1
|
Hao Y, Li Y, Zang W, Sun Y, Li X, Li L, He Z, Sun B. Self-assembled doxorubicin prodrug riding on the albumin express train enable tumor targeting and bio-activation. J Colloid Interface Sci 2025; 684:97-108. [PMID: 39787811 DOI: 10.1016/j.jcis.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Doxorubicin (DOX) is a vital anthracycline chemotherapeutic drug, yet presenting significant challenges due to its severe cardiotoxicity. While Doxil enhances the pharmacokinetics and reduces the cardiotoxicity of DOX solution (DOX sol), it shows limitations of low drug loading capacity and inadequate cellular uptake. To overcome these issues, this study developed a novel disulfide bond-linked DOX-maleimide prodrug (DSSM). DSSM could self-assemble into nanoparticles (NPs) with a high drug loading capacity (58.89 %, w/w). DSSM could rapidly bind to endogenous albumin through the maleimide group. Compared to DOX sol, DSSM had increased area under the curve (AUC) by approximately 60-fold, and similarly, quadrupled tumor accumulation after 4 h of administration, achieving efficient tumor targeting. With only 5 % DSPE-mPEG2K, the cellular uptake of DSSM NPs was better than Doxil. Furthermore, the high reduction sensitivity of the disulfide bond enabled bio-activation of DSSM at the tumor site, while maintaining stability in normal cells. Compared with DOX sol and Doxil, DSSM NPs significantly improved safety and demonstrated better anti-tumor effect at tolerated doses. Our findings present a promising strategy for achieving effective tumor targeting and bio-activation, addressing key limitations of current DOX nanoformulations.
Collapse
Affiliation(s)
- Yanzhong Hao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Wenfeng Zang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Li
- Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Lin Li
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University/Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, China.
| |
Collapse
|
2
|
Han X, Zhang X, Kang L, Feng S, Li Y, Zhao G. Peptide-modified nanoparticles for doxorubicin delivery: Strategies to overcome chemoresistance and perspectives on carbohydrate polymers. Int J Biol Macromol 2025; 299:140143. [PMID: 39855525 DOI: 10.1016/j.ijbiomac.2025.140143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chemotherapy serves as the primary treatment for cancers, facing challenges due to the emergence of drug resistance. Combination therapy has been developed to combat cancer drug resistance, yet it still suffers from lack of specific targeting of cancer cells and poor accumulation at the tumor site. Consequently, targeted administration of chemotherapy medications has been employed in cancer treatment. Doxorubicin (DOX) is one of the most frequently used chemotherapeutics, functioning by inhibiting topoisomerase activity. Enhancing the anti-cancer effects of DOX and overcoming drug resistance can be accomplished via delivery by nanoparticles. This review will focus on the development of peptide-DOX conjugates, the functionalization of nanoparticles with peptides, the co-delivery of DOX and peptides, as well as the theranostic use of peptide-modified nanoparticles in cancer treatment. The peptide-DOX conjugates have been designed to enhance the targeted delivery to cancer cells by interacting with receptors that are overexpressed on tumor surfaces. Moreover, nanoparticles can be modified with peptides to improve their uptake in tumor cells via endocytosis. Nanoparticles have the ability to co-deliver DOX along with therapeutic peptides for enhanced cancer treatment. Finally, nanoparticles modified with peptides can offer theranostic capabilities by facilitating both imaging and the delivery of DOX (chemotherapy).
Collapse
Affiliation(s)
- Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Longdan Kang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Feng
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Ge Zhao
- Department of Obstetrics, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Wang Y, Wei L, Liu Y, Liu C, Hou M, Zhou L, Wang L, Li H, Qiu Y, JingMa. Biodistribution and preclinical safety profile of legubicin: A novel conjugate of doxorubicin and a legumain-cleavable peptide linker. J Appl Toxicol 2024; 44:1426-1445. [PMID: 38782376 DOI: 10.1002/jat.4622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Legubicin is a novel conjugate of doxorubicin and a legumain-cleavable peptide linker. It has been developed to ameliorate the side effects of doxorubicin. Biodistribution in tumor-bearing mice, acute tolerance, and potential systemic toxic effects in Sprague-Dawley rats and beagle dogs of legubicin were assessed. Legubicin exists mainly as a protein complex in plasma after entering the circulation. Compared with conventional doxorubicin at an equal molar dose in mice, we found higher exposure to doxorubicin in tumor (approximately 1.7-fold increase) while lower exposure in normal tissues (an ~3.26-, 3.46-, and 1.29-fold reduction in heart, kidney, and plasma, respectively) in tumor-bearing mice after intravenous injection of legubicin. The acute maximum tolerance dose (MTD) of legubicin was >16 mg/kg doxorubicin equivalent in female rats, 11 mg/kg doxorubicin equivalent in male rats (LD50 of conventional doxorubicin is 10.51 mg/kg), and >8 mg/kg doxorubicin equivalent in dogs (MTD of conventional doxorubicin is 1.5 mg/kg). Four-week repeat-dose toxicity studies of intravenous legubicin were conducted in rats (5, 10, and 25 mg/kg/dose once weekly) and dogs (3/1.5, 10/5, and 20/10 mg/kg/dose once weekly); the dose levels were reduced from the second dose due to intolerable legubicin-associated toxicity at 20 mg/kg. Major organs of toxicity included the gastrointestinal tract, lymphoid and hematopoietic organs, kidney, skin, liver, reproductive organs, and peripheral nerves, which are all associated with doxorubicin. However, cardiotoxicity was only noted at MTD dose levels. Altogether, our results confirm an improved safety profile of legubicin over conventional doxorubicin and support its clinical benefit for treating cancer.
Collapse
Affiliation(s)
- Yan Wang
- Pharmacological Evaluation Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Liping Wei
- Pharmacological Evaluation Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Yuan Liu
- Shanghai Affinity Bio-Pharmaceuticals Co, Ltd, Shanghai, China
| | - Cheng Liu
- Shanghai Affinity Bio-Pharmaceuticals Co, Ltd, Shanghai, China
| | - Minbo Hou
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Lu Zhou
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Le Wang
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Hua Li
- Pharmacological Evaluation Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - Yunliang Qiu
- Pharmacological Evaluation Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
- Department of toxicology, Shanghai InnoStar Bio-tech Co, Ltd (InnoStar), Shanghai, China
| | - JingMa
- Pharmacological Evaluation Research Center, China State Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
4
|
Taylor KS, McMonagle MM, Guy SC, Human-McKinnon AM, Asamizu S, Fletcher HJ, Davis BW, Suyama TL. Albumin-ruthenium catalyst conjugate for bio-orthogonal uncaging of alloc group. Org Biomol Chem 2024; 22:2992-3000. [PMID: 38526322 DOI: 10.1039/d4ob00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The employment of antibodies as a targeted drug delivery vehicle has proven successful which is exemplified by the emergence of antibody-drug conjugates (ADCs). However, ADCs are not without their shortcomings. Improvements may be made to the ADC platform by decoupling the cytotoxic drug from the delivery vehicle and conjugating an organometallic catalyst in its place. The resulting protein-metal catalyst conjugate was designed to uncage the masked cytotoxin administered as a separate entity. Macropinocytosis of albumin by cancerous cells suggests the potential of albumin acting as the tumor-targeting delivery vehicle. Herein reported are the first preparation and demonstration of ruthenium catalysts with cyclopentadienyl and quinoline-based ligands conjugated to albumin. The effective uncaging abilities were demonstrated on allyloxy carbamate (alloc)-protected rhodamine 110 and doxorubicin, providing a promising catalytic scaffold for the advancement of selective drug delivery methods in the future.
Collapse
Affiliation(s)
- Kimberly S Taylor
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Madison M McMonagle
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Schaelee C Guy
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Ariana M Human-McKinnon
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Shumpei Asamizu
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Heidi J Fletcher
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Bradley W Davis
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Takashi L Suyama
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| |
Collapse
|
5
|
Ma L, Yu Q, Zhuang M, Yang C, Liu Y, Li Y, Liu C, Shen X, Chang Y. UHPLC-MS/MS Assay for Quantification of Legubicin, a Novel Doxorubicin-Based Legumain-Activated Prodrug, and Its Application to Pharmacokinetic and Tissue Distribution Studies. Molecules 2024; 29:775. [PMID: 38398527 PMCID: PMC10892419 DOI: 10.3390/molecules29040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Legubicin, a novel prodrug based on doxorubicin, has both albumin-binding and legumain-activating properties. The aim of this study was to develop and validate a UHPLC-MS/MS method for investigating the in vivo pharmacokinetics and tissue distribution profiles of legubicin in rats and tumor-bearing mice following intravenous administration, and to compare this prodrug with the positive control drug doxorubicin. The study employed a UHLC-MS/MS method to determine the levels of albumin-bound of legubicin and two metabolites (free Leu-DOX and DOX) in plasma, tumor, and tissue samples. This method was validated for good selectivity, high sensitivity, excellent extraction recovery, and short run time. The results showed that legubicin was present in the circulation in vivo mainly in a protein-bound form with larger AUC values and lower clearance and distribution, and essentially released small amounts of doxorubicin. Compared to administration of equimolar doses of doxorubicin, legubicin showed increased exposure of the active drug in the tumor and decreased the level of the active drug in the heart and kidney. This study provides valuable information on the pharmacokinetics and tissue distribution of legubicin, implicating its potential as a novel and effective drug candidate for anti-cancer therapies.
