SUN 50 mg/kg thrice-weekly upto 21 days; Groups 3 and 4, were treatment groups and administered SUN 50 mg/kg thrice-weekly as of group 2 and treated with RIVA 5 and 10 mg/kg/daily for 21 days, respectively; and Group 5 fed with RIVA alone (10 mg/kg/daily for 21 days). Serum was separated from blood to estimate serum biochemical parameters and kidney tissues were collected to estimate antioxidant enzyme, mRNA and protein expression. SUN exposure significantly elevated levels of creatinine, urea, uric acid, blood urea nitrogen, albumin, and bilirubin, and decreased serum magnesium and iron levels. Malondialdehyde and catalase levels were significantly increased and glutathione and glutathione reductase levels were significantly decreased. Intracellular levels of caspase-3 and TNF-α were significantly increased; RIVA treatment restored the altered levels. In SUN-exposed animals, western blotting revealed significantly elevated NFk-B, IL-17, and MCP-1 expression, and IKBα levels were significantly downregulated; RIVA restored these levels to normal values.RIVA treatment significantly restored the apoptotic and inflammatory parameters in SUN-damaged renal tissues.
Collapse
|
6
|
Chau V, Madan RA, Aragon-Ching JB. Protein kinase inhibitors for the treatment of prostate cancer. Expert Opin Pharmacother 2021; 22:1889-1899. [PMID: 33989112 DOI: 10.1080/14656566.2021.1925250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Protein kinases have emerged as targetable pathways used in metastatic prostate cancer given their role in prostatic tumor growth, proliferation and metastases. Protein kinase inhibitors are small molecules that target varying pathways including the breakpoint cluster region (BCR)-Abelson tyrosine kinase (ABL), colony stimulating factor-1 receptor (CSF1R), vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) and phosphoinositide 3-kinase (PI3K) pathways and have been studied in prostate cancer trials with variable results. In particular, cabozantinib when used in combination trials and ipatasertib, when used with abiraterone in patients who harbor phosphatase and tensin homologue (PTEN) loss, have been promising. AREAS COVERED This article reviews the key early and late phase clinical trials currently investigating the use of protein kinase inhibitors in prostate cancer. EXPERT OPINION While multiple kinase inhibitors show promising results in prostate cancer, none have yet garnered Food and Drug Administration (FDA) approval. Studies are ongoing with the best candidate drugs discussed herein. However, multiple drugs have failed primary endpoints in prostate cancer. Therefore, further understanding of the potential mechanisms of resistance, combination and trial design of combination therapy may help pave the way for targeting kinase inhibition in prostate cancer.
Collapse
Affiliation(s)
- Vincent Chau
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeanny B Aragon-Ching
- Genitourinary Cancers, Inova Medical Group, Inova Schar Cancer Institute, Fairfax, VA, USA.,Department of Internal Medicine, University of Virginia University School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
7
|
Peerzada MN, Hamel E, Bai R, Supuran CT, Azam A. Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development. Pharmacol Ther 2021; 225:107860. [PMID: 33895188 DOI: 10.1016/j.pharmthera.2021.107860] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Heterocyclic scaffolds are widely utilized for drug design by taking into account the molecular structure of therapeutic targets that are related to a broad spectrum of ailments, including tumors. Such compounds display various covalent and non-covalent interactions with the specific residues of the target proteins while causing their inhibition. There is a substantial number of heterocyclic compounds approved for cancer treatment, and these compounds function by interacting with different therapeutic targets involved in tumorogenesis. In this review, we trace and emphasize the privileged heterocyclic pharmacophores that have immense potency against several essential chemotherapeutic tumor targets: microtubules, kinases and carbonic anhydrases. Potent compounds currently undergoing pre-clinical and clinical studies have also been assessed for ascertaining the effective class of chemical scaffolds that have significant therapeutic potential against multiple malignancies. In addition, we also describe briefly the role of heterocyclic compounds in various chemotherapy regimens. The optimized molecular hybridization of delineated motifs may result in the discovery of more active anticancer therapeutics and circumvent the development of resistance by specific targets in the future.
Collapse
Affiliation(s)
- Mudasir Nabi Peerzada
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Amir Azam
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
8
|
Wang K, Xu Q, Zhong H. The Bruton's Tyrosine Kinase Inhibitor Ibrutinib Impairs the Vascular Development of Zebrafish Larvae. Front Pharmacol 2021; 11:625498. [PMID: 33519491 PMCID: PMC7838594 DOI: 10.3389/fphar.2020.625498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Ibrutinib is an orally bioavailable, irreversible selective Bruton’s tyrosine kinase inhibitor that has demonstrated impressive therapeutic effects in patients with B cell malignancies. However, adverse effects, such as bleeding and hypertension, are also reported, implying that studies on the toxicological effect of ibrutinib on living organisms are needed. Here, we have used zebrafish, a successful model organism for studying toxicology, to investigate the influence of ibrutinib during embryogenesis. We found that ibrutinib had potent toxicity on embryonic development, especially vascular development in zebrafish embryos. We also revealed that ibrutinib perturbed vascular formation by suppressing angiogenesis, rather than vasculogenesis. In addition, ibrutinib exposure led to the collapse of the vascular lumen, as well as reduced proliferation and enhanced apoptosis of vascular endothelial cells. Moreover, the expression of vascular development-related genes was also altered in ibrutinib-treated embryos. To our knowledge, this is the first study to describe the vascular toxicity of ibrutinib in an animal model, providing a theoretical basis for clinical safety guidelines in ibrutinib treatment.
Collapse
Affiliation(s)
- Kun Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Qiushi Xu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Hanbing Zhong
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
9
|
Mankoff DA. PET Imaging in Cancer Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Abstract
Sorafenib was the first tyrosine kinase inhibitor (TKI) that showed success in extending survival in patients with advanced hepatocellular carcinoma (HCC). In recent years, additional TKIs have been shown to improve survival and expanded the armamentarium for treating this malignancy. The current landscape includes other classes of drugs, such as immune checkpoint inhibitors and monoclonal antibodies. The challenge is now placed on how to best select, combine, and sequence drugs with the goal of improving efficacy and minimizing toxicities to deliver better outcomes for HCC patients.
