1
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
2
|
Singla R, Gupta C, Gill GS, Jain N, Arora S, Algarni YA, Kader MA, Cicciù M, Minervini G. Effect of Curcuma longa (Turmeric), as an intra-canal medicament, on inter-appointment endodontic pain in patients with symptomatic irreversible pulpitis: A randomized controlled clinical trial. Heliyon 2024; 10:e33797. [PMID: 39104477 PMCID: PMC11298830 DOI: 10.1016/j.heliyon.2024.e33797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
Inter-appointment pain (IAP) is a subtype of postoperative pain which occurs between endodontic appointments. It may begin within a few hours after the first appointment and may continue for several days. Apart from mechanical instrumentation and thorough irrigation, intracanal medicaments play a central role in the disinfection of root canals and thus decreasing IAP. The aim of this study was to evaluate the effect of Curcuma Longa as an intracanal medicament on IAP in patients with symptomatic irreversible pulpitis (SIP). One hundred healthy adult patients having SIP in one of their single-rooted maxillary or mandibular teeth participated in this randomized, parallel, single-blinded clinical trial. After thorough biomechanical preparation, the root canals were randomly medicated with one of the following medicaments, Control (no medicament), Calcium Hydroxide, triple antibiotic paste (TAP), and Curcuma Longa. The pain was recorded using Visual analog scale at 4 h, 24 h, and every day until the seventh day. Data were analyzed using Kruskal-Wallis, Mann-Whitney U, and Wilcoxon signed-rank tests. No statistical difference in pain scores was observed between Calcium Hydroxide, TAP or Curcuma Longa groups. It can be concluded that Curcuma Longa, Calcium hydroxide, and TAP are equally effective in controlling IAP.
Collapse
Affiliation(s)
- Rakesh Singla
- Department of Conservative Dentistry & Endodontics, JCD Dental College, Sirsa, Haryana, India
| | - Charu Gupta
- Health Department, Government of Haryana, India
| | - Gurdeep Singh Gill
- Department of Conservative Dentistry & Endodontics, JCD Dental College, Sirsa, Haryana, India
| | - Namita Jain
- Department of Conservative Dentistry & Endodontics, JCD Dental College, Sirsa, Haryana, India
| | - Suraj Arora
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, 61321, Saudi Arabia
| | - Youssef A. Algarni
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, 61321, Saudi Arabia
| | - Mohammed Abdul Kader
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Abha, 61321, Saudi Arabia
| | - Marco Cicciù
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, 95123, Catania, Italy
| | - Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| |
Collapse
|
3
|
Aslan M, Gül M, Üremiş N, Akbulut S, Gürünlüoğlu S, Nur Özsoy E, Türköz Y, Ateş H, Akpinar N, Gül S, Gürünlüoğlu K, Demircan M. Ninety Sixth-Hour Impact of Scalding Burns on End Organ Damage, Systemic Oxidative Stress, and Wound Healing in Rats Treated With Three Different Types of Dressings. J Burn Care Res 2024; 45:733-743. [PMID: 38079377 DOI: 10.1093/jbcr/irad191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
In this study, we investigated the effects of 3 different burn dressing treatments, including experimental, silver, and modern dressing materials, on systemic oxidative stress in rats with severe scald burns within the first 96 h. The rats were divided into five groups: a burn group (n = 10), a polylactic membrane group (n = 10), a silver sulfadiazine group (n = 10), a curcumin group (n = 10), and a control group (n = 10), consisting of equal numbers of female and male rats. In the first 4 groups, 30% of the rats' total body surface area was scalded at 95°C. The burn group was not treated. Each group was treated with group-name dressing material. The control group was neither treated nor burned. The rats were sacrificed, and blood and tissue samples were obtained at the 96th hour when severe effects of oxidative stress developed postburns. Systemic inflammatory biomarkers and oxidative stress parameters were examined. In addition, apoptosis and organ damage in liver, kidney, lung, and skin tissues were evaluated biochemically and histopathologically. When the parameters were statistically analyzed, we found that the systemic levels of oxidative stress and inflammatory damage to liver, kidney, and lung tissues were lower in the 3 treated groups than in the burn group. We believe that the dressing material's efficacy in the treatment of severe burns may be dependent on its ability to combat oxidative stress and inflammation.