Collapse
Affiliation(s)
- Liyuan Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China;
- Shanghai Innostar Bio-Tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; (Q.Y.); (M.Z.); (C.Y.)
| | - Qiaoling Yu
- Shanghai Innostar Bio-Tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; (Q.Y.); (M.Z.); (C.Y.)
| | - Meng Zhuang
- Shanghai Innostar Bio-Tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; (Q.Y.); (M.Z.); (C.Y.)
| | - Chen Yang
- Shanghai Innostar Bio-Tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; (Q.Y.); (M.Z.); (C.Y.)
| | - Yuan Liu
- Shanghai Affinity Bio-Pharmaceuticals Co., Ltd., Shanghai 201203, China; (Y.L.); (Y.L.); (C.L.)
| | - Yuling Li
- Shanghai Affinity Bio-Pharmaceuticals Co., Ltd., Shanghai 201203, China; (Y.L.); (Y.L.); (C.L.)
| | - Cheng Liu
- Shanghai Affinity Bio-Pharmaceuticals Co., Ltd., Shanghai 201203, China; (Y.L.); (Y.L.); (C.L.)
| | - Xiaoyan Shen
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Yan Chang
- Shanghai Innostar Bio-Tech Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China; (Q.Y.); (M.Z.); (C.Y.)
| |
Collapse
|
6
|
Yi C, Xie F, Xu X, Xiao D, Zhou X, Cheng M. Guanidine-modified albumin-MMAE conjugates with enhanced endocytosis ability. Drug Deliv 2023; 30:2219433. [PMID: 37434438 PMCID: PMC10339779 DOI: 10.1080/10717544.2023.2219433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 07/13/2023] Open
Abstract
Aiming to address the insufficient endocytosis ability of traditional albumin drug conjugates, this paper reports elegant guanidine modification to improve efficacy for the first time. A series of modified albumin drug conjugates were designed and synthesized with different structures, including guanidine (GA), biguanides (BGA) and phenyl (BA), and different quantities of modifications. Then, the endocytosis ability and in vitro/vivo potency of albumin drug conjugates were systematically studied. Finally, a preferred conjugate A4 was screened, which contained 15 BGA modifications. Conjugate A4 maintains spatial stability similar to that of the unmodified conjugate AVM and could significantly enhance endocytosis ability (p*** = 0.0009) compared with the unmodified conjugate AVM. Additionally, the in vitro potency of conjugate A4 (EC50 = 71.78 nmol in SKOV3 cells) was greatly enhanced (approximately 4 times) compared with that of the unmodified conjugate AVM (EC50 = 286.00 nmol in SKOV3 cells). The in vivo efficacy of conjugate A4 completely eliminated 50% of tumors at 33 mg/kg, which was significantly better than the efficacy of conjugate AVM at the same dose (P** = 0.0026). In addition, theranostic albumin drug conjugate A8 was designed to intuitively realize drug release and maintain antitumor activity similar to conjugate A4. In summary, the guanidine modification strategy could provide new ideas for the development of new generational albumin drug conjugates.
Collapse
Affiliation(s)
- Ce Yi
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, China Beijing
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, China Beijing
| | - Xin Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, China Beijing
| | - Dian Xiao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, China Beijing
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, China Beijing
| | - Maosheng Cheng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Coppo L, Scheggi S, DeMontis G, Priora R, Frosali S, Margaritis A, Summa D, Di Giuseppe D, Ulivelli M, Di Simplicio P. Does Risk of Hyperhomocysteinemia Depend on Thiol-Disulfide Exchange Reactions of Albumin and Homocysteine? Antioxid Redox Signal 2023; 38:920-958. [PMID: 36352822 DOI: 10.1089/ars.2021.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Significance: Increased plasma concentrations of total homocysteine (tHcy; mild-moderate hyperhomocysteinemia: 15-50 μM tHcy) are considered an independent risk factor for the onset/progression of various diseases, but it is not known about how the increase in tHcy causes pathological conditions. Recent Advances: Reduced homocysteine (HSH ∼1% of tHcy) is presumed to be toxic, unlike homocystine (∼9%) and mixed disulfide between homocysteine and albumin (HSS-ALB; homocysteine [Hcy]-albumin mixed disulfide, ∼90%). This and other notions make it difficult to explain the pathogenicity of Hcy because: (i) lowering tHcy does not improve pathological outcomes; (ii) damage due to HSH usually emerges at supraphysiological doses; and (iii) it is not known why tiny increments in plasma concentrations of HSH can be pathological. Critical Issues: Albumin may have a role in Hcy toxicity, because HSS-ALB could release toxic HSH via thiol-disulfide (SH/SS) exchange reactions in cells. Similarly, thiol-disulfide exchange processes of reduced albumin (albumin with free SH group of Cys34 [HS-ALB]) or N-homocysteinylated albumin are plausible alternatives for initiating Hcy pathological events. Adverse effects of albumin and other data reviewed here suggest the hypothesis of a role of albumin in Hcy toxicity. Future Directions: HSS-ALB might be involved in disruption of the antioxidant/oxidant balance in critical tissues (brain, liver, kidney). Since homocysteine-albumin mixed disulfide is a possible intermediate of thiol-disulfide exchange reactions, we suggest that homocysteinylated albumin could be a new pathological factor, and that studies on the redox role of albumin and mixed disulfide production via thiol-disulfide exchange reactions could offer new therapeutic insights for reducing Hcy toxicity.
Collapse
Affiliation(s)
- Lucia Coppo
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Simona Scheggi
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Graziella DeMontis
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Raffaella Priora
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Simona Frosali
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Antonio Margaritis
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Domenico Summa
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Danila Di Giuseppe
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Monica Ulivelli
- Department of Surgery, Medical Science and Neuroscience, University of Siena, Siena, Italy
| | - Paolo Di Simplicio
- Department of Molecular and Development Medicine and Medical Science and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
8
|
Paul M, Itoo AM, Ghosh B, Biswas S. Current trends in the use of human serum albumin for drug delivery in cancer. Expert Opin Drug Deliv 2022; 19:1449-1470. [PMID: 36253957 DOI: 10.1080/17425247.2022.2134341] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Human serum albumin is the most abundant transport protein in plasma, which has recently been extensively utilized to form nanoparticles for drug delivery in cancer. The primary reason for selecting albumin protein as drug delivery cargo is its excellent biocompatibility, biodegradability, and non-immunogenicity. Moreover, the albumin structure containing three homologous domains constituted of a single polypeptide (585 amino acid) incorporates various hydrophobic drugs by non-covalent interactions. Albumin shows active tumor targeting via their interaction with gp60 and SPARC proteins abundant in the tumor-associated endothelial cells and the tumor microenvironment. AREAS COVERED The review discusses the importance of albumin as a drug-carrier system, general procedures to prepare albumin NPs, and the current trends in using albumin-based nanomedicines to deliver various chemotherapeutic agents. The various applications of albumin in the nanomedicines, such as NPs surface modifier and fabrication of hybrid/active-tumor targeted NPs, are delineated based on current trends. EXPERT OPINION Nanomedicines have the potential to revolutionize cancer treatment. However, clinical translation is limited majorly due to the lack of suitable nanomaterials offering systemic stability, optimum drug encapsulation, tumor-targeted delivery, sustained drug release, and biocompatibility. The potential of albumin could be explored in nanomedicines fabrication for superior treatment outcomes in cancer.
Collapse
Affiliation(s)
- Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Asif Mohd Itoo
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad-500078, India
| |
Collapse
|
9
|
Ullah A, Kwon HT, Lim SI. Albumin: A Multi-talented Clinical and Pharmaceutical Player. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Elastin-like Polypeptide Hydrogels for Tunable, Sustained Local Chemotherapy in Malignant Glioma. Pharmaceutics 2022; 14:pharmaceutics14102072. [PMID: 36297507 PMCID: PMC9608313 DOI: 10.3390/pharmaceutics14102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor that carries a dismal prognosis, which is primarily attributed to tumor recurrence after surgery and resistance to chemotherapy. Since the tumor recurrence appears near the site of surgical resection, a concept of immediate and local application of chemotherapeutic after initial tumor removal could lead to improved treatment outcome. With the ultimate goal of developing a locally-applied, injectable drug delivery vehicle for GBM treatment, we created elastin-like polypeptide (ELP) hydrogels. The ELP hydrogels can be engineered to release anti-cancer drugs over an extended period. The purpose of this study was to evaluate the biomechanical properties of ELP hydrogels, to characterize their ability to release doxorubicin over time, and to investigate, in vitro, the anti-proliferative effect of Dox-laden ELP hydrogels on GBM. Here, we present microstructural differences, swelling ratio measurements, drug release characteristics, and in vitro effects of different ELP hydrogel compositions. We found that manipulation of the ELP–collagen ratio allows for tunable drug release, that the released drug is taken up by cells, and that incubation with a small volume of ELP-Dox hydrogel drastically reduced survival and proliferation of GBM cells in vitro. These results underscore the potential of ELP hydrogels as a local delivery strategy to improve prognosis for GBM patients after tumor resection.
Collapse
|
11
|
Feng L, Fang J, Zeng X, Liu H, Zhang J, Huang L, Guo Z, Zhuang R, Zhang X. 68Ga-Labeled Maleimide for Blood Pool and Lymph PET Imaging through Covalent Bonding to Serum Albumin In Vivo. ACS OMEGA 2022; 7:28597-28604. [PMID: 35990434 PMCID: PMC9386703 DOI: 10.1021/acsomega.2c03505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
This study aims to develop a novel 68Ga-labeled tracer, which can covalently bind to albumin in vivo based on the maleimide-thiol strategy, and to evaluate its potential applications using positron emission tomography (PET). 68Ga-labeled maleimide-monoamide-DOTA (denoted as [68Ga]Ga-DM) was prepared conveniently with a high radiochemical yield (>90%) and radiochemical purity (>99%). Its molar activity was calculated as 249.60 ± 68.50 GBq/μmol, and the octanol-water partition coefficient (LogP) was -3.15 ± 0.08 with good stabilities. In vitro experiments showed that [68Ga]Ga-DM can bind to albumin efficiently and rapidly, with a binding fraction of over 70%. High uptake and excellent retention in blood were observed with a long half-life (t 1/2Z) of 190.15 ± 24.14 min, which makes it possible for blood pool PET imaging with high contrast. The transient micro-bleeding in the rat model was detected successfully with PET imaging. In addition, the uptakes of [68Ga]Ga-DM in the inflammatory popliteal lymph nodes depend on the severity (5.90% ID/g and 2.32% ID/g vs 1.01% ID/g for healthy lymph nodes at 0.5 h post-injection) indicating its feasibility for lymphatic imaging. In conclusion, a novel 68Ga-labeled tracer was prepared with high efficiency and yield in mild conditions. Based on the promising properties of bonding covalently to albumin, great stability, high blood contrast with a long half-life, and well environmental tolerance, [68Ga]Ga-DM could be developed as a potential tracer for PET imaging of blood pool, bleeding, and vascular permeability alteration diseases in the clinic.