Collapse
Affiliation(s)
- Leonardo G da Fonseca
- Clinical Oncology, Instituto do Cancer do Estado de São Paulo, University of São Paulo, Av. Dr. Arnaldo, 251-Cerqueira Cesar, São Paulo, São Paulo CEP 01246-000, Brazil
| | - Maria Reig
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, Villarroel 170, Barcelona 08036, Spain; University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, Villarroel 170, Barcelona 08036, Spain; University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
11
|
Aragon-Ching JB, Madan RA. Life under the CABOSUN: Cabozantinib improves quality-adjusted survival in comparison with sunitinib. Cancer 2020; 126:5210-5212. [PMID: 33022092 DOI: 10.1002/cncr.33168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022]
Affiliation(s)
| | - Ravi A Madan
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
12
|
Mohammadzadeh-Asl S, Jafari A, Aghanejad A, Monirinasab H, Ezzati Nazhad Dolatabadi J. Kinetic and thermodynamic studies of sunitinib malate interaction with albumin using surface plasmon resonance and molecular docking methods. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104089] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Qiu Y, Sun Y, Xu D, Yang Y, Liu X, Wei Y, Chen Y, Feng Z, Li S, Reyad-Ul Ferdous M, Zhao Y, Xu H, Lao Y, Ding Q. Screening of FDA-approved drugs identifies sutent as a modulator of UCP1 expression in brown adipose tissue. EBioMedicine 2018; 37:344-355. [PMID: 30348622 PMCID: PMC6286640 DOI: 10.1016/j.ebiom.2018.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The pharmacological activation of thermogenesis in brown adipose tissue has long been considered promising strategies to treat obesity. However, identification of safe and effective agents remains a challenge. In this study, we addressed this challenge by developing a cellular system with a fluorescence readout, and applied in a high-throughput manner to screen for FDA-approved drugs that may activate endogenous UCP1 expression in adipocytes. METHODS We have generated a Ucp1-2A-GFP reporter mouse, in which GFP intensity serves as a surrogate of the endogenous expression level of UCP1 protein; and immortalized brown adipocytes were derived from this mouse model and applied in drug screening. Candidate drugs were further tested in mouse models either fed with normal chow or high fat diet to induce obesity. FINDINGS By using the cellular screening platform, we identified a group of FDA-approved drugs that can upregulate UCP1 expression in brown adipocyte, including previously known UCP1 activators and new candidate drugs. Further studies focusing on a previously unreported drug-sutent, revealed that sutent treatment could increase the energy expenditure and inhibit lipid synthesis in mouse adipose and liver tissues, resulting in improved metabolism and resistance to obesity. INTERPRETATION This study offered an easy-to-use cellular screening system for UCP1 activators, and provided a candidate list of FDA-approved drugs that can potentially treat obesity. Further study of these candidates may shed new light on the drug discovery towards obesity. FUND: National Key Research and Development Program and the Strategic Priority Research Program of the Chinese Academy of Sciences, etc. (250 words).
Collapse
Affiliation(s)
- Yan Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China
| | - Yingmin Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China
| | - Danqing Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yuanyuan Yang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China
| | - Xiaojian Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China
| | - Yuda Wei
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China
| | - Zhuanghui Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China
| | - Shuang Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China
| | - Md Reyad-Ul Ferdous
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China
| | - Yongxu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, PR China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 200031, PR China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, PR China.
| |
Collapse
|
14
|
Stomatitis and VEGFR-Tyrosine Kinase Inhibitors (VR-TKIs): A Review of Current Literature in 4369 Patients. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5035217. [PMID: 29992147 PMCID: PMC5994328 DOI: 10.1155/2018/5035217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/25/2018] [Accepted: 03/05/2018] [Indexed: 12/27/2022]
Abstract
Background Multitargeted tyrosine kinase inhibitors (TKIs) represent a new class of target-specific antineoplastic agents. These agents show some specific adverse events such as fatigue/asthenia, anorexia/loss of appetite, dysgeusia, diarrhea/abdominal pain, hypothyroidism, hypertension, myelosuppression, and stomatitis. Materials and Methods A systematic search was performed on PubMed online database using a combination of MESH terms and free text words, “sunitinib” OR “sorafenib” OR “axitinib” OR “cabozantinib” OR “pazopanib” OR “regorafenib” OR “nintedanib” OR “vatalanib” combined through the use of Boolean operator AND with the key words “stomatitis” OR “mucositis,” (i) on human subjects, (ii) written in the English language, and (iii) reporting about the incidence of stomatitis or oral mucositis. Results The incidence of stomatitis of any grade was 35.2% for sunitinib, 20.52% for sorafenib, 20.63% for axitinib, and 34.21% for cabozantinib. All the agents showed high rates of low-grade stomatitis (G1-G2), while the onset of severe stomatitis (G3-G4) was very low. Conclusions Analysis of the reports with patients treated with sunitinib, sorafenib, axitinib, and cabozantinib showed a clear prevalence of stomatitis grade 1 or grade 2. These data differ from those of patients treated with conventional chemotherapy in which mucositis is predominantly of grade 3 or grade 4.
Collapse
|
15
|
Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, Rupasinghe HPV. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer 2018; 17:48. [PMID: 29455673 PMCID: PMC5817855 DOI: 10.1186/s12943-018-0804-2] [Citation(s) in RCA: 728] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
The human genome encodes 538 protein kinases that transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are associated with human cancer initiation and progression. The recent development of small-molecule kinase inhibitors for the treatment of diverse types of cancer has proven successful in clinical therapy. Significantly, protein kinases are the second most targeted group of drug targets, after the G-protein-coupled receptors. Since the development of the first protein kinase inhibitor, in the early 1980s, 37 kinase inhibitors have received FDA approval for treatment of malignancies such as breast and lung cancer. Furthermore, about 150 kinase-targeted drugs are in clinical phase trials, and many kinase-specific inhibitors are in the preclinical stage of drug development. Nevertheless, many factors confound the clinical efficacy of these molecules. Specific tumor genetics, tumor microenvironment, drug resistance, and pharmacogenomics determine how useful a compound will be in the treatment of a given cancer. This review provides an overview of kinase-targeted drug discovery and development in relation to oncology and highlights the challenges and future potential for kinase-targeted cancer therapies.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Naiara Orrego Lagarón
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Eileen M McGowan
- Chronic Disease Solutions Team, School of Life Science, University of Technology, New South Wales, Australia
| | - Indu Parmar
- Division of Product Development, Radient Technologies, Edmonton, AB, Canada
| | - Amitabh Jha
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Basil P Hubbard
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - H P Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada.
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
16
|
Aguilar-Company J, Fernández-Ruiz M, García-Campelo R, Garrido-Castro AC, Ruiz-Camps I. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Cell surface receptors and associated signaling pathways). Clin Microbiol Infect 2018; 24 Suppl 2:S41-S52. [PMID: 29426804 DOI: 10.1016/j.cmi.2017.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND The present review is part of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Infections in Compromised Hosts (ESGICH) consensus document on the safety of targeted and biologic therapies. AIMS To review, from an infectious diseases perspective, the safety profile of therapies targeting cell surface receptors and associated signaling pathways among cancer patients and to suggest preventive recommendations. SOURCES Computer-based Medline searches with MeSH terms pertaining to each agent or therapeutic family. CONTENT Vascular endothelial growth factor (VEGF)-targeted agents (bevacizumab and aflibercept) are associated with a meaningful increase in the risk of infection, likely due to drug-induced neutropaenia, although no clear benefit is expected from the universal use of anti-infective prophylaxis. VEGF tyrosine kinase inhibitors (i.e. sorafenib or sunitinib) do not seem to significantly affect host's susceptibility to infection, and universal anti-infective prophylaxis is not recommended either. Anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (cetuximab or panitumumab) induce neutropaenia and secondary skin and soft tissue infection in cases of severe papulopustular rash. Systemic antibiotics (doxycycline or minocycline) should be administered to prevent the latter complication, whereas no recommendation can be established on the benefit from antiviral, antifungal or anti-Pneumocystis prophylaxis. A lower risk of infection is reported for anti-ErbB2/HER2 monoclonal antibodies (trastuzumab and pertuzumab) and ErbB receptor tyrosine kinase inhibitors (including dual-EGFR/ErbB2 inhibitors such as lapatinib or neratinib) compared to conventional chemotherapy, presumably as a result of the decreased occurrence of drug-induced neutropaenia. IMPLICATIONS With the exception of VEGF-targeted agents, the overall risk of infection associated with the reviewed therapies seems to be low.