Collapse
Affiliation(s)
- Mehmet Aslan
- Department of Pediatrics, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Mehmet Gül
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Nuray Üremiş
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Sami Akbulut
- Department of General Surgery, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Semra Gürünlüoğlu
- Department of Pathology, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Eda Nur Özsoy
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Yusuf Türköz
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Hasan Ateş
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Necmettin Akpinar
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Semir Gül
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Kubilay Gürünlüoğlu
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| | - Mehmet Demircan
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Faculty of Medicine, Inonu University, Malatya 44280, Turkiye
| |
Collapse
|
4
|
dos Santos M, de Campos ECR, Gonçalves R, Koga AY, Kono PA, Salina MVJ, Dalazoana E, Toledo ADO, Lipinski LC. Effects of curcumin supplementation on abdominal surgical wound healing. Acta Cir Bras 2024; 39:e392124. [PMID: 38629652 PMCID: PMC11020632 DOI: 10.1590/acb392124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/10/2024] [Indexed: 04/19/2024] Open
Abstract
PURPOSE To evaluate the effects of curcumin supplementation on abdominal surgical wound healing in rats using clinical, histological, and hematological parameters. METHODS Forty Wistar rats were randomly divided into two groups: the curcumin group, and the control group. The curcumin group received, in addition to water and standard feed, curcumin via gavage at the dose of 200 mg/kg for seven days preceding and seven days following surgery. The control group received only water and standard feed. Both groups underwent median laparotomy and left colotomy. On the eighth postoperative day, the groups were euthanized, and the left colon was resected for histological analysis. RESULTS In the preoperative evaluation, there was a significant decrease in the mean C-reactive protein levels in the curcumin group (0.06) compared to the control group (0.112) (p = 0.0001). In the postoperative wound healing assessment, a significant decrease was observed in inflammatory infiltrate (p = 0.0006) and blood vessel count (p = 0.0002) in the curcumin group compared to the control group. CONCLUSIONS Curcumin supplementation was able to significantly reduce inflammatory parameters in both pre-and post-operative phases of abdominal surgical wounds in rats.
Collapse
Affiliation(s)
| | | | - Rivair Gonçalves
- Universidade Estadual de Ponta Grossa – Departamento de Medicina – Ponta Grossa (PR), Brazil
| | - Adriana Yuriko Koga
- Universidade Estadual de Ponta Grossa – Departamento de Farmácia – Ponta Grossa (PR), Brazil
| | - Pedro Afonso Kono
- Universidade Estadual de Ponta Grossa – Departamento de Medicina – Ponta Grossa (PR), Brazil
| | | | - Elder Dalazoana
- Universidade Estadual de Ponta Grossa – Departamento de Medicina – Ponta Grossa (PR), Brazil
| | | | | |
Collapse
|
5
|
Shahrajabian MH, Sun W. The Golden Spice for Life: Turmeric with the Pharmacological Benefits of Curcuminoids Components, Including Curcumin, Bisdemethoxycurcumin, and Demethoxycurcumins. Curr Org Synth 2024; 21:665-683. [PMID: 37287298 DOI: 10.2174/1570179420666230607124949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Turmeric (Curcuma longa L.), belonging to the Zingiberaceae family, is a perennial rhizomatous plant of tropical and subtropical regions. The three major chemical components responsible for the biological activities of turmeric are curcumin, demethoxycurcumin, and bisdemethoxycurcumin. METHODS The literature search included review articles, analytical studies, randomized control experiments, and observations, which have been gathered from various sources, such as Scopus, Google Scholar, PubMed, and ScienceDirect. A review of the literature was carried out using the keywords: turmeric, traditional Chinese medicine, traditional Iranian medicine, traditional Indian medicine, curcumin, curcuminoids, pharmaceutical benefits, turmerone, demethoxycurcumin, and bisdemethoxycurcumin. The main components of the rhizome of the leaf are α-turmerone, β-turmerone, and arturmerone. RESULTS The notable health benefits of turmeric are antioxidant activity, gastrointestinal effects, anticancer effects, cardiovascular and antidiabetic effects, antimicrobial activity, photoprotector activity, hepatoprotective and renoprotective effects, and appropriate for the treatment of Alzheimer's disease and inflammatory and edematic disorders. DISCUSSION Curcuminoids are phenolic compounds usually used as pigment spices with many health benefits, such as antiviral, antitumour, anti-HIV, anti-inflammatory, antiparasitic, anticancer, and antifungal effects. Curcumin, bisdemethoxycurcumin, and demethoxycurcumin are the major active and stable bioactive constituents of curcuminoids. Curcumin, which is a hydroponic polyphenol, and the main coloring agent in the rhizomes of turmeric, has anti-inflammatory, antioxidant, anti-cancer, and anticarcinogenic activities, as well as beneficial effects for infectious diseases and Alzheimer's disease. Bisdemethoxycurcumin possesses antioxidant, anti-cancer, and anti-metastasis activities. Demethoxycurcumin, which is another major component, has anti-inflammatory, antiproliferative, and anti-cancer activities and is the appropriate candidate for the treatment of Alzheimer's disease. CONCLUSION The goal of this review is to highlight the health benefits of turmeric in both traditional and modern pharmaceutical sciences by considering the important roles of curcuminoids and other major chemical constituents of turmeric.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