Collapse
|
12
|
Doxorubicin-conjugated siRNA lipid nanoparticles for combination cancer therapy. Acta Pharm Sin B 2022; 13:1429-1437. [PMID: 37139433 PMCID: PMC10150035 DOI: 10.1016/j.apsb.2022.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Evasion of apoptosis is a hallmark of cancer, attributed in part to overexpression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2). In a variety of cancer types, including lymphoma, Bcl-2 is overexpressed. Therapeutic targeting of Bcl-2 has demonstrated efficacy in the clinic and is the subject of extensive clinical testing in combination with chemotherapy. Therefore, the development of co-delivery systems for Bcl-2 targeting agents, such as small interfering RNA (siRNA), and chemotherapeutics, such as doxorubicin (DOX), holds promise for enabling combination cancer therapies. Lipid nanoparticles (LNPs) are a clinically advanced nucleic acid delivery system with a compact structure suitable for siRNA encapsulation and delivery. Inspired by ongoing clinical trials of albumin-hitchhiking doxorubicin prodrugs, here we developed a DOX-siRNA co-delivery strategy via conjugation of doxorubicin to the surface of siRNA-loaded LNPs. Our optimized LNPs enabled potent knockdown of Bcl-2 and efficient delivery of DOX into the nucleus of Burkitts' lymphoma (Raji) cells, leading to effective inhibition of tumor growth in a mouse model of lymphoma. Based on these results, our LNPs may provide a platform for the co-delivery of various nucleic acids and DOX for the development of new combination cancer therapies.
Collapse
|
13
|
Yang Y, Fischer NH, Oliveira MT, Hadaf GB, Liu J, Brock-Nannestad T, Diness F, Lee JW. Carbon dioxide enhances sulphur-selective conjugate addition reactions. Org Biomol Chem 2022; 20:4526-4533. [PMID: 35605989 DOI: 10.1039/d2ob00831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulphur-selective conjugate addition reactions play a central role in synthetic chemistry and chemical biology. A general tool for conjugate addition reactions should provide high selectivity in the presence of competing nucleophilic functional groups, namely nitrogen nucleophiles. We report CO2-mediated chemoselective S-Michael addition reactions where CO2 can reversibly control the reaction pHs, thus providing practical reaction conditions. The increased chemoselectivity for sulphur-alkylation products was ascribed to CO2 as a temporary and traceless protecting group for nitrogen nucleophiles, while CO2 efficiently provide higher conversion and selectivity sulphur nucleophiles on peptides and human serum albumin (HSA) with various electrophiles. This method offers simple reaction conditions for cysteine modification reactions when high chemoselectivity is required.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Niklas Henrik Fischer
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Gul Barg Hadaf
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Jian Liu
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Theis Brock-Nannestad
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark.
| | - Frederik Diness
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| | - Ji-Woong Lee
- Department of Chemistry, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark. .,Nanoscience Center, University of Copenhagen Universitetsparken 5, Copenhagen Ø, 2100, Denmark
| |
Collapse
|
14
|
Gao W, Hu H, Dai L, He M, Yuan H, Zhang H, Liao J, Wen B, Li Y, Palmisano M, Traore MDM, Zhou S, Sun D. Structure‒tissue exposure/selectivity relationship (STR) correlates with clinical efficacy/safety. Acta Pharm Sin B 2022; 12:2462-2478. [PMID: 35646532 PMCID: PMC9136610 DOI: 10.1016/j.apsb.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/23/2022] [Accepted: 02/12/2022] [Indexed: 11/17/2022] Open
Abstract
Drug optimization, which improves drug potency/specificity by structure‒activity relationship (SAR) and drug-like properties, is rigorously performed to select drug candidates for clinical trials. However, the current drug optimization may overlook the structure‒tissue exposure/selectivity-relationship (STR) in disease-targeted tissues vs. normal tissues, which may mislead the drug candidate selection and impact the balance of clinical efficacy/toxicity. In this study, we investigated the STR in correlation with observed clinical efficacy/toxicity using seven selective estrogen receptor modulators (SERMs) that have similar structures, same molecular target, and similar/different pharmacokinetics. The results showed that drug's plasma exposure was not correlated with drug's exposures in the target tissues (tumor, fat pad, bone, uterus), while tissue exposure/selectivity of SERMs was correlated with clinical efficacy/safety. Slight structure modifications of four SERMs did not change drug's plasma exposure but altered drug's tissue exposure/selectivity. Seven SERMs with high protein binding showed higher accumulation in tumors compared to surrounding normal tissues, which is likely due to tumor EPR effect of protein-bound drugs. These suggest that STR alters drug's tissue exposure/selectivity in disease-targeted tissues vs. normal tissues impacting clinical efficacy/toxicity. Drug optimization needs to balance the SAR and STR in selecting drug candidate for clinical trial to improve success of clinical drug development.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lipeng Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Miao He
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hebao Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jinhui Liao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yan Li
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Maria Palmisano
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Mohamed Dit Mady Traore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Simon Zhou
- Translational Development and Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ 07920, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Lee WT, Yoon J, Kim SS, Kim H, Nguyen NT, Le XT, Lee ES, Oh KT, Choi HG, Youn YS. Combined Antitumor Therapy Using In Situ Injectable Hydrogels Formulated with Albumin Nanoparticles Containing Indocyanine Green, Chlorin e6, and Perfluorocarbon in Hypoxic Tumors. Pharmaceutics 2022; 14:pharmaceutics14010148. [PMID: 35057044 PMCID: PMC8781012 DOI: 10.3390/pharmaceutics14010148] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/28/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
Combined therapy using photothermal and photodynamic treatments together with chemotherapeutic agents is considered one of the most synergistic treatment protocols to ablate hypoxic tumors. Herein, we sought to fabricate an in situ-injectable PEG hydrogel system having such multifunctional effects. This PEG hydrogel was prepared with (i) nabTM-technique-based paclitaxel (PTX)-bound albumin nanoparticles with chlorin-e6 (Ce6)-conjugated bovine serum albumin (BSA-Ce6) and indocyanine green (ICG), named ICG/PTX/BSA-Ce6-NPs (~175 nm), and (ii) an albumin-stabilized perfluorocarbon (PFC) nano-emulsion (BSA-PFC-NEs; ~320 nm). This multifunctional PEG hydrogel induced moderate and severe hyperthermia (41−42 °C and >48 °C, respectively) at the target site under two different 808 nm laser irradiation protocols, and also induced efficient singlet oxygen (1O2) generation under 660 nm laser irradiation supplemented by oxygen produced by ultrasound-triggered PFC. Due to such multifunctionality, our PEG hydrogel formula displayed significantly enhanced killing of three-dimensional 4T1 cell spheroids and also suppressed the growth of xenografted 4T1 cell tumors in mice (tumor volume: 47.7 ± 11.6 and 63.4 ± 13.0 mm3 for photothermal and photodynamic treatment, respectively, vs. PBS group (805.9 ± 138.5 mm3), presumably based on sufficient generation of moderate heat as well as 1O2/O2 even under hypoxic conditions. Our PEG hydrogel formula also showed excellent hyperthermal efficacy (>50 °C), ablating the 4T1 tumors when the irradiation duration was extended and output intensity was increased. We expect that our multifunctional PEG hydrogel formula will become a prototype for ablation of otherwise poorly responsive hypoxic tumors.
Collapse
Affiliation(s)
- Woo Tak Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Johyun Yoon
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Sung Soo Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Hanju Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Nguyen Thi Nguyen
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Xuan Thien Le
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
| | - Eun Seong Lee
- Department of Biotechnology and Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si 14662, Gyeonggi-do, Korea;
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea;
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Gyeonggi-do, Korea;
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Gyeonggi-do, Korea; (W.T.L.); (J.Y.); (S.S.K.); (H.K.); (N.T.N.); (X.T.L.)
- Correspondence: ; Tel.: +82-31-290-7785
| |
Collapse
|
16
|
Liu YY, Wang ZK, Yu SB, Liu Y, Wang H, Zhou W, Li ZT, Zhang DW. Conjugating aldoxorubicin to supramolecular organic frameworks: polymeric prodrugs with enhanced therapeutic efficacy and safety. J Mater Chem B 2022; 10:4163-4171. [DOI: 10.1039/d2tb00678b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase I-III clinical studies show that aldoxorubicin (AlDox), a prodrug of doxorubicin (Dox), displays superior cardiotocity over Dox, but does not demonstrate a survival benefit in the entire patients. Here...
Collapse
|
17
|
Mozaffari S, Salehi D, Mahdipoor P, Beuttler R, Tiwari R, Aliabadi HM, Parang K. Design and application of hybrid cyclic-linear peptide-doxorubicin conjugates as a strategy to overcome doxorubicin resistance and toxicity. Eur J Med Chem 2021; 226:113836. [PMID: 34537446 DOI: 10.1016/j.ejmech.2021.113836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/19/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022]
Abstract
Doxorubicin (Dox) is used for breast cancer, leukemia, and lymphoma treatment as an effective chemotherapeutic agent. However, Dox use is restricted due to inherent and acquired resistance and an 8-fold increase in the risk of potentially fatal cardiotoxicity. Hybrid cyclic-linear peptide [R5K]W7A and linear peptide R5KW7A were conjugated with Dox through a glutarate linker to afford [R5K]W7A-Dox and R5KW7A-Dox conjugates to generate Dox derivatives. Alternatively, [R5K]W7C was conjugated with Dox via a disulfide linker to generate [R5K]W7C-S-S-Dox conjugate, where S-S is a disulfide bond. Comparative antiproliferative assays between conjugates [R5K]W7A-Dox, [R5K]W7C-S-S-Dox, linear R5KW7A-Dox, the corresponding physical mixtures of the peptides, and Dox were performed in normal and cancer cells. [R5K]W7A-Dox conjugate was 2-fold more efficient than R5KW7A-Dox, and [R5K]W7C-S-S-Dox conjugates in inhibiting the cell proliferation of human leukemia cells (CCRF-CEM). Therefore, hybrid cyclic-linear [R5K]W7A-Dox conjugate was selected for further studies and inhibited the cell viability of CCRF-CEM (84%), ovarian adenocarcinoma (SK-OV-3, 39%), and gastric carcinoma (AGS, 73%) at a concentration of 5 μM after 72 h of incubation, which was comparable to Dox (5 μM) efficacy (CCRF-CEM (85%), SK-OV-3 (33%), and AGS (87%)). While [R5K]W7A-Dox had a significant effect on the viability of cancer cells, it exhibited minimal cytotoxicity to normal kidney (LLC-PK1, 5-7%) and heart cells (H9C2, <9%) at concentrations of 5-10 μM (compared to free Dox at 5 μM that reduced the viability of kidney and heart cells by 85% and 44%, respectively). The fluorescence microscopy images were consistent with the cytotoxicity studies, indicating minimal uptake of the cyclic-linear [R5K]W7A-Dox (5 μM) in H9C2 cells. In comparison, Dox (5 μM) showed significant uptake, reduced cell viability, and changed the morphology of the cells after 24 h. [R5K]W7A-Dox showed 16-fold and 9.5-fold higher activity against Dox-resistant cells MDA231R and MES-SA/MX2 (lethal dose for 50% cell death or LC50 of 2.3 and 4.3 μM, respectively) compared to free Dox (LC50 of 36-41 μM, respectively). These data, along with the results obtained from the cell viability tests, indicate comparable efficiency of [R5K]W7A-Dox to free Dox in leukemia, ovarian, and gastric cancer cells, significantly reduced toxicity in normal kidney LLC-PK1 and heart H9C2 cells, and significantly higher efficiency in Dox-resistant cells. A number of endocytosis inhibitors did not affect the cellular uptake of [R5K]W7A-Dox.