Collapse
Affiliation(s)
- J Aguilar-Company
- Departments of Infectious Diseases and Oncology, University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain
| | - M Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i + 12), School of Medicine, Universidad Complutense, Madrid, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain
| | - R García-Campelo
- Department of Medical Oncology, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | - A C Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - I Ruiz-Camps
- Department of Infectious Diseases, University Hospital Vall d'Hebron, Autonomous University of Barcelona, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI RD16/0016), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Saber MM, Bahrainian S, Dinarvand R, Atyabi F. Targeted drug delivery of Sunitinib Malate to tumor blood vessels by cRGD-chiotosan-gold nanoparticles. Int J Pharm 2016; 517:269-278. [PMID: 27956189 DOI: 10.1016/j.ijpharm.2016.12.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
The unique characteristics of tumor vasculature represent an attractive strategy for targeted delivery of antitumor and antiangiogenic agents to the tumor. The purpose of this study was to prepare c(RGDfK) labeled chitosan capped gold nanoparticles [cRGD(CS-Au) NPs] as a carrier for selective intracellular delivery of Sunitinib Malate (STB) to the tumor vasculature. cRGD(CS-Au) NPs was formed by electrostatic interaction between cationic CS and anionic AuNPs. cRGD modified CS-Au NPs had a spherical shape with a narrow size distribution. The entrapment efficiency of sunitinib molecule was found to be 45.2%±2.05. Confocal microscopy showed enhanced and selective uptake of cRGD(CS-Au) NPs into MCF-7 and HUVEC cells compared with non-targeted CS-Au NPs. Our results suggest that it may be possible to use cRGD(CS-Au) NPs as a carrier for delivery of anticancer drugs, genes and biomolecules for inhibiting tumor vasculature.
Collapse
Affiliation(s)
- Mohaddeseh Mahmoudi Saber
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Bahrainian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Motzer RJ, Escudier B, Gannon A, Figlin RA. Sunitinib: Ten Years of Successful Clinical Use and Study in Advanced Renal Cell Carcinoma. Oncologist 2016; 22:41-52. [PMID: 27807302 DOI: 10.1634/theoncologist.2016-0197] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
The oral multikinase inhibitor sunitinib malate was approved by the U.S. Food and Drug Administration in January 2006 for use in patients with advanced renal cell carcinoma (RCC). Since then, it has been approved globally for this indication and for patients with imatinib-resistant or -intolerant gastrointestinal stromal tumors and advanced pancreatic neuroendocrine tumors. As we mark the 10-year anniversary of the beginning of the era of targeted therapy, and specifically the approval of sunitinib, it is worthwhile to highlight the progress that has been made in advanced RCC as it relates to the study of sunitinib. We present the key trials and data for sunitinib that established it as a reference standard of care for first-line advanced RCC therapy and, along with other targeted agents, significantly altered the treatment landscape in RCC. Moreover, we discuss the research with sunitinib that has sought to refine its role via patient selection and prognostic markers, improve dosing and adverse event management, and identify predictive efficacy biomarkers, plus the extent to which this research has contributed to the overall understanding and management of RCC. We also explore the key learnings regarding study design and data interpretation from the sunitinib studies and how these findings and the sunitinib development program, in general, can be a model for successful development of other agents. Finally, ongoing research into the continued and future role of sunitinib in RCC management is discussed. THE ONCOLOGIST 2017;22:41-52 IMPLICATIONS FOR PRACTICE: Approved globally, sunitinib is established as a standard of care for first-line advanced renal cell carcinoma (RCC) therapy and, along with other targeted agents, has significantly altered the treatment landscape in RCC. Research with sunitinib that has sought to refine its role via patient selection and prognostic markers, improve dosing and adverse event management, and identify predictive efficacy biomarkers has contributed to the overall understanding and management of RCC. Key learnings regarding study design and data interpretation from the sunitinib studies and the sunitinib development program, in general, can be a model for the successful development of other agents.
Collapse
Affiliation(s)
- Robert J Motzer
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | | | - Robert A Figlin
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
19
|
Aveic S, Tonini GP. Resistance to receptor tyrosine kinase inhibitors in solid tumors: can we improve the cancer fighting strategy by blocking autophagy? Cancer Cell Int 2016; 16:62. [PMID: 27486382 PMCID: PMC4970224 DOI: 10.1186/s12935-016-0341-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/25/2016] [Indexed: 12/19/2022] Open
Abstract
A growing field of evidence suggests the involvement of oncogenic receptor tyrosine kinases (RTKs) in the transformation of malignant cells. Constitutive and abnormal activation of RTKs may occur in tumors either through hyperactivation of mutated RTKs or via functional upregulation by RTK-coding gene amplification. In several types of cancer prognosis and therapeutic responses were found to be associated with deregulated activation of one or more RTKs. Therefore, targeting various RTKs remains a significant challenge in the treatment of patients with diverse malignancies. However, a frequent issue with the use of RTK inhibitors is drug resistance. Autophagy activation during treatment with RTK inhibitors has been commonly observed as an obstacle to more efficacious therapy and has been associated with the limited efficacy of RTK inhibitors. In the present review, we discuss autophagy activation after the administration of RTK inhibitors and summarize the achievements of combination RTK/autophagy inhibitor therapy in overcoming the reported resistance to RTK inhibitors in a growing number of cancers.
Collapse
Affiliation(s)
- Sanja Aveic
- Neuroblastoma Laboratory, Pediatric Research Institute-Città della Speranza, Padua, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute-Città della Speranza, Padua, Italy
| |
Collapse
|
20
|
Follow-up After Treatment for Renal Cell Carcinoma: The Evidence Beyond the Guidelines. Eur Urol Focus 2016; 1:272-281. [DOI: 10.1016/j.euf.2015.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/15/2015] [Accepted: 04/04/2015] [Indexed: 01/20/2023]
|
21
|
Ramazani F, Hiemstra C, Steendam R, Kazazi-Hyseni F, Van Nostrum C, Storm G, Kiessling F, Lammers T, Hennink W, Kok R. Sunitinib microspheres based on [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers for ocular drug delivery. Eur J Pharm Biopharm 2015; 95:368-77. [DOI: 10.1016/j.ejpb.2015.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 10/24/2022]
|
22
|
Fabbro D, Cowan-Jacob SW, Moebitz H. Ten things you should know about protein kinases: IUPHAR Review 14. Br J Pharmacol 2015; 172:2675-700. [PMID: 25630872 DOI: 10.1111/bph.13096] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/31/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022] Open
Abstract
Many human malignancies are associated with aberrant regulation of protein or lipid kinases due to mutations, chromosomal rearrangements and/or gene amplification. Protein and lipid kinases represent an important target class for treating human disorders. This review focus on 'the 10 things you should know about protein kinases and their inhibitors', including a short introduction on the history of protein kinases and their inhibitors and ending with a perspective on kinase drug discovery. Although the '10 things' have been, to a certain extent, chosen arbitrarily, they cover in a comprehensive way the past and present efforts in kinase drug discovery and summarize the status quo of the current kinase inhibitors as well as knowledge about kinase structure and binding modes. Besides describing the potentials of protein kinase inhibitors as drugs, this review also focus on their limitations, particularly on how to circumvent emerging resistance against kinase inhibitors in oncological indications.