6
|
Araújo GDMS, Loureiro AIS, Rodrigues JL, Barros PAB, Halicki PCB, Ramos DF, Marinho MAG, Vaiss DP, Vaz GR, Yurgel VC, Bidone J, Muccillo-Baisch AL, Hort MA, Paulo AMC, Dora CL. Toward a Platform for the Treatment of Burns: An Assessment of Nanoemulsions vs. Nanostructured Lipid Carriers Loaded with Curcumin. Biomedicines 2023; 11:3348. [PMID: 38137569 PMCID: PMC10742090 DOI: 10.3390/biomedicines11123348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Curcumin is a highly promising substance for treating burns, owing to its anti-inflammatory, antioxidant, antimicrobial, and wound-healing properties. However, its therapeutic use is restricted due to its hydrophobic nature and low bioavailability. This study was conducted to address these limitations; it developed and tested two types of lipid nanocarriers, namely nanoemulsions (NE-CUR) and nanostructured lipid carriers (NLC-CUR) loaded with curcumin, and aimed to identify the most suitable nanocarrier for skin burn treatment. The study evaluated various parameters, including physicochemical characteristics, stability, encapsulation efficiency, release, skin permeation, retention, cell viability, and antimicrobial activity. The results showed that both nanocarriers showed adequate size (~200 nm), polydispersity index (~0.25), and zeta potential (~>-20 mV). They also showed good encapsulation efficiency (>90%) and remained stable for 120 days at different temperatures. In the release test, NE-CUR and NCL-CUR released 57.14% and 51.64% of curcumin, respectively, in 72 h. NE-CUR demonstrated better cutaneous permeation/retention in intact or scalded skin epidermis and dermis than NLC-CUR. The cell viability test showed no toxicity after treatment with NE-CUR and NLC-CUR up to 125 μg/mL. Regarding microbial activity assays, free curcumin has activity against P. aeruginosa, reducing bacterial growth by 75% in 3 h. NE-CUR inhibited bacterial growth by 65% after 24 h, and the association with gentamicin had favorable results, while NLC-CUR showed a lower inhibition. The results demonstrated that NE-CUR is probably the most promising nanocarrier for treating burns.
Collapse
Affiliation(s)
| | - Ana Isabel Sá Loureiro
- CEB-Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | | | | | - Daniela Fernandes Ramos
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | | | - Daniela Pastorim Vaiss
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Gustavo Richter Vaz
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Virginia Campello Yurgel
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Juliana Bidone
- Center of Chemical, Pharmaceutical, and Food Sciences, Federal University of Pelotas, Pelotas 96010-610, RS, Brazil
| | - Ana Luiza Muccillo-Baisch
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Mariana Appel Hort
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| | - Artur Manuel Cavaco Paulo
- CEB-Center of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, RS, Brazil
| |
Collapse
|
7
|
de Moraes Soares Araújo G, Lima Rodrigues J, Campello Yurgel V, Silva C, Manuel Cavaco Paulo A, Isabel Saì Loureiro A, Lima Dora C. Designing and characterization of curcumin-loaded nanotechnological dressings: A promising platform for skin burn treatment. Int J Pharm 2023; 635:122712. [PMID: 36803927 DOI: 10.1016/j.ijpharm.2023.122712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Burns affect the skin and appendages, impair their function, and become favorable regions for bacterial infections. Owing to time-consuming and costly treatments, burns have been considered a public health problem. The limitations of the treatments used for burns have motivated the search for more efficient alternatives. Curcumin has several potential properties such as anti-inflammatory, healing, and antimicrobial activities. However, this compound is unstable and has low bioavailability. Therefore, nanotechnology could offer a solution for its application. This study aimed to develop and characterize dressings (or gauzes) impregnated with curcumin nanoemulsions that were prepared using two different techniques as a promising platform for skin burn treatment. In addition, the effect of cationization on curcumin release from the gauze was evaluated. Nanoemulsions were successfully prepared using two methods, ultrasound and a high-pressure homogenizer, with sizes of 135 nm and 144.55 nm, respectively. These nanoemulsions exhibited a low polydispersity index, adequate zeta potential, high encapsulation efficiency, and stability for up to 120 d. In vitro assays demonstrated a controlled release of curcumin between 2 and 240 h. No cytotoxicity was observed at concentrations of curcumin up to 75 µg/mL, and cell proliferation was observed. The incorporation of nanoemulsions in the gauze was successfully achieved, and the evaluation of curcumin release showed a faster release from cationized gauzes, whereas the non-cationized gauze promoted a more constant release.