Collapse
Affiliation(s)
- Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - David Salehi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Parvin Mahdipoor
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Richard Beuttler
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Rakesh Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| | - Hamidreza Montazeri Aliabadi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| |
Collapse
|
18
|
Promoted antitumor therapy on pancreatic cancer by a novel recombinant human albumin-bound miriplatin nanoparticle. Eur J Pharm Sci 2021; 167:106000. [PMID: 34517105 DOI: 10.1016/j.ejps.2021.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/20/2022]
Abstract
Pancreatic cancer is an aggressive and highly lethal disease with a very poor prognosis. Our previous study found miriplatin can inhibit proliferation of various tumor cells, including pancreatic cancer cells. For the chemotherapy of pancreatic cancer, a novel recombinant human serum albumin (rHSA)-bound miriplatin nanoparticles (rHSA-miPt) were constructed by emulsion-diffusion evaporation method. The optimal formulation was composed of 150 mg of rHSA and 30 mg of miriplatin. The key parameters in rHSA-miPt production were 10 min of high-pressure homogenization in a solution with volume ratio of 10:2 of 5% glucose and chloroform. The rHSA-miPt was characterized with a particle size of 61 ± 10 nm, a zeta potential value of -18 ± 5 mV, encapsulation efficiency of 98.4%, drug loading of 16.4%, T1/2 of 13.3 h and Vd of 0.5 L in Sprague Dawley rats. The concentrations of platinum (Pt) in the tumors were 15 and 22-fold higher than those in the blood at 24 and 72 h in tumor-bearing mice, respectively. The internalization of rHSA-miPt through caveolae-dependent pathway. In vitro, the half-maximal inhibitory concentration (IC50) of rHSA-miPt was 12.7 μM vs more than 100 μM of gemcitabine (Gem). The inhibition rate of tumor growth was 76% of rHSA-miPt and 51% of Gem, respectively. Compared with Gem, rHSA-miPt was identified to be safer and less toxic based on body weight loss in mice (0% vs 20%), the survival rate of mice (100% vs 80%) and hematological and biochemical parameters of the mice including leukocytes, lymphocytes, neutrophils, monocytes, serum alanine aminotransferase and aspartate aminotransferase. The present study revealed that rHSA-miPt might be a promising candidate for pancreatic cancer therapy.
Collapse
|
19
|
Yu L, Hua Z, Luo X, Zhao T, Liu Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2021; 1877:188655. [PMID: 34780933 DOI: 10.1016/j.bbcan.2021.188655] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Albumin, as the most abundant plasma protein, plays an integral role in the transport of a variety of exogenous and endogenous ligands in the bloodstream and extravascular spaces. For exogenous drugs, especially chemotherapeutic drugs, binding to and being delivered by albumin can significantly affect their efficacy. Meanwhile, albumin can also bind to many endogenous ligands, such as fatty acids, with important physiological significance that can affect tumor proliferation and metabolism. In this review, we summarize how albumin with unique properties affects chemotherapeutic drugs efficacy from the aspects of drug outcome in blood, toxicity, tumor accumulation and direct or indirect interactions with fatty acids, plus application of albumin-based carriers for anti-tumor drug delivery.
Collapse
Affiliation(s)
- Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
20
|
Kinoshita R, Ishima Y, Chuang VTG, Watanabe H, Shimizu T, Ando H, Okuhira K, Otagiri M, Ishida T, Maruyama T. The Therapeutic Effect of Human Serum Albumin Dimer-Doxorubicin Complex against Human Pancreatic Tumors. Pharmaceutics 2021; 13:pharmaceutics13081209. [PMID: 34452170 PMCID: PMC8402024 DOI: 10.3390/pharmaceutics13081209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 01/14/2023] Open
Abstract
Human serum albumin (HSA) is a versatile drug carrier with active tumor targeting capacity for an antitumor drug delivery system. Nanoparticle albumin-bound (nab)-technology, such as nab-paclitaxel (Abraxane®), has attracted significant interest in drug delivery research. Recently, we demonstrated that HSA dimer (HSA-d) possesses a higher tumor distribution than HSA monomer (HSA-m). Therefore, HSA-d is more suitable as a drug carrier for antitumor therapy and can improve nab technology. This study investigated the efficacy of HSA-d-doxorubicin (HSA-d-DOX) as next-generation nab technology for tumor treatment. DOX conjugated to HSA-d via a tunable pH-sensitive linker for the controlled release of DOX. Lyophilization did not affect the particle size of HSA-d-DOX or the release of DOX. HSA-d-DOX showed significantly higher cytotoxicity than HSA-m-DOX in vitro. In the SUIzo Tumor-2 (SUIT2) human pancreatic tumor subcutaneous inoculation model, HSA-d-DOX could significantly inhibit tumor growth without causing serious side effects, as compared to the HSA binding DOX prodrug, which utilized endogenous HSA as a nano-drug delivery system (DDS) carrier. These results indicate that HSA-d could function as a natural solubilizer of insoluble drugs and an active targeting carrier in intractable tumors with low vascular permeability, such as pancreatic tumors. In conclusion, HSA-d can be an effective drug carrier for the antitumor drug delivery system against human pancreatic tumors.
Collapse
Affiliation(s)
- Ryo Kinoshita
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; (R.K.); (T.S.); (H.A.); (T.I.)
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan;
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; (R.K.); (T.S.); (H.A.); (T.I.)
- Correspondence: (Y.I.); (T.M.); Tel.: +81-88-633-7259 (Y.I.); +81-96-371-4153 (T.M.)
| | - Victor T. G. Chuang
- Faculty of Health Sciences, Curtin Medical School, Curtin University, Perth 6845, Australia;
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan;
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; (R.K.); (T.S.); (H.A.); (T.I.)
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; (R.K.); (T.S.); (H.A.); (T.I.)
| | - Keiichiro Okuhira
- Department of Environment and Health Sciences, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Osaka, Japan;
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan;
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan; (R.K.); (T.S.); (H.A.); (T.I.)
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan;
- Correspondence: (Y.I.); (T.M.); Tel.: +81-88-633-7259 (Y.I.); +81-96-371-4153 (T.M.)
| |
Collapse
|
21
|
Song M, Fu W, Liu Y, Yao H, Zheng K, Liu L, Xue J, Xu P, Chen Y, Huang M, Li J. Unveiling the molecular mechanism of pH-dependent interactions of human serum albumin with chemotherapeutic agent doxorubicin: A combined spectroscopic and constant-pH molecular dynamics study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Höltke C, Grewer M, Stölting M, Geyer C, Wildgruber M, Helfen A. Exploring the Influence of Different Albumin Binders on Molecular Imaging Probe Distribution. Mol Pharm 2021; 18:2574-2585. [PMID: 34048242 DOI: 10.1021/acs.molpharmaceut.1c00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biodistribution of molecular imaging probes or tracers mainly depends on the chemical nature of the probe and the preferred metabolization and excretion routes. Small molecules have rather short half-lives while antibodies reside inside the organism for a longer period of time. An excretion via kidneys and bladder is faster than a mainly hepatobiliary elimination. To manipulate the biodistribution behavior of probes, different strategies have been pursued, including utilizing serum albumin as an inherent transport mechanism for small molecules. Here, we modified an existing small molecular fluorescent probe targeted to the endothelin-A receptor (ETAR) with three different albumin-binding moieties to search for an optimal modification strategy. A diphenylcyclohexyl (DPCH) group, a p-iodophenyl butyric acid (IPBA), and a fatty acid (FA) group were attached via amino acid linkers. All three modifications result in transient albumin binding of the developed compounds, as concluded from gel electrophoresis investigations. Spectrophotometric measurements applying variable amounts of bovine, murine, and human serum albumin (BSA, MSA, and HSA) reveal distinct variations of absorption and emission intensities and shifts of their maximum wavelengths. Binding to MSA results in the weakest effects, while binding to HSA leads to the strongest. Cell-based in vitro investigations utilizing ETAR-positive HT-1080 fibrosarcoma and ETAR-negative BT-20 breast adenocarcinoma cells support a retained specific target-binding capacity of the modified compounds and different degrees of unspecific binding. In vivo analysis of a HT-1080 xenograft model in nude mice over the course of 1 week by fluorescence reflectance imaging illustrates noticeable differences between the four examined probes. While the IPBA-modified probe shows the highest absolute signal intensity values, the FA-modified probe exhibits the most favorable tumor-to-organ ratios. In summary, reversible binding to albumin enhances the biological half-life of the designed probes substantially and enables near infrared optical imaging of subcutaneous tumors for several days in vivo. Because the unmodified probe already exhibits reasonable results, the attachment of albumin-binding moieties does not lead to a substantially improved imaging outcome in terms of target-to-background ratios. On the other hand, because the implemented transient albumin binding results in an overall higher amount of probe inside tumor lesions, this strategy might be adaptable for theranostic or therapeutic approaches in a future clinical routine.