Collapse
Affiliation(s)
| | | | - Henrik Moebitz
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| |
Collapse
|
23
|
Individualized dosing of tyrosine kinase inhibitors: are we there yet? Drug Discov Today 2015; 20:18-36. [DOI: 10.1016/j.drudis.2014.09.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/25/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022]
|
24
|
Fabbro D. 25 Years of Small Molecular Weight Kinase Inhibitors: Potentials and Limitations. Mol Pharmacol 2014; 87:766-75. [DOI: 10.1124/mol.114.095489] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Li S, Dang YY, Oi Lam Che G, Kwan YW, Chan SW, Leung GPH, Lee SMY, Hoi MPM. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation. Toxicol Appl Pharmacol 2014; 280:408-20. [DOI: 10.1016/j.taap.2014.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/22/2014] [Accepted: 09/04/2014] [Indexed: 12/17/2022]
|
26
|
Pili R, Carducci M, Brown P, Hurwitz H. An open-label study to determine the maximum tolerated dose of the multitargeted tyrosine kinase inhibitor CEP-11981 in patients with advanced cancer. Invest New Drugs 2014; 32:1258-68. [PMID: 25152243 PMCID: PMC4226840 DOI: 10.1007/s10637-014-0147-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 12/21/2022]
Abstract
Background This phase I study evaluated the pharmacokinetics and pharmacodynamics of CEP-11981, an oral vascular endothelial growth factor (VEGF) tyrosine kinase inhibitor, in patients with advanced, relapsed, or refractory solid tumors. Methods Oral CEP-11981 dose escalations followed a modified Fibonacci sequence (from 3.0 to 4.2, 5.9, 11.8, 19.7, 29.6, 41.4, 55.0, 73.0, 97.4, and 126.6 mg/m2). The maximum-tolerated dose (MTD), dose-limiting toxicities (DLTs), tumor response, and safety were evaluated. Results CEP-11981 was tolerated at doses between 3.0 and 97.4 mg/m2. The MTD of CEP-11981 was determined to be 97.4 mg/m2, with DLTs observed at the 126.6 mg/m2 dose. The DLTs were grade 4 neutropenia in 1 patient and grade 3 T-wave inversion with chest heaviness and fatigue in 1 patient. All 3 events resolved on stopping CEP-11981. The most frequently reported adverse events of any grade were fatigue, nausea, diarrhea, decreased appetite, abdominal pain, back pain, vomiting, constipation, headache, dizziness, and dyspnea. Treatment-related grade 3/4 neutropenia was observed in the highest-dose cohorts (2 patients at 97.4 mg/m2 and 1 patient at 126.6 mg/m2), indicating some off-target inhibition. VEGF inhibition was greatest in the higher-dose groups. Although no patient experienced complete or partial response, 44 % patients achieved stable disease when measured at ≥ 6 weeks, which occurred more frequently in cohorts receiving ≥ 73.0 mg/m2. Conclusions In patients with recurrent or refractory solid tumors, disease stabilization was achieved. Despite acceptable tolerability of CEP-11981 at the MTD, further development by the sponsor has ceased.
Collapse
Affiliation(s)
- Roberto Pili
- Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA,
| | | | | | | |
Collapse
|
27
|
Kuroyanagi J, Shimada Y, Zhang B, Ariyoshi M, Umemoto N, Nishimura Y, Tanaka T. Zinc finger MYND-type containing 8 promotes tumour angiogenesis via induction of vascular endothelial growth factor-A expression. FEBS Lett 2014; 588:3409-16. [PMID: 25117453 DOI: 10.1016/j.febslet.2014.07.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/29/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
Zinc finger, MYND-type containing 8 (ZMYND8) encodes a receptor for activated C-kinase protein. Here, we report that ZMYND8 promotes angiogenesis in prostate cancer xenografts in zebrafish, as well as tube formation in human umbilical vascular endothelial cell (HUVEC) cultures. Using transcriptome analyses, we found upregulation of ZMYND8 expression in both zebrafish prostate cancer xenografts and prostate cancer samples from patients. In vitro and in vivo ZMYND8 knockdown suppressed angiogenesis, whereas ZMYND8 overexpression enhanced angiogenesis. Notably, ZMYND8 induced vegfa mRNA expression selectively in prostate cancer xenografts. Integrated analysis of human and zebrafish transcriptomes, which identified ZMYND8, might be a powerful strategy to determine also other molecular targets for inhibiting prostate cancer progression.
Collapse
Affiliation(s)
- Junya Kuroyanagi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Mie University Medical Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Beibei Zhang
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Michiko Ariyoshi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Noriko Umemoto
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Mie University Medical Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Mie University Medical Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Life Science Research Center, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
28
|
Abdel-Aziz AK, Shouman S, El-Demerdash E, Elgendy M, Abdel-Naim AB. Chloroquine synergizes sunitinib cytotoxicity via modulating autophagic, apoptotic and angiogenic machineries. Chem Biol Interact 2014; 217:28-40. [PMID: 24751611 DOI: 10.1016/j.cbi.2014.04.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 03/16/2014] [Accepted: 04/04/2014] [Indexed: 11/25/2022]
|
29
|
Oyoshi MK, Oettgen HC, Chatila TA, Geha RS, Bryce PJ. Food allergy: Insights into etiology, prevention, and treatment provided by murine models. J Allergy Clin Immunol 2014; 133:309-17. [PMID: 24636470 DOI: 10.1016/j.jaci.2013.12.1045] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022]
Abstract
Food allergy is a rapidly growing public health concern because of its increasing prevalence and life-threatening potential. Animal models of food allergy have emerged as a tool for identifying mechanisms involved in the development of sensitization to normally harmless food allergens, as well as delineating the critical immune components of the effector phase of allergic reactions to food. However, the role animal models might play in understanding human diseases remains contentious. This review summarizes how animal models have provided insights into the etiology of human food allergy, experimental corroboration for epidemiologic findings that might facilitate prevention strategies, and validation for the utility of new therapies for food allergy. Improved understanding of food allergy from the study of animal models together with human studies is likely to contribute to the development of novel strategies to prevent and treat food allergy.
Collapse
Affiliation(s)
- Michiko K Oyoshi
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and the Departments of Pediatrics, Harvard Medical School, Boston, Mass
| | - Paul J Bryce
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Ill.
| |
Collapse
|
30
|
Specific active immunotherapy with a VEGF vaccine in patients with advanced solid tumors. results of the CENTAURO antigen dose escalation phase I clinical trial. Vaccine 2014; 32:2241-50. [PMID: 24530151 DOI: 10.1016/j.vaccine.2013.11.102] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/28/2013] [Accepted: 11/27/2013] [Indexed: 12/30/2022]
Abstract
UNLABELLED CIGB-247 is a novel cancer therapeutic vaccine that uses a human VEGF variant molecule as antigen, in combination with a bacterial adjuvant. In mice, CIGB-247 has anti-tumor and anti-metastatic effects. The vaccine induces anti-VEGF blocking antibodies and a cellular response targeting tumor cells producing VEGF, and has proven to be safe in mice, rats, rabbits and non-human primates. Herein we report the results of a Phase I clinical trial (code name CENTAURO) where safety, tolerance, and immunogenicity of CIGB-247 were studied in 30 patients with advanced solid tumors, at three antigen dose levels. Individuals were subcutaneously immunized for 8 consecutive weeks with 50, 100 or 400 μg of antigen, and re-immunized on week twelve. On week sixteen, evaluations of safety, tolerance, clinical status, and immunogenicity (seroconversion for anti-VEGF IgG, serum VEGF/KDR-Fc blocking ability, and gamma-IFN ELISPOT with blood cells stimulated in vitro with mutated VEGF) were done. Surviving patients were eligible for off-trial additional 4-week re-immunizations with 400 μg of antigen. Immunogenicity and clinical status were again studied on weeks 25 and 49. Vaccination was shown to be safe at the three dose levels, with only grade 1-2 adverse events. CIGB-247 was immunogenic and higher numbers of individuals positive to the three immune response tests were seen with increasing antigen dose. Off-protocol long-term vaccination produced no additional adverse events or negative changes in immunogenicity. Eleven patients are still alive, with overall survivals ranging from 20 to 24 months. Twelve of the thirty patients exhibited objective clinical benefits, and two individuals have complete responses. Most patients with higher survivals are positive in the three immune response tests. In summary, this is the first clinical testing report of a cancer therapeutic vaccine based on a human VEGF related molecule as antigen. The CIGB-247 vaccine is safe, immunogenic, and merits further clinical development. REGISTRATION NUMBER AND NAME OF TRIAL REGISTRY RPCEC00000102. Cuban Public Clinical Trial Registry (WHO accepted Primary Registry). Available from: http://registroclinico.sld.cu/.