Collapse
Affiliation(s)
- Gabriela de Moraes Soares Araújo
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Virginia Campello Yurgel
- LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Carla Silva
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Ana Isabel Saì Loureiro
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil.
| |
Collapse
|
8
|
Taleb SAA, Ismail SA, Mohamed M, Mourad RM, El-Hashemy HA. Promising Synthesized Bis (arylmethylidene) acetone -Polymeric PCL Emulsified Nanoparticles with Enhanced Antimicrobial/Antioxidant Efficacy: In-Vitro and In-Vivo Evaluation. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
9
|
Smirnova E, Moniruzzaman M, Chin S, Sureshbabu A, Karthikeyan A, Do K, Min T. A Review of the Role of Curcumin in Metal Induced Toxicity. Antioxidants (Basel) 2023; 12:antiox12020243. [PMID: 36829803 PMCID: PMC9952547 DOI: 10.3390/antiox12020243] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Metal toxicity poses a potential global threat to the environment and living beings. Their numerous agricultural, medical, industrial, domestic, and technological applications result in widespread distribution in the environment which raises concern on the potential effects of metals in terms of health hazards and environmental pollution. Chelation therapy has been the preferred medical treatment for metal poisoning. The chelating agent bounds metal ions to form complex cyclic structures known as 'chelates' to intensify their excretion from the body. The main disadvantage of synthetic chelators is that the chelation process removes vital nutrients along with toxic metals. Natural compounds are widely available, economical, and have minimal adverse effects compared to classical chelators. Herbal preparations can bind to the metal, reduce its absorption in the intestines, and facilitate excretion from the body. Curcumin, a bioactive substance in turmeric, is widely used as a dietary supplement. Most studies have shown that curcumin protects against metal-induced lipid peroxidation and mitigates adverse effects on the antioxidant system. This review article provides an analysis to show that curcumin imparts promising metal toxicity-ameliorative effects that are related to its intrinsic antioxidant activity.
Collapse
Affiliation(s)
- Elena Smirnova
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Mohammad Moniruzzaman
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (M.M.); (T.M.)
| | - Sungyeon Chin
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Anjana Sureshbabu
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Adhimoolam Karthikeyan
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Kyoungtag Do
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
| | - Taesun Min
- Department of Animal Biotechnology, Jeju International Animal Research Center (JIA) & Sustainable Agriculture Research Institute (SARI), Jeju National University, Jeju 63243, Republic of Korea
- Correspondence: (M.M.); (T.M.)