Collapse
Affiliation(s)
- Carsten Höltke
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany
| | - Martin Grewer
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany
| | - Miriam Stölting
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany
| | - Christiane Geyer
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany
| | - Moritz Wildgruber
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany.,Department of Radiology, University Hospital, LMU Munich, 80539 Munich, Germany
| | - Anne Helfen
- Clinic for Radiology, University Hospital Münster, 48149 Münster, Germany
| |
Collapse
|
23
|
Saghaeidehkordi A, Chen S, Yang S, Kaur K. Evaluation of a Keratin 1 Targeting Peptide-Doxorubicin Conjugate in a Mouse Model of Triple-Negative Breast Cancer. Pharmaceutics 2021; 13:661. [PMID: 34063098 PMCID: PMC8148172 DOI: 10.3390/pharmaceutics13050661] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy is the main treatment for triple-negative breast cancer (TNBC), a subtype of breast cancer that is aggressive with a poor prognosis. While chemotherapeutics are potent, these agents lack specificity and are equally toxic to cancer and nonmalignant cells and tissues. Targeted therapies for TNBC treatment could lead to more safe and efficacious drugs. We previously engineered a breast cancer cell targeting peptide 18-4 that specifically binds cell surface receptor keratin 1 (K1) on breast cancer cells. A conjugate of peptide 18-4 and doxorubicin (Dox) containing an acid-sensitive hydrazone linker showed specific toxicity toward TNBC cells. Here, we report the in vivo evaluation of the K1 targeting peptide-Dox conjugate (PDC) in a TNBC cell-derived xenograft mouse model. Mice treated with the conjugate show significantly improved antitumor efficacy and reduced off-target toxicity compared to mice treated with Dox or saline. After six weekly treatments, on day 35, the mice treated with PDC (2.5 mg Dox equivalent/kg) showed significant reduction (1.5 times) in tumor volume compared to mice treated with Dox (2.5 mg/kg). The mice treated with the conjugate showed significantly higher (1.4 times) levels of Dox in tumors and lower (1.3-2.2 times) levels of Dox in other organs compared to mice treated with Dox. Blood collected at 15 min showed 3.6 times higher concentration of the drug (PDC and Dox) in mice injected with PDC compared to the drug (Dox) in mice injected with Dox. The study shows that the K1 targeting PDC is a promising novel modality for treatment of TNBC, with a favorable safety profile, and warrants further investigation of K1 targeting conjugates as TNBC therapeutics.
Collapse
Affiliation(s)
- Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA;
| | - Sun Yang
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618-1908, USA; (A.S.); (S.Y.)
| |
Collapse
|
24
|
Xu ZY, Liu HK, Wu Y, Zhang YC, Zhou W, Wang H, Zhang DW, Ma D, Li ZT. Flexible Organic Framework-Based Anthracycline Prodrugs for Enhanced Tumor Growth Inhibition. ACS APPLIED BIO MATERIALS 2021; 4:4591-4597. [DOI: 10.1021/acsabm.1c00316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zi-Yue Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Hong-Kun Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yun-Chang Zhang
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Da Ma
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
25
|
Esposito TVF, Stütz H, Rodríguez-Rodríguez C, Bergamo M, Charles L, Geczy R, Blackadar C, Kutter JP, Saatchi K, Häfeli UO. Preparation of Heat-Denatured Macroaggregated Albumin for Biomedical Applications Using a Microfluidics Platform. ACS Biomater Sci Eng 2021; 7:2823-2834. [PMID: 33826291 DOI: 10.1021/acsbiomaterials.1c00284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Albumin is widely used in pharmaceutical applications to alter the pharmacokinetic profile, improve efficacy, or decrease the toxicity of active compounds. Various drug delivery systems using albumin have been reported, including microparticles. Macroaggregated albumin (MAA) is one of the more common forms of albumin microparticles, which is predominately used for lung perfusion imaging when labeled with radionuclide technetium-99m (99mTc). These microparticles are formed by heat-denaturing albumin in a bulk solution, making it very challenging to control the size and dispersity of the preparations (coefficient of variation, CV, ∼50%). In this work, we developed an integrated microfluidics platform to create more tunable and precise MAA particles, the so-called microfluidic-MAA (M2A2). The microfluidic chips, prepared using off-stoichiometry thiol-ene chemistry, consist of a flow-focusing region followed by an extended and water-heated curing channel (85 °C). M2A2 particles with diameters between 70 and 300 μm with CVs between 10 and 20% were reliably prepared by adjusting the flow rates of the dispersed and continuous phases. To demonstrate the pharmaceutical utility of M2A2, particles were labeled with indium-111 (111In) and their distribution was assessed in healthy mice using nuclear imaging. 111In-M2A2 behaved similarly to 99mTc-MAA, with lung uptake predominately observed early on followed by clearance over time by the reticuloendothelial and renal systems. Our microfluidic chip represents an elegant and controllable method to prepare albumin microparticles for biomedical applications.
Collapse
Affiliation(s)
- Tullio V F Esposito
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Helene Stütz
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Life Science, IMC University of Applied Sciences, Piaristengasse 1, 3500 Krems, Austria
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Physics and Astronomy, Faculty of Science, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z3, Canada
| | - Marta Bergamo
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lovelyn Charles
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Reka Geczy
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jörg P Kutter
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia V6T 1Z3, Canada.,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
26
|
Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021; 18:1862-1894. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Albumin is an appealing carrier in nanomedicine because of its unique features. First, it is the most abundant protein in plasma, endowing high biocompatibility, biodegradability, nonimmunogenicity, and safety for its clinical application. Second, albumin chemical structure and conformation allows interaction with many different drugs, potentially protecting them from elimination and metabolism in vivo, thus improving their pharmacokinetic properties. Finally, albumin can interact with receptors overexpressed in many diseased tissues and cells, providing a unique feature for active targeting of the disease site without the addition of specific ligands to the nanocarrier. For this reason, albumin, characterized by an extended serum half-life of around 19 days, has the potential of promoting half-life extension and targeted delivery of drugs. Therefore, this article focuses on the importance of albumin as a nanodrug delivery carrier for hydrophobic drugs, taking advantage of the passive as well as active targeting potential of this nanocarrier. Particular attention is paid to the breakthrough NAB-Technology, with emphasis on the advantages of Nab-Paclitaxel (Abraxane), compared to the solvent-based formulations of Paclitaxel, i.e., CrEL-paclitaxel (Taxol) in a clinical setting. Finally, the role of albumin in carrying anticancer compounds is depicted, with a particular focus on the albumin-based formulations that are currently undergoing clinical trials. The article sheds light on the power of an endogenous substance, such as albumin, as a drug delivery system, signifies the importance of the drug vehicle in drug performance in the biological systems, and highlights the possible future trends in the use of this drug delivery system.
Collapse
Affiliation(s)
- Alessandra Spada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jaber Emami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
27
|
Targeting Toxins toward Tumors. Molecules 2021; 26:molecules26051292. [PMID: 33673582 PMCID: PMC7956858 DOI: 10.3390/molecules26051292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Many cancer diseases, e.g., prostate cancer and lung cancer, develop very slowly. Common chemotherapeutics like vincristine, vinblastine and taxol target cancer cells in their proliferating states. In slowly developing cancer diseases only a minor part of the malignant cells will be in a proliferative state, and consequently these drugs will exert a concomitant damage on rapidly proliferating benign tissue as well. A number of toxins possess an ability to kill cells in all states independently of whether they are benign or malignant. Such toxins can only be used as chemotherapeutics if they can be targeted selectively against the tumors. Examples of such toxins are mertansine, calicheamicins and thapsigargins, which all kill cells at low micromolar or nanomolar concentrations. Advanced prodrug concepts enabling targeting of these toxins to cancer tissue comprise antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT), lectin-directed enzyme-activated prodrug therapy (LEAPT), and antibody-drug conjugated therapy (ADC), which will be discussed in the present review. The review also includes recent examples of protease-targeting chimera (PROTAC) for knockdown of receptors essential for development of tumors. In addition, targeting of toxins relying on tumor-overexpressed enzymes with unique substrate specificity will be mentioned.
Collapse
|
28
|
Valdivia G, Alonso-Diez Á, Pérez-Alenza D, Peña L. From Conventional to Precision Therapy in Canine Mammary Cancer: A Comprehensive Review. Front Vet Sci 2021; 8:623800. [PMID: 33681329 PMCID: PMC7925635 DOI: 10.3389/fvets.2021.623800] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Canine mammary tumors (CMTs) are the most common neoplasm in intact female dogs. Canine mammary cancer (CMC) represents 50% of CMTs, and besides surgery, which is the elective treatment, additional targeted and non-targeted therapies could offer benefits in terms of survival to these patients. Also, CMC is considered a good spontaneous intermediate animal model for the research of human breast cancer (HBC), and therefore, the study of new treatments for CMC is a promising field in comparative oncology. Dogs with CMC have a comparable disease, an intact immune system, and a much shorter life span, which allows the achievement of results in a relatively short time. Besides conventional chemotherapy, innovative therapies have a large niche of opportunities. In this article, a comprehensive review of the current research in adjuvant therapies for CMC is conducted to gather available information and evaluate the perspectives. Firstly, updates are provided on the clinical-pathological approach and the use of conventional therapies, to delve later into precision therapies against therapeutic targets such as hormone receptors, tyrosine kinase receptors, p53 tumor suppressor gene, cyclooxygenases, the signaling pathways involved in epithelial-mesenchymal transition, and immunotherapy in different approaches. A comparison of the different investigations on targeted therapies in HBC is also carried out. In the last years, the increasing number of basic research studies of new promising therapeutic agents on CMC cell lines and CMC mouse xenografts is outstanding. As the main conclusion of this review, the lack of effort to bring the in vitro studies into the field of applied clinical research emerges. There is a great need for well-planned large prospective randomized clinical trials in dogs with CMC to obtain valid results for both species, humans and dogs, on the use of new therapies. Following the One Health concept, human and veterinary oncology will have to join forces to take advantage of both the economic and technological resources that are invested in HBC research, together with the innumerable advantages of dogs with CMC as a spontaneous animal model.
Collapse
Affiliation(s)
- Guillermo Valdivia
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Ángela Alonso-Diez
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Dolores Pérez-Alenza
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| | - Laura Peña
- Department Animal Medicine, Surgery and Pathology, Veterinary School, Complutense University of Madrid, Madrid, Spain
- Mammary Oncology Unit, Complutense Veterinary Teaching Hospital, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
29
|
Alas M, Saghaeidehkordi A, Kaur K. Peptide-Drug Conjugates with Different Linkers for Cancer Therapy. J Med Chem 2020; 64:216-232. [PMID: 33382619 DOI: 10.1021/acs.jmedchem.0c01530] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug conjugates are chemotherapeutic or cytotoxic agents covalently linked to targeting ligands such as an antibody or a peptide via a linker. While antibody-drug conjugates (ADCs) are now clinically established for cancer therapy, peptide-drug conjugates (PDCs) are gaining recognition as a new modality for targeted drug delivery with improved efficacy and reduced side effects for cancer treatment. The linker in a drug conjugate plays a key role in the circulation time of the conjugate and release of the drug for full activity at the target site. Herein, we highlight the main linker chemistries utilized in the design of PDCs and discuss representative examples of PDCs with different linker chemistries with the related outcome in cell and animal studies.