Collapse
|
31
|
|
32
|
Soltau J, Drevs J. Mode of action and clinical impact of VEGF signaling inhibitors. Expert Rev Anticancer Ther 2014; 9:649-62. [DOI: 10.1586/era.09.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Penas-Prado M, Gilbert MR. Molecularly targeted therapies for malignant gliomas: advances and challenges. Expert Rev Anticancer Ther 2014; 7:641-61. [PMID: 17492929 DOI: 10.1586/14737140.7.5.641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The identification of molecular markers associated with tumor but not with normal tissue has allowed the development of highly specific, targeted therapies for the treatment of cancer. Over the last several years, tremendous advances in our understanding of the genetic and molecular changes involved in the progression of malignant gliomas have triggered a large effort in the development of targeted therapies to treat these tumors. However, to date only a modest clinical benefit, limited to subsets of patients, has been demonstrated. Furthermore, despite a high degree of target selectivity, the use of targeted therapies often has systemic toxicity. The reasons behind this limited clinical success are complex and include the intricacy of the signaling pathways in gliomas and the heterogeneity of the disease process, compounded by existing limitations in assessing the efficacy of these novel agents when conventional end points and clinical trial designs are utilized. However, despite these difficulties targeted therapies remain a very attractive avenue of treatment for malignant gliomas. Three basic approaches are needed to overcome the hurdles associated with targeted therapies: first, further development of genetic profiling techniques will help to better determine the genetic changes and molecular pathways involved in gliomas and will potentially allow the design of individualized therapies based on the genetic and molecular signature of each tumor. Second, there is a need for the development of better combination strategies (complementary targeted agents or targeted agents with chemotherapy drugs) directed towards disease heterogeneity. Third, we need to optimize the design of preclinical and clinical trials to obtain the maximum amount of information in the shortest period of time.
Collapse
Affiliation(s)
- Marta Penas-Prado
- The UT MD Anderson Cancer Center, Department of Neuro-Oncology, Houston, 77030 TX, USA.
| | | |
Collapse
|
34
|
Leone Roberti Maggiore U, Valenzano Menada M, Venturini PL, Ferrero S. The potential of sunitinib as a therapy in ovarian cancer. Expert Opin Investig Drugs 2013; 22:1671-86. [PMID: 24070205 DOI: 10.1517/13543784.2013.841138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Sunitinib malate (SU11248; Sutent®; Pfizer, Inc., New York) is a multi-kinase inhibitor currently approved for use in advanced renal cell carcinoma (RCC), imatinib-resistant/-intolerant gastrointestinal stromal tumours and progressive, well-differentiated pancreatic neuroendocrine tumours in patients with unresectable, locally advanced or metastatic disease. AREAS COVERED This article describes the mechanism of action and of the pharmacokinetics of sunitinib; further, it summarizes Phase I and II trials on the clinical efficacy, tolerability and safety of this agent in the setting of ovarian cancer (OC) treatment. EXPERT OPINION On the basis of the current literature, sunitinib has shown modest antitumour activity and acceptable toxicity. Studies investigating the impact of horizontal and vertical combinations should represent a priority of future research. Although clinical Phase II trials on the use of sunitinib in the treatment of OC demonstrated an acceptable profile of AEs, a greater comprehension of the toxicity of this compound is recommended.
Collapse
Affiliation(s)
- Umberto Leone Roberti Maggiore
- University of Genoa, San Martino Hospital and National Institute for Cancer Research, Department of Obstetrics and Gynecology , Largo R. Benzi 1, 16132 Genoa , Italy +01139 010511525 ; +01139 010511525 ;
| | | | | | | |
Collapse
|
35
|
Simultaneous quantification of tafetinib (SIM010603), a novel potent inhibitor of receptor tyrosine kinase, and its major metabolite in dog plasma by HPLC–ESI/MS/MS and its application to a pharmacokinetic study. J Pharm Biomed Anal 2013; 81-82:50-5. [DOI: 10.1016/j.jpba.2013.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 11/19/2022]
|
36
|
Abstract
For a few years, new targeted therapies have been used for metastatic cancers, targeting VEGF and its receptors and improving patients' survival for metastatic carcinoma (kidney, GIST, breast, colorectal). The objective of these treatments is to block either circulating VEGF (bevacizumab; VEGF-Trap), or tyrosine kinase receptors (especially the VEGF receptor) (sorafenib, sunitinib, brivanib, imatinib, etc.). Indeed, VEGF stimulates endothelial cell proliferation and then tumour growth and metastasis. However, all these antiangiogenic drugs share similar side effects, most frequently gastrointestinal disturbance, skin toxicity and hypertension. Hypertension seems to be especially frequent in case of good response. Renal side effects have probably been underestimated in the first place and their exact frequency is not known, needing some specific trials and registries. Proteinuria, thrombotic microangiopathies and acute renal failures have been reported: renal biopsies might be necessary for precise evaluation of renal damages. Physiopathology seems very close to preeclampsia. Good collaboration between oncologists, nephrologists and cardiologists is therefore crucial in order to continue these targeted therapies safely for the patients.
Collapse
Affiliation(s)
- Cécile Vigneau
- Service de Néphrologie, Centre Hospitalier Universitaire Pontchaillou, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France.
| | | |
Collapse
|
37
|
Pfister C, Pfrommer H, Tatagiba MS, Roser F. Vascular endothelial growth factor signals through platelet-derived growth factor receptor β in meningiomas in vitro. Br J Cancer 2012; 107:1702-13. [PMID: 23047550 PMCID: PMC3493872 DOI: 10.1038/bjc.2012.459] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Vascular endothelial growth factor (VEGF)-mediated angiogenesis mediates tumour growth and metastasis. Meningiomas are primarily benign, slow-growing, highly vascularised tumours. Aside from VEGF, there is little data on the function of major angiogenic proteins in meningiomas. Methods: The VEGFA, platelet-derived growth factor B (PDGFB), and their respective receptors – VEGF receptor 2 (KDR) and PDGF receptor β (PDGFRβ) – were quantified using real-time PCR and a TaqMan Protein Assay in meningiomas in vivo and in vitro. The effect of VEGFA and PDGFB on cell proliferation and the tyrosine phosphorylation of PDGFRβ were examined. Results: Most meningiomas displayed no KDR protein expression but elevated PDGFRβ levels. Exogenous VEGFA stimulation significantly increased cell proliferation. The PDGFRβ inhibition before stimulation with VEGFA abolished the proliferative stimuli. The VEGFA induced concentration-dependent PDGFRβ tyrosine phosphorylation comparable to PDGFB-induced PDGFRβ tyrosine phosphorylation. The PDGFRβ inhibitors gambogic acid, sunitinib, and tandutinib equally impaired the migration of meningioma cells. In addition, gambogic acid suppressed the VEGFA-induced PDGFRβ tyrosine phosphorylation. Conclusion: Collectively, our data suggest that VEGFA primarily regulates VEGF-mediated migration through PDGFRβ in meningiomas. The inhibitory effect of gambogic acid and tandutinib against meningioma growth in vitro suggests that selective PDGFRβ inhibitors, in combination with VEGF inhibitors, should be evaluated further as potential therapies for recurrent and malignant meningiomas.