| |
Collapse
|
10
|
Kumari M, Nanda DK. Potential of Curcumin nanoemulsion as antimicrobial and wound healing agent in burn wound infection. Burns 2022:S0305-4179(22)00278-9. [DOI: 10.1016/j.burns.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/29/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
|
11
|
|
12
|
Elyasi S, Rasta S, Taghizadeh-Kermani A, Hosseini S. Topical henna and curcumin (Alpha®) ointment efficacy for prevention of capecitabine induced hand-foot syndrome: A randomized, triple-blinded, placebo-controlled clinical. Daru 2022; 30:117-125. [PMID: 35320555 PMCID: PMC9114202 DOI: 10.1007/s40199-022-00438-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
PURPOSE In this clinical trial, we evaluated Alpha® ointment efficacy in prevention of capecitabine induced hand-foot syndrome (HFS) in patients with gastrointestinal or breast cancers, for the first time. METHODS During this pilot, randomized, triple-blinded, placebo-controlled clinical trial, the effect of Alpha® ointment (Lawsonia inermis 3 g and Curcuma longa 0.15 g/ 30 g) was assessed. It was applied on the palms and the soles, two times daily starting at the first day of chemotherapy for 4 consecutive courses. The severity of HFS was assessed at the end of the chemotherapy courses based on World Health Organization (WHO) scale and scored between 0-4. RESULTS Ninety eligible patients were included randomly in the treatment or placebo group. Median WHO HFS grade was not significantly different between the two groups, during the follow-up period (P > 0.05). In the weekly assessment, the scores increased meaningfully in both the placebo and treatment groups, but there was a delay in HFS occurrence and deterioration in Alpha ointment group based on post hoc analysis. CONCLUSION Administration of Alpha® ointment containing henna and curcumin could not significantly prevent capecitabine induced HFS during 4 courses of treatment, but can somewhat delay its occurrence in patients with gastrointestinal or breast cancer.
Collapse
Affiliation(s)
- Sepideh Elyasi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
- Associate Professor of Clinical Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Rasta
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Radiotherapy Oncologist, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Taghizadeh-Kermani
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Associate Professor of Radio-Oncology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sare Hosseini
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Teoh JH, Tay SM, Fuh J, Wang CH. Fabricating scalable, personalized wound dressings with customizable drug loadings via 3D printing. J Control Release 2021; 341:80-94. [PMID: 34793918 DOI: 10.1016/j.jconrel.2021.11.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022]
Abstract
In recent times, 3D printing has been gaining traction as a fabrication platform for customizable drug dosages as a form of personalized medicine. While this has been recently demonstrated as oral dosages, there is potential to provide the same customizability and personalization as topical applications for wound healing. In this paper, the application of 3D printing to fabricate hydrogel wound dressings with customizable architectures and drug dosages was investigated. Chitosan methacrylate was synthesized and mixed with Lidocaine Hydrochloride and Levofloxacin respectively along with a photoinitiator before being used to print wound dressings of various designs. These designs were then investigated for their effect on drug release rates and profiles. Our results show the ability of 3D printing to customize drug dosages and drug release rates through co-loading different drugs at various positions and varying the thickness of drug-free layers over drug-loaded layers in the wound dressing respectively. Two scale-up approaches were also investigated for their effects on drug release rates from the wound dressing. The influence that each wound dressing design has on the release profile of drugs was also shown by fitting them with drug release kinetic models. This study thus shows the feasibility of utilizing 3D printing to fabricate wound dressings with customizable shapes, drug dosage and drug release rates that can be tuned according to the patient's requirements.
Collapse
Affiliation(s)
- Jia Heng Teoh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Sook Muay Tay
- Department of Surgical Intensive Care, Division of Anaesthesiology and Perioperative Medicine, Singapore General Hospital, Outram Road, 169608, Singapore
| | - Jerry Fuh
- Department of Mechanical Engineering, National University of Singapore, 117575, Singapore
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
14
|
Richard AS, Verma RS. Bioactive nano yarns as surgical sutures for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112334. [PMID: 34474885 DOI: 10.1016/j.msec.2021.112334] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 11/19/2022]
Abstract
Surgical sutures are the most widely used medical device in any surgical procedure worldwide. In this study, modified electrospinning technique has been used as manufacturing technique to produce nanofiber bundles twisted simultaneously to obtain nanofiber yarns. Taking the advantage of nanofiber yarns in terms of biomimetic structure, mechanical strength and handling properties, the material is chosen. Curcumin, a natural compound is incorporated to the nanofiber yarns by blend electrospinning technique for its anti-inflammatory, antibiotic and wound healing properties. The synthesized nanofiber yarns were characterized by various characterization techniques such as XRD, FTIR, SEM, Tensile testing, stem cell interaction, hemocompatibility, bacterial response, drug release profiling and in vivo studies. Curcumin loaded nanofiber yarns demonstrated sustained release with improved antibacterial, antiplatelet, cell migration and stem cell interaction in vitro. The results from skin inflammation animal model revealed that curcumin laden nanofiber yarn suture manifested reduced inflammation and cellularity. The three dimensional structure, adequate mechanical strength and biological properties of the nanofiber yarn provide naive environment for wound healing with the balanced degradation of suture material in rat model.