Collapse
Affiliation(s)
- Mona Alas
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| | - Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, California 92618-1908, United States
| |
Collapse
|
30
|
Liu X, Mohanty RP, Maier EY, Peng X, Wulfe S, Looney AP, Aung KL, Ghosh D. Controlled loading of albumin-drug conjugates ex vivo for enhanced drug delivery and antitumor efficacy. J Control Release 2020; 328:1-12. [DOI: 10.1016/j.jconrel.2020.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
|
31
|
Mannose-Decorated Dendritic Polyglycerol Nanocarriers Drive Antiparasitic Drugs To Leishmania infantum-Infected Macrophages. Pharmaceutics 2020; 12:pharmaceutics12100915. [PMID: 32987800 PMCID: PMC7598597 DOI: 10.3390/pharmaceutics12100915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are hosts for intracellular pathogens involved in numerous diseases including leishmaniasis. They express surface receptors that may be exploited for specific drug-targeting. Recently, we developed a PEGylated dendritic polyglycerol-based conjugate (PG–PEG) that colocalizes with intracellular parasite. We hereby study the effect of surface decoration with mannose units on the conjugates’ targeting ability toward leishmania intracellular parasites. Murine and human macrophages were exposed to fluorescently labeled mannosylated PG–PEG and uptake was quantified by flow cytometry analysis. Nanocarriers bearing five mannose units showed the highest uptake, which varied between 30 and 88% in the population in human and murine macrophages, respectively. The uptake was found to be dependent on phagocytosis and pinocytosis (80%), as well as clathrin-mediated endocytosis (79%). Confocal microscopy showed that mannosylated PG–PEGs target acidic compartments in macrophages. In addition, when both murine and human macrophages were infected and treated, colocalization between parasites and mannosylated nanoconjugates was observed. Leishmania-infected bone marrow-derived macrophages (BMM) showed avidity by mannosylated PG–PEG whereas non-infected macrophages rarely accumulated conjugates. Moreover, the antileishmanial activity of Amphotericin B was kept upon conjugation to mannosylated PG–PEG through a pH-labile linker. This study demonstrates that leishmania infected macrophages are selectively targeted by mannosylated PEGylated dendritic conjugates.
Collapse
|
32
|
Leboffe L, di Masi A, Polticelli F, Trezza V, Ascenzi P. Structural Basis of Drug Recognition by Human Serum Albumin. Curr Med Chem 2020; 27:4907-4931. [DOI: 10.2174/0929867326666190320105316] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
Background:
Human serum albumin (HSA), the most abundant protein in plasma,
is a monomeric multi-domain macromolecule with at least nine binding sites for endogenous
and exogenous ligands. HSA displays an extraordinary ligand binding capacity as a depot and
carrier for many compounds including most acidic drugs. Consequently, HSA has the potential
to influence the pharmacokinetics and pharmacodynamics of drugs.
Objective:
In this review, the structural determinants of drug binding to the multiple sites of
HSA are analyzed and discussed in detail. Moreover, insight into the allosteric and competitive
mechanisms underpinning drug recognition, delivery, and efficacy are analyzed and discussed.
Conclusion:
As several factors can modulate drug binding to HSA (e.g., concurrent administration
of drugs competing for the same binding site, ligand binding to allosteric-coupled
clefts, genetic inherited diseases, and post-translational modifications), ligand binding to HSA
is relevant not only under physiological conditions, but also in the pharmacological therapy
management.
Collapse
Affiliation(s)
- Loris Leboffe
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Fabio Polticelli
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Viviana Trezza
- Department of Sciences, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, I- 00146 Roma, Italy
| |
Collapse
|
33
|
Liu H, Quan Y, Jiang X, Zhao X, Zhou Y, Fu J, Du L, Zhao X, Zhao J, Liang L, Yi D, Huang Y, Ye G. Using Polypeptide Bearing Furan Side Chains as a General Platform to Achieve Highly Effective Preparation of Smart Glycopolypeptide Analogue-Based Nano-Prodrugs for Cancer Treatment. Colloids Surf B Biointerfaces 2020; 194:111165. [PMID: 32521460 DOI: 10.1016/j.colsurfb.2020.111165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
Although several synthetic polypeptide-based nano-prodrugs (NPDs) have entered clinical trials for cancer treatment, achieving a highly effective production of the NPDs for clinical translation remains a challenge. Herein, we develop a typical preparation of pH/glutathione (GSH) dual-responsive glycopolypeptide analogue NPDs having a high drug capsulation/loading efficiency of ca. 93% and ca. 27% even based on ring-opening polymerization (ROP) of a novel and general furan-containing N-carboxyanhydride (NCA) monomer, which facilitates the Diels-Alder (D-A) side-chain functionalization by maleimide modified chemotherapy drug without using any reactive additives. High reactivity of the D-A reaction resulting in the high preparation efficiency of the NPDs is confirmed by 1H NMR and density functional theory (DFT) calculations. The self-assembled properties as well as the dual-responsiveness of the NPDs are systemically studied by particle size and zeta potential assay, transmission electron microscopy and drug-delivery dynamics. The cell uptake mechanism, intracellular drug distribution, in vitro/vivo antitumor activity evaluations and the main organ damages of the NPDs are all investigated. Our work can provide a good solution to solve the inefficient fabrication of the smart synthetic polypeptide-based micelles for cancer treatment by following this general and sophisticated platform.
Collapse
Affiliation(s)
- Houhe Liu
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yusi Quan
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xinlin Jiang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaotian Zhao
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Zhou
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jijun Fu
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lingran Du
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoya Zhao
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Zhao
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lu Liang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China
| | - Di Yi
- Department of Pathology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yugang Huang
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Ye
- The Fifth Affiliated Hospital & School of Pharmaceutical Sciences & Key Lab of Molecular Target and Clinical Pharmacology of Guangdong Province, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
34
|
Nagel G, Sousa-Herves A, Wedepohl S, Calderón M. Matrix Metalloproteinase-sensitive Multistage Nanogels Promote Drug Transport in 3D Tumor Model. Theranostics 2020; 10:91-108. [PMID: 31903108 PMCID: PMC6929628 DOI: 10.7150/thno.34851] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022] Open
Abstract
Physiological barriers inside of tumor tissue often result in poor interstitial penetration and heterogeneous intratumoral distribution of nanoparticle-based drug delivery systems (DDS). Novel, matrix metalloproteinase (MMP)-sensitive peptide-crosslinked nanogels (pNGs) as multistage DDS are reported with a beneficial size reduction property to promote the process of deep tissue penetration. Methods: The presented pNGs are based on a dendritic polyglycerol (dPG) scaffold crosslinked by a modified MMP-sensitive fluorogenic peptide. The crosslinker integrates degradability in response to proteases present in the tumor microenvironment. Surfactant-free, inverse nanoprecipitation is employed to prepare the nanogels using strain-promoted click chemistry. The size and crosslinking density of the pNGs are controlled by the functionalization degree of dPG with cyclooctyne groups and by the peptide crosslinker fraction. The intrinsic reporter moiety of the crosslinker was used to study the influence of pNG compositions on the degradation profile. The therapeutic drug Doxorubicin was conjugated through a pH-sensitive linkage to dPG to form a multistage DDS. The penetration behavior of the pNGs was studied using agarose matrix and multicellular tumor spheroids (MCTS). Results: Nanogel sizes were controlled in the range of 150-650 nm with narrow size distributions and varying degrees of crosslinking. The pNGs showed stability in PBS and cell media but were readily degraded in the presence of MMP-7. The crosslinking density influenced the degradation kinetic mediated by MMP-7 or cells. Stable conjugation of DOX at physiological pH and controlled drug release at acidic pH were observed. The digestions of nanogels lead to a size reduction to polymer-drug fragments which efficiently penetrated into agarose gels. Moreover, the degradable multistage pNGs demonstrated deeper penetration into MCTS as compared to their non-degradable counterparts. Thus, degradable pNGs were able to deliver their cargo and efficiently reduce the cell viability in MCTS. Conclusion: The triggered size reduction of the pNGs by enzymatic degradation can facilitate the infiltration of the nanocarrier into dense tissue, and thereby promote the delivery of its cargo.
Collapse
Affiliation(s)
- Gregor Nagel
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Ana Sousa-Herves
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Stefanie Wedepohl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
| | - Marcelo Calderón
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany
- POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
35
|
Ziaei E, Saghaeidehkordi A, Dill C, Maslennikov I, Chen S, Kaur K. Targeting Triple Negative Breast Cancer Cells with Novel Cytotoxic Peptide-Doxorubicin Conjugates. Bioconjug Chem 2019; 30:3098-3106. [PMID: 31715102 DOI: 10.1021/acs.bioconjchem.9b00755] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, we have designed and synthesized two novel peptide-drug conjugates (PDCs) where the drug, doxorubicin (Dox), is linked to the peptide via a succinimidyl thioether bond or a hydrazone linker. A highly specific and proteolytically stable breast cancer cell targeting peptide (WxEAAYQrFL) is conjugated to Dox to synthesize peptide-Dox thioether (1) or hydrazone (2) conjugate. The evaluation of the stability in water, media, and human serum showed that the conjugate 1 with the succinimidyl thioether linkage is more stable compared to the acid-sensitive hydrazone containing conjugate 2. The cytotoxicity studies showed that the two PDCs were as toxic as free Dox toward the triple negative breast cancer (TNBC) cells and were 7-30 times less toxic (IC50 1.2-4.7 μM for TNBC cells versus 15-39 μM for noncancerous cells) toward the noncancerous breast cells compared to the free doxorubicin (IC50 0.35-1.5 μM for TNBC cells versus 0.24 μM for noncancerous cells). The results from the comparative study of the two PDCs suggest that both may have translational potential for TNBC treatment.