Collapse
Affiliation(s)
- C Pfister
- Department of Neurosurgery, University of Tuebingen, Hoppe-Seyler-Strasse 3, Tuebingen 72076, Germany.
| | | | | | | |
Collapse
|
38
|
Jost MM. Surrogate end points: how well do they represent patient-relevant end points? Biomark Med 2012; 1:437-51. [PMID: 20477385 DOI: 10.2217/17520363.1.3.437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review takes a critical look at the concept of replacing patient-relevant end points, such as morbidity or mortality, with surrogate end points in clinical trials. Surrogate end points can be measured earlier in the course of a clinical trial and so are thought to accelerate the drug development process. Furthermore, they might be beneficial to the patients themselves by allowing faster adjustment of therapeutic strategies. However, the fact that in the past several promising surrogate end points have not fulfilled their expectations emphasizes the importance of applying strict evaluation criteria. The evaluation of the candidate surrogate end point prostate-specific antigen using the Prentice criteria and a meta-analytic approach is discussed. Prostate-specific antigen is often used to replace overall or progression-free survival in prostate cancer trials testing the benefit of medical interventions.
Collapse
Affiliation(s)
- Marco M Jost
- Institute for Quality & Efficiency in Health Care, Dillenburger Str. 27, D-51105 Cologne, Germany.
| |
Collapse
|
39
|
Brooks C, Sheu T, Bridges K, Mason K, Kuban D, Mathew P, Meyn R. Preclinical evaluation of sunitinib, a multi-tyrosine kinase inhibitor, as a radiosensitizer for human prostate cancer. Radiat Oncol 2012; 7:154. [PMID: 22967802 PMCID: PMC3494537 DOI: 10.1186/1748-717x-7-154] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 08/25/2012] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Many prostate cancers demonstrate an increased expression of growth factor receptors such as vascular endothelial growth factor receptor (VEGFR) and platelet derived growth factor receptor (PDGFR) which have been correlated with increased resistance to radiotherapy and poor prognosis in other tumors. Therefore, response to radiation could potentially be improved by using inhibitors of these abnormally activated pathways. We have investigated the radiosensitizing effects of sunitinib, a potent, multi-tyrosine kinase inhibitor of the VEGFR and PDGFR receptors, on human prostate cancer cells. METHODS The radiosensitizing effects of sunitinib were assessed on human prostate cancer cell lines DU145, PC3 and LNCaP by clonogenic assay. Sunitinib's ability to inhibit the activities of its key targets was determined by immunoblot analysis. The radiosensitizing effects of sunitinib in vivo were tested on human tumor xenografts growing in nude mice where response was assessed by tumor growth delay. RESULTS Clonogenic survival curve assays for both DU145 and PC3 cells showed that the surviving fraction at 2 Gy was reduced from 0.70 and 0.52 in controls to 0.44 and 0.38, respectively, by a 24 hr pretreatment with 100 nM sunitinib. LNCaP cells were not radiosensitized by sunitinib. Dose dependent decreases in VEGFR and PDGFR activation were also observed following sunitinib in both DU145 and PC3 cells. We assessed the ability of sunitinib to radiosensitize PC3 xenograft tumors growing in the hind limb of nude mice. Sunitinib given concurrently with radiation did not prolong tumor growth delay. However, when animals were treated with sunitinib commencing the day after fractionated radiation was complete, tumor growth delay was enhanced compared to radiation alone. CONCLUSIONS We conclude, based on the in vivo results, that sunitinib and radiation do not interact directly to radiosensitize the PC3 tumor cells in vivo as they did in vitro. The fact that tumor growth delay was enhanced when sunitinib was given after radiotherapy was completed suggests that sunitinib may be acting on the irradiated tumor stroma and suppressing its ability to sustain regrowth of the irradiated tumor. Based on these preclinical findings, we suggest that the combination of sunitinib and radiation for the treatment of prostate cancer deserves further development.
Collapse
Affiliation(s)
- Colin Brooks
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
- National University of Galway (NUIGalway), Galway, Ireland
| | - Tommy Sheu
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Kathleen Bridges
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Kathy Mason
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Deborah Kuban
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Paul Mathew
- Department of Hematology-Oncology, Tufts Medical Center, Boston, MA, USA
| | - Raymond Meyn
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Vaziri SAJ, Tavares EJ, Golshayan AR, Rini BI, Aydin H, Zhou M, Sercia L, Wood L, Ganapathi MK, Bukowski RM, Ganapathi R. Differing von hippel lindau genotype in paired primary and metastatic tumors in patients with clear cell renal cell carcinoma. Front Oncol 2012; 2:51. [PMID: 22655276 PMCID: PMC3361062 DOI: 10.3389/fonc.2012.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/02/2012] [Indexed: 11/25/2022] Open
Abstract
In sporadic clear cell renal cell carcinoma (CCRCC), the von Hippel Lindau (VHL) gene is inactivated by mutation or methylation in the majority of primary (P) tumors. Due to differing effects of wild-type (WT) and mutant (MT) VHL gene on downstream signaling pathways regulating angiogenesis, VHL gene status could impact clinical outcome. In CCRCC, comparative genomic hybridization analysis studies have reported genetic differences between paired P and metastatic (M) tumors. We thus sequenced the VHL gene in paired tumor specimens from 10 patients to determine a possible clonal relationship between the P tumor and M lesion(s) in patients with CCRCC. Using paraffin-embedded specimens, genomic DNA from microdissected samples (>80% tumor) of paired P tumor and M lesions from all 10 patients, as well as in normal tissue from 6 of these cases, was analyzed. The DNA was used for PCR-based amplification of each of the 3 exons of the VHL gene. Sequences derived from amplified samples were compared to the wild-type VHL gene sequence (GenBank Accession No. AF010238). Methylation status of the VHL gene was determined using VHL methylation-specific PCR primers after DNA bisulfite modification. In 4/10 (40%) patients the VHL gene status differed between the P tumor and the M lesion. As expected, when the VHL gene was mutated in both the P tumor and M lesion, the mutation was identical. Further, while the VHL genotype differed between the primary tumor in different kidneys or multiple metastatic lesions in the same patient, the VHL germline genotype in the normal adjacent tissue was always wild-type irrespective of the VHL gene status in the P tumor. These results demonstrate for the first time that the VHL gene status can be different between paired primary and metastatic tissue in patients with CCRCC.