Collapse
Affiliation(s)
- Arthi Sunil Richard
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Rama Shankar Verma
- Bhupat and Jyoti Mehta School of Biosciences, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
15
|
Effects of Curcumin and Its Different Formulations in Preclinical and Clinical Studies of Peripheral Neuropathic and Postoperative Pain: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22094666. [PMID: 33925121 PMCID: PMC8125634 DOI: 10.3390/ijms22094666] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Lesion or disease of the somatosensory system leads to the development of neuropathic pain. Peripheral neuropathic pain encompasses damage or injury of the peripheral nervous system. On the other hand, 10–15% of individuals suffer from acute postoperative pain followed by persistent pain after undergoing surgeries. Antidepressants, anticonvulsants, baclofen, and clonidine are used to treat peripheral neuropathy, whereas opioids are used to treat postoperative pain. The negative effects associated with these drugs emphasize the search for alternative therapeutics with better efficacy and fewer side effects. Curcumin, a polyphenol isolated from the roots of Curcuma longa, possesses antibacterial, antioxidant, and anti-inflammatory properties. Furthermore, the low bioavailability and fast metabolism of curcumin have led to the advent of various curcumin formulations. The present review provides a comprehensive analysis on the effects of curcumin and its formulations in preclinical and clinical studies of neuropathic and postoperative pain. Based on the positive outcomes from both preclinical and clinical studies, curcumin holds the promise of mitigating or preventing neuropathic and postoperative pain conditions. However, more clinical studies with improved curcumin formulations are required to involve its use as adjuvant to neuropathic and postoperative drugs.
Collapse
|
16
|
Uddin SJ, Hasan MF, Afroz M, Sarker DK, Rouf R, Islam MT, Shilpi JA, Mubarak MS. Curcumin and its Multi-target Function Against Pain and Inflammation: An Update of Pre-clinical Data. Curr Drug Targets 2021; 22:656-671. [PMID: 32981501 DOI: 10.2174/1389450121666200925150022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Pain is an unpleasant sensation that has complex and varying causative etiology. Modern drug discovery focuses on identifying potential molecules that target multiple pathways with a safer profile compared to those with a single target. The current treatment of pain and inflammation with the available therapeutics has a number of major side effects. Pain is one of the major clinical problems that need functional therapeutics which act on multiple targets and with low toxicity. Curcumin, a naturally occurring polyphenolic compound from Curcuma longa, has been used for years in Ayurvedic, Chinese, and in many other systems of traditional medicine. Pre-clinical data published thus far demonstrated that curcumin possesses multi-target biological functions, suggesting its potential use to cure different diseases. However, there is no or very brief systematic review of its potential use in pain and inflammation with underlying mechanisms for such activities. Accordingly, the aim of the current review was to update the pre-clinical data of curcumin and its multiple targeting pathways for analgesic and anti-inflammatory effects, and to further propose a molecular mechanism(s). A literature study was conducted using different known databases, including Pubmed, SciFinder, Google Scholar, and Science Direct. Available pre-clinical data suggest the ameliorating effect of curcumin in pain and inflammation is rendered through the modulation of pain pathways, including inhibition of a number of pro-inflammatory mediators, inhibition of oxidative stress and cyclooxygenase-2 (COX-2), down-regulation of Ca2+/calmodulin-depend protein kinase II (CaMKIIα) and calcium channels like transient receptor potential (TRP), modulation of metabotropic glutamate receptor-2 (mGlu2), modulation of monoamine system, inhibition of JAK2/STAT3 signaling pathway, remodeling of extracellular matrix proteins, inhibition of apoptosis, inhibition of JNK/MAPK and ERK/CREB signaling pathway, and activation of the opioid system. Taken all together, it is evident that curcumin is one of the promising, safe, and natural polyphenolic molecules that target multiple molecular pathways in pain and can be beneficial in the treatment and management of pain and inflammation.
Collapse
Affiliation(s)
- Shaikh Jamal Uddin
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Md Fahim Hasan
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Mohasana Afroz
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Dipto Kumer Sarker
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj (Dhaka)-8100, Bangladesh
| | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science & Technology University, Gopalganj (Dhaka)-8100, Bangladesh
| | - Jamil A Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | | |
Collapse
|
17
|
Siddika A, Arifuzzaman M, Hossain L, Adnan MH, Diba F, Hasan MZ, Asaduzzaman S, Uddin MJ. Assortment of Human Amniotic Membrane and Curcumin: a Potential Therapeutic Strategy for Burn Wound Healing. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999200706013824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Burn wound associated injury management is one of the major unresolved clinical concerns.