Collapse
Affiliation(s)
- Elmira Ziaei
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Azam Saghaeidehkordi
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Cassandra Dill
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Innokentiy Maslennikov
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| | - Shiuan Chen
- Department of Cancer Biology , Beckman Research Institute of the City of Hope , Duarte , California 91010 , United States
| | - Kamaljit Kaur
- Chapman University School of Pharmacy (CUSP), Harry and Diane Rinker Health Science Campus , Chapman University , Irvine , California 92618-1908 , United States
| |
Collapse
|
36
|
Aldoxorubicin-loaded nanofibers are cytotoxic for canine mammary carcinoma and osteosarcoma cell lines in vitro: A short communication. Res Vet Sci 2019; 128:86-89. [PMID: 31760317 DOI: 10.1016/j.rvsc.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/01/2019] [Accepted: 11/12/2019] [Indexed: 02/04/2023]
Abstract
Chemotherapeutic drugs are given parenterally to treat various canine tumors. A limitation of parenteral administration is low drug penetration into the tumor, which reduces tumoricidal activity. Various drug carriers have been used to enhance tumor delivery, including albumin, liposomes and nanoparticles. A novel peptide-based nanofiber precursor (NFP) has been developed that is designed to take advantage of the leaky tumor neovasculature to promote drug delivery after parenteral administration. In this study, we loaded aldoxorubicin, an albumin-bound prodrug version of doxorubicin, onto NFP and tested the in vitro cytotoxicity in canine mammary carcinoma (CMT12, CMT25) and osteosarcoma (HMPOS, D-17, Abrams) cell lines. The half maximal inhibitory concentration (IC50) was determined with a luminescence-based cell viability assay. The IC50 for aldoxorubicin-loaded NFP was lower than free aldoxorubicin or doxorubicin in all cell lines, whereas non-drug loaded NFP had no cytotoxic effects. There were differences in IC50 between the osteosarcoma lines, with lower and higher IC50 for HMPOS and D-17 cells, respectively, with all drugs (aldoxorubicin-loaded NFP, free aldoxorubicin or free doxorubicin). Our results indicate that drug-loaded NFPs are cytotoxic for various canine mammary carcinoma and osteosarcoma cell lines in vitro and hold promise as a mechanism for enhancing delivery of chemotherapeutic agents to canine tumors.
Collapse
|
37
|
Delahousse J, Skarbek C, Paci A. Prodrugs as drug delivery system in oncology. Cancer Chemother Pharmacol 2019; 84:937-958. [DOI: 10.1007/s00280-019-03906-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/05/2019] [Indexed: 02/07/2023]
|
38
|
Zou L, Braegelman AS, Webber MJ. Spatially Defined Drug Targeting by in Situ Host-Guest Chemistry in a Living Animal. ACS CENTRAL SCIENCE 2019; 5:1035-1043. [PMID: 31263763 PMCID: PMC6598162 DOI: 10.1021/acscentsci.9b00195] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 05/31/2023]
Abstract
Ensuring effective drug concentration specifically at sites of need, while limiting systemic side effects, remains a challenge in the discovery and use of new drug molecules. Carriers targeted through biological affinity (e.g., antibodies) afford a common means of drug localization, yet often deliver considerably less than 1% of an administered drug to a desired site in the body. We report on an alternative targeting paradigm using pendant guest motifs to direct molecules to sites distinguished by a hydrogel bearing a high density of a complementary cucurbituril supramolecular host. Host-guest affinity (K eq) of 1012 M-1 serves to spatially localize ∼4% of a model small molecule within hours of its administration in mice. These high-affinity interactions furthermore ensure long-lasting retention of the model compound at the site of interest, and the site can be serially targeted upon repeated dosing. This supramolecular homing axis extends the localization of small molecule payloads beyond injectable hydrogels, enabling targeting of modified biomaterials. This approach also has promising therapeutic utility, improving efficacy of a guest-modified chemotherapeutic agent in a tumor model.
Collapse
Affiliation(s)
- Lei Zou
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana, United States
| | - Adam S. Braegelman
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana, United States
| | - Matthew J. Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana, United States
| |
Collapse
|
39
|
Moya C, Escudero R, Malaspina DC, de la Mata M, Hernández-Saz J, Faraudo J, Roig A. Insights into Preformed Human Serum Albumin Corona on Iron Oxide Nanoparticles: Structure, Effect of Particle Size, Impact on MRI Efficiency, and Metabolization. ACS APPLIED BIO MATERIALS 2019; 2:3084-3094. [DOI: 10.1021/acsabm.9b00386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Carlos Moya
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Remei Escudero
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - David C. Malaspina
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Maria de la Mata
- Departamento de Ciencia de los Materiales e Ing. Met. y Q. I. IMEYMAT, Universidad de Cádiz, Campus
Río San Pedro, Puerto Real 11510, Spain
| | - Jesús Hernández-Saz
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Universidad de Sevilla, Sevilla 41092, Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Anna Roig
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| |
Collapse
|
40
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
41
|
Yousefpour P, Ahn L, Tewksbury J, Saha S, Costa SA, Bellucci JJ, Li X, Chilkoti A. Conjugate of Doxorubicin to Albumin-Binding Peptide Outperforms Aldoxorubicin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804452. [PMID: 30756483 PMCID: PMC8114561 DOI: 10.1002/smll.201804452] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/11/2019] [Indexed: 05/21/2023]
Abstract
Short circulation time and off-target toxicity are the main challenges faced by small-molecule chemotherapeutics. To overcome these shortcomings, an albumin-binding peptide conjugate of chemotherapeutics is developed that binds specifically to endogenous albumin and harnesses its favorable pharmacokinetics and pharmacodynamics for drug delivery to tumors. A protein-G-derived albumin-binding domain (ABD) is conjugated with doxorubicin (Dox) via a pH-sensitive linker. One to two Dox molecules are conjugated to ABD without loss of aqueous solubility. The albumin-binding ABD-Dox conjugate exhibits nanomolar affinity for human and mouse albumin, and upon administration in mice, shows a plasma half-life of 29.4 h, which is close to that of mouse albumin. Additionally, 2 h after administration, ABD-Dox exhibits an approximately 4-fold higher concentration in the tumor than free Dox. Free Dox clears quickly from the tumor, while ABD-Dox maintains a steady concentration in the tumor for at least 72 h, so that its relative accumulation at 72 h is ≈120-fold greater than that of free Dox. The improved pharmacokinetics and biodistribution of ABD-Dox result in enhanced therapeutic efficacy in syngeneic C26 colon carcinoma and MIA PaCa-2 pancreatic tumor xenografts, compared with free Dox and aldoxorubicin, an albumin-reactive Dox prodrug currently in clinical development.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Lucie Ahn
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joel Tewksbury
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Soumen Saha
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Simone A Costa
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Joseph J Bellucci
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
42
|
Daum S, Magnusson JP, Pes L, Garcia Fernandez J, Chercheja S, Medda F, Nollmann FI, Koester SD, Perez Galan P, Warnecke A, Abu Ajaj K, Kratz F. Development of a Novel Imaging Agent for Determining Albumin Uptake in Solid Tumors. Nucl Med Mol Imaging 2019; 53:189-198. [PMID: 31231439 DOI: 10.1007/s13139-019-00587-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose The purpose of this study was to investigate the albumin-binding compound 111In-C4-DTPA as an imaging agent for the detection of endogenous albumin accumulation in tumors. Methods 111In-C4-DTPA was injected in healthy nude mice for pharmacokinetic and biodistribution studies (10 min, 1, 6, 24, and 48 h, n = 4) and subsequently in tumor-bearing mice for single-photon emission computed tomography/X-ray-computed tomography (SPECT/CT) imaging studies. Four different human tumor xenograft models (LXFL529, OVXF899, MAXFTN401, and CXF2081) were implanted subcutaneously unilaterally or bilaterally (n = 4-8). After intravenous administration of 111In-C4-DTPA, SPECT/CT images were collected over 72 h at 4-6 time points. Additionally, gamma counting was performed for the blood, plasma, lungs, heart, liver, spleen, kidneys, muscle, and tumors at 72 h post-injection. Results 111In-C4-DTPA bound rapidly to circulating albumin upon injection, and the radiolabeled albumin conjugate thus formed was stable in murine and human serum. SPECT/CT images demonstrated a time-dependent uptake with a maximum of 2.7-3.8% ID/cm3 in the tumors at approximately 24 h post-injection and mean tumor/muscle ratios in the range of 3.2-6.2 between 24 and 72 h post-injection. The kidneys and bladder were the predominant elimination organs. Gamma counting at 72 h post-injection showed 1.3-2.5% ID/g in the tumors and mean tumor/muscle ratios in the range of 4.9-9.4. Conclusion 111In-C4-DTPA bound rapidly to circulating albumin upon injection and showed time-dependent uptake in the tumors demonstrating a potential for clinical application as a companion imaging diagnostic for albumin-binding anticancer drugs.
Collapse
Affiliation(s)
- S Daum
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - J P Magnusson
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - L Pes
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - J Garcia Fernandez
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - S Chercheja
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - F Medda
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - F I Nollmann
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - S D Koester
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - P Perez Galan
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - A Warnecke
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - K Abu Ajaj
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| | - Felix Kratz
- Centurion Biopharma Corporation/CytRx Drug Discovery Branch, Engesserstr. 4, 79108 Freiburg, Germany
| |
Collapse
|
43
|
Najjar A, Karaman R. Successes, failures, and future prospects of prodrugs and their clinical impact. Expert Opin Drug Discov 2019; 14:199-220. [DOI: 10.1080/17460441.2019.1567487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anas Najjar
- Department of Bioorganic & Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Quds University, Jerusalem, Palestine
| | - Rafik Karaman
- Department of Bioorganic & Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Quds University, Jerusalem, Palestine
| |
Collapse
|
44
|
Pes L, Koester SD, Magnusson JP, Chercheja S, Medda F, Abu Ajaj K, Rognan D, Daum S, Nollmann FI, Garcia Fernandez J, Perez Galan P, Walter HK, Warnecke A, Kratz F. Novel auristatin E-based albumin-binding prodrugs with superior anticancer efficacy in vivo compared to the parent compound. J Control Release 2019; 296:81-92. [DOI: 10.1016/j.jconrel.2019.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
|
45
|
Lau J, Jacobson O, Niu G, Lin KS, Bénard F, Chen X. Bench to Bedside: Albumin Binders for Improved Cancer Radioligand Therapies. Bioconjug Chem 2019; 30:487-502. [PMID: 30616340 DOI: 10.1021/acs.bioconjchem.8b00919] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Radioligand therapy (RLT) relies on the use of pharmacophores to selectively deliver ionization energy to cancers to exert its tumoricidal effects. Cancer cells that are not directly targeted by a radioconjugate remain susceptible to RLT because of the crossfire effect. This is significant given the inter- and intra-heterogeneity of tumors. In recent years, reversible albumin binders have been used as simple "add-ons" for radiopharmaceuticals to modify pharmacokinetics and to enhance therapeutic efficacy. In this Review, we discuss recent advances in albumin binder platforms used in RLT, with an emphasis on 4-( p-iodophenyl)butyric acid and Evans blue derivatives. We focus on four biological systems pertinent to oncology that utilize this class of compounds: folate receptor, integrin αvβ3, somatostatin receptor, and prostate-specific membrane antigen. Finally, we offer our perspectives on albumin binders for RLT, highlighting future areas of research that will help propel the technology further for clinical use.