Collapse
Affiliation(s)
- Susan A J Vaziri
- Taussig Cancer Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Garay JP, Gray JW. Omics and therapy - a basis for precision medicine. Mol Oncol 2012; 6:128-39. [PMID: 22445068 PMCID: PMC3779147 DOI: 10.1016/j.molonc.2012.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 12/19/2022] Open
Abstract
A founding premise of the human genome project was that knowledge of the spectrum of abnormalities that comprise cancers and other human diseases would lead to improved disease management by identifying molecular abnormalities that could guide disease detection and diagnosis, suggest new therapeutic strategies and be developed as markers to predict response to therapy. This project led to elucidation of a reference normal human genome sequence and normal polymorphisms therein against which sequences from diseased tissues can be compared to enable identification of causal abnormalities. It also stimulated development of an array of computational tools for genomic analysis and catalyzed public and private sector development of revolutionary tools for genome analysis that transformed analysis of whole genomes from an enterprise that required international teams and hundreds of millions of dollars to a process that can be carried out in core facilities for only a few thousand dollars per sample. Indeed, the $1000 genome is nearly upon us. Applications of these technologies to human cancers in international cancer genome projects are now revealing the spectra of abnormalities that comprise thousands of individual cancers. Analyses of these data are leading to the promised improvements in disease management. We review several aspects of cancer genomics with emphasis on aspects that are relevant to improving cancer therapy.
Collapse
Affiliation(s)
- Joseph P Garay
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA.
| | | |
Collapse
|
42
|
Liu H, Li X, Xu Q, Lv S, Li J, Ma Q. Role of glial cell line-derived neurotrophic factor in perineural invasion of pancreatic cancer. Biochim Biophys Acta Rev Cancer 2012; 1826:112-20. [PMID: 22503821 DOI: 10.1016/j.bbcan.2012.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 03/11/2012] [Accepted: 03/12/2012] [Indexed: 01/05/2023]
Abstract
Perineural invasion (PNI) is the initial infiltration of tumor cells into the retroperitoneal nerve plexus and along the nerves. It precludes curative resection, is thought to be the major cause of local recurrence following resection, and is a special metastatic route in pancreatic cancer. Glial cell line-derived neurotrophic factor (GDNF) was recently recognized as a key player in the PNI process. This review covers the most recently published studies on the role of GDNF in pancreatic cancer. We introduce the players in PNI, summarize the distribution of GDNF and its receptors in pancreatic cancer, and discuss the effects and underlying mechanism of GDNF in the PNI process. Finally, we also review some potential inhibitors for GDNF-targeted therapy.
Collapse
Affiliation(s)
- Han Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | | | | | | | | | | |
Collapse
|
43
|
Masini C, Sabbatini R, Porta C, Procopio G, Di Lorenzo G, Onofri A, Buti S, Iacovelli R, Invernizzi R, Moscetti L, Aste MG, Pagano M, Grosso F, Lucia Manenti A, Ortega C, Cosmai L, Del Giovane C, Conte PF. Use of tyrosine kinase inhibitors in patients with metastatic kidney cancer receiving haemodialysis: a retrospective Italian survey. BJU Int 2012; 110:692-8. [PMID: 22364110 DOI: 10.1111/j.1464-410x.2012.10946.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
UNLABELLED What's known on the subject? and What does the study add? Sunitinib and sorafenib are orally administered multikinase inhibitors approved for the treatment of advanced RCC. The limited pharmacokinetics data on sunitinib and sorafenib suggest that haemodialysis does not significantly alter plasma concentrations. In this retrospective study we define the safety and efficacy of tyrosine kinase inhibitors in patients with metastatic RCC (mRCC) and end-stage renal disease requiring haemodialysis. Even though the retrospective nature of this survey and the relatively small sample size represent major limitations, these data indicate that treatment with sunitinib and sorafenib in this cohort of patients is feasible with no unexpected toxicity and good efficacy, results similar to those in the general population of patients with mRCC. OBJECTIVE To investigate the safety and efficacy of tyrosine kinase inhibitors (TKIs) in patients with metastatic renal cell carcinoma (mRCC) and end-stage renal disease requiring haemodialysis (HD). PATIENTS AND METHODS Between July 2006 and December 2010, 24 patients undergoing HD were treated with sunitinib and/or sorafenib for mRCC in 14 Italian institutions. We retrospectively reviewed the medical records of these patients to evaluate the administered doses of TKIs, treatment-related toxicities and the clinical response to therapy. RESULTS Sunitinib was administered at 50 mg daily for 4-6 weeks in six patients, 37.5 mg daily for 4-6 weeks in seven patients (one patient subsequently increased the dose to 50 mg daily), 25 mg daily for 4-6 weeks in two patients and 12.5 mg daily for 4-6 weeks in one patient. Among the eight patients treated with sorafenib, four patients received 800 mg daily (400 mg every 12 h), three patients 400 mg daily and one patient 200 mg daily with a continuous schedule. The estimated median progression-free and overall survival periods of this cohort of patients were 10.3 months and 22.6 months, respectively. With regard to tolerability and safety, no unexpected adverse events were registered and no grade 4 haematological or non-haematological toxicities were reported. CONCLUSIONS Sunitinib and sorafenib treatment is not contraindicated in patients with mRCC undergoing HD. The outcome of this patient population is similar to that observed in patients with normal renal function treated with TKIs. These results merit further confirmation by a larger prospective trial.
Collapse
Affiliation(s)
- Cristina Masini
- Department of Oncology, Hematology and Respiratory Diseases, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shukla S, Chen ZS, Ambudkar SV. Tyrosine kinase inhibitors as modulators of ABC transporter-mediated drug resistance. Drug Resist Updat 2012; 15:70-80. [PMID: 22325423 DOI: 10.1016/j.drup.2012.01.005] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/23/2022]
Abstract
Tyrosine kinases (TKs) are involved in key signaling events/pathways that regulate cancer cell proliferation, apoptosis, angiogenesis and metastasis. Deregulated activity of TKs has been implicated in several types of cancers. In recent years, tyrosine kinase inhibitors (TKIs) have been developed to inhibit specific kinases whose constitutive activity results in specific cancer types. These TKIs have been found to demonstrate effective anticancer activity and some of them have been approved by the Food and Drug Administration for clinical use or are in clinical trials. However, these targeted therapeutic agents are also transported by ATP-binding cassette (ABC) transporters, resulting in altered pharmacokinetics or development of resistance to these drugs in cancer patients. This review covers the recent findings on the interactions of clinically important TKIs with ABC drug transporters. Future research efforts in the development of novel TKIs with specific targets, seeking improved activity, should consider these underlying causes of resistance to TKIs in cancer cells.
Collapse
Affiliation(s)
- Suneet Shukla
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
45
|
Mitchell L, Thamm D, Biller B. Clinical and Immunomodulatory Effects of Toceranib Combined with Low-Dose Cyclophosphamide in Dogs with Cancer. J Vet Intern Med 2012; 26:355-62. [DOI: 10.1111/j.1939-1676.2011.00883.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/02/2011] [Accepted: 12/19/2011] [Indexed: 12/16/2022] Open
Affiliation(s)
- L. Mitchell
- Animal Cancer Center; Department of Clinical Sciences; Colorado State University; Fort Collins; CO
| | - D.H. Thamm
- Animal Cancer Center; Department of Clinical Sciences; Colorado State University; Fort Collins; CO
| | - B.J. Biller
- Animal Cancer Center; Department of Clinical Sciences; Colorado State University; Fort Collins; CO
| |
Collapse
|
46
|
Fabbro D, Cowan-Jacob SW, Möbitz H, Martiny-Baron G. Targeting cancer with small-molecular-weight kinase inhibitors. Methods Mol Biol 2012; 795:1-34. [PMID: 21960212 DOI: 10.1007/978-1-61779-337-0_1] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein and lipid kinases fulfill essential roles in many signaling pathways that regulate normal cell functions. Deregulation of these kinase activities lead to a variety of pathologies ranging from cancer to inflammatory diseases, diabetes, infectious diseases, cardiovascular disorders, cell growth and survival. 518 protein kinases and about 20 lipid-modifying kinases are encoded by the human genome, and a much larger proportion of additional kinases are present in parasite, bacterial, fungal, and viral genomes that are susceptible to exploitation as drug targets. Since many human diseases result from overactivation of protein and lipid kinases due to mutations and/or overexpression, this enzyme class represents an important target for the pharmaceutical industry. Approximately one third of all protein targets under investigation in the pharmaceutical industry are protein or lipid kinases.The kinase inhibitors that have been launched, thus far, are mainly in oncology indications and are directed against a handful of protein and lipid kinases. With one exception, all of these registered kinase inhibitors are directed toward the ATP-site and display different selectivities, potencies, and pharmacokinetic properties. At present, about 150 kinase-targeted drugs are in clinical development and many more in various stages of preclinical development. Kinase inhibitor drugs that are in clinical trials target all stages of signal transduction from the receptor protein tyrosine kinases that initiate intracellular signaling, through second-messenger-dependent lipid and protein kinases, and protein kinases that regulate the cell cycle.This review provides an insight into protein and lipid kinase drug discovery with respect to achievements, binding modes of inhibitors, and novel avenues for the generation of second-generation kinase inhibitors to treat cancers.