Collapse
Affiliation(s)
- Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Kuo-Shyan Lin
- Department of Molecular Oncology , BC Cancer , Vancouver , British Columbia V5Z 1L3 , Canada
| | - François Bénard
- Department of Molecular Oncology , BC Cancer , Vancouver , British Columbia V5Z 1L3 , Canada
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| |
Collapse
|
46
|
Xi J, Li M, Jing B, An M, Yu C, Pinnock CB, Zhu Y, Lam MT, Liu H. Long-Circulating Amphiphilic Doxorubicin for Tumor Mitochondria-Specific Targeting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43482-43492. [PMID: 30479120 PMCID: PMC6893847 DOI: 10.1021/acsami.8b17399] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mitochondria have emerged as a novel target for cancer chemotherapy primarily due to their central roles in energy metabolism and apoptosis regulation. Here, we report a new molecular approach to achieve high levels of tumor- and mitochondria-selective deliveries of the anticancer drug doxorubicin. This is achieved by molecular engineering, which functionalizes doxorubicin with a hydrophobic lipid tail conjugated by a solubility-promoting poly(ethylene glycol) polymer (amphiphilic doxorubicin or amph-DOX). In vivo, the amphiphile conjugated to doxorubicin exhibits a dual function: (i) it binds avidly to serum albumin and hijacks albumin's circulating and transporting pathways, resulting in prolonged circulation in blood, increased accumulation in tumor, and reduced exposure to the heart; (ii) it also redirects doxorubicin to mitochondria by altering the drug molecule's intracellular sorting and transportation routes. Efficient mitochondrial targeting with amph-DOX causes a significant increase of reactive oxygen species levels in tumor cells, resulting in markedly improved antitumor efficacy than the unmodified doxorubicin. Amphiphilic modification provides a simple strategy to simultaneously increase the efficacy and safety of doxorubicin in cancer chemotherapy.
Collapse
Affiliation(s)
- Jingchao Xi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Meng Li
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Benxin Jing
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Myunggi An
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Chunsong Yu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Cameron B. Pinnock
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Mai T. Lam
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
47
|
Darwish S, Sadeghiani N, Fong S, Mozaffari S, Hamidi P, Withana T, Yang S, Tiwari RK, Parang K. Synthesis and antiproliferative activities of doxorubicin thiol conjugates and doxorubicin-SS-cyclic peptide. Eur J Med Chem 2018; 161:594-606. [PMID: 30396106 DOI: 10.1016/j.ejmech.2018.10.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
Myocardial toxicity and drug resistance caused by drug efflux are major limitations of doxorubicin (Dox)-based chemotherapy. Dox structure modification could be used to develop conjugates with an improved biological profile, such as antiproliferative activity and higher cellular retention. Thus, Dox thiol conjugates, Dox thiol (Dox-SH), thiol-reactive Dox-SS-pyridine (SS = disulfide), and a Dox-SS-cell-penetrating cyclic peptide, Dox-SS-[C(WR)4K], were synthesized. Dox was reacted with Traut's reagent to generate Dox-SH. The thiol group was activated by the reaction with dithiodipyridine to afford the corresponding Dox-SS-Pyridine (Dox-SS-Pyr). A cyclic cell-penetrating peptide containing a cysteine residue [C(WR)4K] was prepared using Fmoc solid-phase strategy. Dox-SS-Py was reacted with the free sulfhydryl of cysteine in [C(WR)4K] to generate Dox-SS-[C(WR)4K] as a Dox-cyclic peptide conjugate. Cytotoxicity of the compounds was examined in human embryonic kidney (HEK-293), human ovarian cancer (SKOV-3), human fibrosarcoma (HT-1080), and human leukemia (CCRF-CEM) cells. Dox-SH and Dox-SS-pyridine were found to have significantly higher or comparable cytotoxicity when compared to Dox in HEK-293, HT-1080, and CCRF-CEM cells after 24 h and 72 incubation, presumably because of higher activity and retention of the compounds in these cells. Furthermore, Dox-SS-[C(WR)4K] showed significantly higher cytotoxic activity in HEK-293, HT-1080, and SKOV-3 cells when compared with Dox after 72 h incubation. Dox-SS-Pyr exhibited higher cellular uptake than Dox-SS-[C(WR)4K] in HT-1080 and HEK-293 cells as shown by flow cytometry. Fluorescence microscopy exhibited that Dox-SS-Pyr, Dox-SH, and Dox-SS-[C(WR)4K] localized in the nucleus as shown in four cell lines, HT-1080, SKOV-3, MDA-MB-468, and MCF-7. Of note, Dox-SS-[C(WR)4K] was significantly less toxic in mouse myoblast cells compared to Dox at the same concentration. Further mechanistic study demonstrated that the level of intracellular reactive oxygen species (ROS) in myoblast cells exposed to Dox-SS-[C(WR)4K] was reduced in comparison of Dox when co-treated with FeCl2. These data indicate that Dox-SH, Dox-SS-Pyr, and Dox-SS-[C(WR)4K] have the potential to be further examined as Dox alternatives and anticancer agents.
Collapse
Affiliation(s)
- Shaban Darwish
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States; Organometallic and Organometalloid Chemistry Department, National Research Centre, El Bohouth st, Dokki, Giza, Egypt
| | - Neda Sadeghiani
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Shirley Fong
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Parinaz Hamidi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Thimanthi Withana
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Sun Yang
- Department of Pharmacy Practice, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States.
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, United States.
| |
Collapse
|
48
|
Gao J, Jiang S, Zhang X, Fu Y, Liu Z. Preparation, characterization and in vitro activity of a docetaxel-albumin conjugate. Bioorg Chem 2018; 83:154-160. [PMID: 30366315 DOI: 10.1016/j.bioorg.2018.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022]
Abstract
Docetaxel is one of the most effective anticancer drugs. However, the current formulation of docetaxel contains Tween 80 and ethanol as the solvent, which can cause severe side effects. Consequently, the development of new type of formulation of docetaxel with high efficiency and low side effects is a very important issue. In this study, we explored the covalent linking of docetaxel and albumin via one organic linker. 6-Maleimidocaproic acid was applied to link the C2' hydroxyl group of docetaxel with the cysteine-34 of albumin to obtain 1:1 docetaxel-albumin conjugate. The synthesized conjugate can control the release of docetaxel in the bovine serum. Furthermore, in vitro cell cytotoxicity experiments indicated that the docetaxel-albumin conjugate have high activities for human prostate cancer cell line PC3 and human breast cancer cell line MCF-7. The present study provides a valuable strategy for further development of a new type of docetaxel-albumin prodrug.
Collapse
Affiliation(s)
- Jing Gao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China; State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, People's Republic of China
| | - Shougang Jiang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China; State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, People's Republic of China
| | - Xuewei Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China; State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, People's Republic of China
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China; State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, People's Republic of China
| | - Zhiguo Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, People's Republic of China; State Engineering Laboratory of Bio-Resource Eco-Utilization, Harbin 150040, People's Republic of China.
| |
Collapse
|
49
|
Seetharam M, Kolla KR, Ganjoo KN. Aldoxorubicin therapy for the treatment of patients with advanced soft tissue sarcoma. Future Oncol 2018; 14:2323-2333. [DOI: 10.2217/fon-2018-0047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Soft tissue sarcomas are a group of rare tumors of mesenchymal origin, and account for less than 1% of all cancers. The most commonly used drug for the treatment of soft tissue sarcoma is anthracycline chemotherapeutic agent, doxorubicin. The major limitation for doxorubicin is cardiotoxicity. Hence, to overcome this limitation and to increase efficacy, aldoxorubicin was developed, which has demonstrated activity in soft tissue sarcomas without much cardiotoxicity. In this review article, we discuss mechanism of action, pharmacokinetics, preclinical studies, clinical trial data and safety profile of aldoxorubicin and its potential applicability in the future of sarcoma treatment.
Collapse
Affiliation(s)
- Mahesh Seetharam
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Kantha R Kolla
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Kristen N Ganjoo
- Department of Medical Oncology, Stanford Cancer Institute, Stanford, CA 94304, USA
| |
Collapse
|
50
|
Gou Y, Zhang Z, Li D, Zhao L, Cai M, Sun Z, Li Y, Zhang Y, Khan H, Sun H, Wang T, Liang H, Yang F. HSA-based multi-target combination therapy: regulating drugs' release from HSA and overcoming single drug resistance in a breast cancer model. Drug Deliv 2018; 25:321-329. [PMID: 29350051 PMCID: PMC6058715 DOI: 10.1080/10717544.2018.1428245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multi-drug delivery systems, which may be promising solution to overcome obstacles, have limited the clinical success of multi-drug combination therapies to treat cancer. To this end, we used three different anticancer agents, Cu(BpT)Br, NAMI-A, and doxorubicin (DOX), to build human serum albumin (HSA)-based multi-drug delivery systems in a breast cancer model to investigate the therapeutic efficacy of overcoming single drug (DOX) resistance to cancer cells in vivo, and to regulate the drugs' release from HSA. The HSA complex structure revealed that NAMI-A and Cu(BpT)Br bind to the IB and IIA sub-domain of HSA by N-donor residue replacing a leaving group and coordinating to their metal centers, respectively. The MALDI-TOF mass spectra demonstrated that one DOX molecule is conjugated with lysine of HSA by a pH-sensitive linker. Furthermore, the release behavior of three agents form HSA can be regulated at different pH levels. Importantly, in vivo results revealed that the HSA-NAMI-A-Cu(BpT)Br-DOX complex not only increases the targeting ability compared with a combination of the three agents (the NAMI-A/Cu(BpT)Br/DOX mixture), but it also overcomes DOX resistance to drug-resistant breast cancer cell lines.
Collapse
Affiliation(s)
- Yi Gou
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China.,b School of Pharmacy , Nantong University , Nantong , Jiangsu , China
| | - Zhenlei Zhang
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Dongyang Li
- c Department of Biology , Southern University of Science and Technology , Shenzhen , Guangdong , China
| | - Lei Zhao
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Meiling Cai
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Zhewen Sun
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Yongping Li
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Yao Zhang
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Hamid Khan
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Hongbing Sun
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China.,d Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Tao Wang
- c Department of Biology , Southern University of Science and Technology , Shenzhen , Guangdong , China
| | - Hong Liang
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| | - Feng Yang
- a State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China , Guangxi Normal University , Guilin , Guangxi , China
| |
Collapse
|