Collapse
Affiliation(s)
- Doriano Fabbro
- Novartis Institutes for Biomedical Research, Expertise Platform Kinases, Basel, Switzerland.
| | | | | | | |
Collapse
|
47
|
Yamaki K, Yoshino S. Tyrosine kinase inhibitor sunitinib relieves systemic and oral antigen-induced anaphylaxes in mice. Allergy 2012; 67:114-22. [PMID: 21933194 DOI: 10.1111/j.1398-9995.2011.02717.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Systemic and oral antigen-induced anaphylaxes are mediated by immunoglobulin (Ig) E and mast cells, but there is no satisfactory treatment for the life-threatening allergic reaction. We investigated the potential of the multitargeted receptor tyrosine kinase inhibitor sunitinib to relieve anaphylactic reactions in food allergy and systemic anaphylaxis. METHODS Efficacy of oral sunitinib on oral and parenteral antigen-induced anaphylaxes in Balb/c mice was evaluated. IgE-dependent degranulation and growth of rat basophilic leukemia RBL2H3 and bone marrow-derived mast cells (BMMCs) in response to sunitinib were investigated. RESULTS Daily administration of sunitinib throughout antigen challenges prevented oral antigen-induced anaphylaxis including diarrhea, anaphylactic symptoms, and hypothermia. The mouse mast cell protease (MMCP)-1 concentration in serum and mast cell number in intestinal tissue after challenge were also decreased by the treatment. Spleen cells from sunitinib-treated mice contained smaller numbers of antigen-specific IgG-producing cells and secreted lower amounts of both Th1 and Th2 cytokines than those of the control mice, whereas the levels of antigen-specific antibodies in serum were not decreased. The reactions and MMCP-1 release in oral antigen-induced anaphylaxis and passive systemic anaphylaxis were attenuated even by a single predose of sunitinib. Degranulation and growth of RBL2H3 cells and BMMCs were greatly reduced by sunitinib. CONCLUSION These results suggested that sunitinib relieves systemic and oral antigen-induced anaphylaxes by the prevention of mast cell activation and hyperplasia in intestinal tissue directly and indirectly through an immunosuppressive effect. Sunitinib and its related kinase inhibitors might be potential drugs for the treatment of food allergy and systemic anaphylaxis.
Collapse
Affiliation(s)
- K Yamaki
- Department of Pharmacology, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, Hyogo, Japan.
| | | |
Collapse
|
48
|
Maita S, Yuasa T, Tsuchiya N, Mitobe Y, Narita S, Horikawa Y, Hatake K, Fukui I, Kimura S, Maekawa T, Habuchi T. Antitumor effect of sunitinib against skeletal metastatic renal cell carcinoma through inhibition of osteoclast function. Int J Cancer 2011; 130:677-84. [DOI: 10.1002/ijc.26034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 01/04/2011] [Accepted: 01/26/2011] [Indexed: 11/09/2022]
|
49
|
Lyros O, Mueller A, Heidel F, Schimanski CC, Gockel I, Galle PR, Lang H, Moehler M. Analysis of anti-proliferative and chemosensitizing effects of sunitinib on human esophagogastric cancer cells: Synergistic interaction with vandetanib via inhibition of multi-receptor tyrosine kinase pathways. Int J Cancer 2010; 127:1197-208. [PMID: 20039326 DOI: 10.1002/ijc.25137] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The receptor tyrosine kinases (RTKs), epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor 1-3 (VEGFR1-3), are frequently expressed in gastric cancer and are putative therapeutic targets in this disease. We have investigated the anti-proliferative and chemosensitizing properties of the multitargeted small-molecule RTK inhibitors sunitinib and vandetanib in a panel of 4 human gastric and esophageal cancer cell lines. In the 1st instance, the expression of potential targets of these small-molecule inhibitors was examined by reverse transcriptase-polymerase chain reaction, western blotting, and flow cytometry. EGFR mRNA and protein was detected in all cases, with VEGFR2 expression noted in all but 1 line. Both EGF and VEGF were shown to stimulate tumor cell growth, and both sunitinib and vandetanib were found to be associated with significant dose-dependent inhibition of proliferation and an enhancement of apoptosis, as determined by MTT and propidium iodide/Annexin V labeling assays, respectively. The addition of sunitinib to VEGF-stimulated NCI-N87 cells was associated with a reduction in MAPK phosphorylation (pMAPK) but not Akt phosphorylation (pAkt), whereas the addition of vandetanib was associated with reductions in both VEGF- and EGF-mediated VEGFR2 phosphorylation, pMAPK and pAkt. Co-administration of sunitinib significantly enhanced the sensitivity of MKN-45 cells to cisplatin and irinotecan. In addition, vandetanib synergistically enhanced the sunitinib-associated inhibition of gastric cancer cell growth. In conclusion, these preliminary data confirm the importance of EGFR and VEGFR signaling in gastric cancer and suggest that the simultaneous inhibition of RTK-pathways through sunitinib and vandetanib may provide therapeutic benefit in this disease.
Collapse
Affiliation(s)
- Orestis Lyros
- First Department of Internal Medicine, Johannes Gutenberg University Hospital, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
50
|
[Angiogenesis inhibition: review of the activity of sorafenib, sunitinib and bevacizumab]. Bull Cancer 2010; 97:29-43. [PMID: 20418202 DOI: 10.1684/bdc.2010.1068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Renal cell carcinoma accounts for approximately 3% of all human malignancies. The use of cytokines in metastatic stage of disease has been the standard until last decades, presenting partial and short duration responses. Research on angiogenesis in renal carcinoma has brought important advances to understand tumor biology and to allow us development of new antiangiogenic drugs. Sunitinib (SUTENT), sorafenib (NEXAVAR) and bevacizumab (AVASTIN) are actually three molecules accepted to use in metastatic renal cell carcinoma (mRCC), with a good tolerability demonstrated in different studies. Clinical evidence shows sunitinib to be reference standard of care for the first-line treatment of mRCC. The use of bevacizumab in combination with interferon alfa (IFN alfa) can also be considered in this setting. Sorafenib is recommended for second-line treatment in cytokine-refractory patients, sunitinib being also accepted in this situation. Other combination of these molecules and their use as neo-adjuvant and adjuvant therapy is being evaluated and should change in the short term the management of the disease.
Collapse
|