Most of the drugs and dressing materials available in the market cause dose escalation and
even exert side effects. Besides, a severe burn injury is susceptible to microbial infection that leads
to the prolonged hospital stay, which ultimately causes a financial crisis to the victims. To get rid of
this problem, researchers are being interested in developing such materials that are cost-effective,
easily available and accelerate faster healing. Human amniotic membrane (AM) and various herbal
extracts like curcumin are a potential source of burn wound healing. AM has various healing properties
and is being used as the best burn wound dressing material for centuries. Similarly, curcumin
has been proven as a faster dressing material for the treatment of burn injury. Since both AM and
curcumin are a potential source of burn and wound healing, if a gel/agent could be formulated by
mixing these two things, this combination may be a potential therapeutic strategy to treat burn
wound healing.
Collapse
Affiliation(s)
- Ayesha Siddika
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Md. Arifuzzaman
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Liakat Hossain
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Md. Hasib Adnan
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Farzana Diba
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Md. Zahid Hasan
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - S.M. Asaduzzaman
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Uttara, Dhaka-1230,Bangladesh
| |
Collapse
|
18
|
Curcumin and Pregnancy Problems: a Narrative Review of Curcumin's Effect on Preeclampsia. JOURNAL OF CLINICAL AND BASIC RESEARCH 2020. [DOI: 10.52547/jcbr.4.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Yoon WY, Lee K, Kim J. Curcumin supplementation and delayed onset muscle soreness (DOMS): effects, mechanisms, and practical considerations. Phys Act Nutr 2020; 24:39-43. [PMID: 33108717 PMCID: PMC7669469 DOI: 10.20463/pan.2020.0020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 01/11/2023] Open
Abstract
[Purpose] In this literature review we aimed to investigate the effects of curcumin supplementation on delayed onset muscle soreness (DOMS), which occurs after exercise, and evaluate related parameters to propose practical recommendations for the field of exercise physiology. [Methods] Experimental studies conducted on curcumin supplementation and DOMS were systematically reviewed to determine (1) the effect of curcumin supplementation on DOMS, (2) potential mechanisms by which curcumin supplementation may attenuate DOMS, and (3) practical considerations for curcumin supplementation. [Results] While several studies have reported that curcumin supplementation attenuates DOMS after exercise, others have reported that curcumin supplementation has no effect on DOMS. Several mechanisms have been proposed by which curcumin supplementation may attenuate DOMS; the most probable of which is a reduction in inflammatory response. Other potential mechanisms include modulation of transient receptor potential vanilloid 1 (TRPV1) or changes in post-exercise capillary lactate levels; these require further examination. The usual recommended dose of curcumin is 150–1500 mg daily (sometimes up to 5 g), divided into 2–3 portions and taken before and after exercise. It is not necessary to take curcumin together with piperine. [Conclusion] Although conflicting results regarding the effects of curcumin supplementation on DOMS exist in literature, it may be considered as a method of nutritional intervention for reducing post-exercise DOMS.
Collapse
Affiliation(s)
- Wan-Young Yoon
- Department of Health Care Exercise, Seowon University, Cheongju, Republic of Korea
| | - Kihyuk Lee
- Department of Sport Culture, Dongguk University, Seoul, Republic of Korea
| | - Jooyoung Kim
- Office of Academic Affairs, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
20
|
Pastrana-Quintos T, Salgado-Moreno G, Pérez-Ramos J, Coen A, Godínez-Chaparro B. Anti-allodynic effect induced by curcumin in neuropathic rat is mediated through the NO-cyclic-GMP-ATP sensitive K + channels pathway. BMC Complement Med Ther 2020; 20:83. [PMID: 32171311 PMCID: PMC7076866 DOI: 10.1186/s12906-020-2867-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/26/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recent studies pointed up that curcumin produces an anti-nociceptive effect in inflammatory and neuropathic pain. However, the possible mechanisms of action that underline the anti-allodynic effect induced by curcumin are not yet established. The purpose of this study was to determine the possible anti-allodynic effect of curcumin in rats with L5-L6 spinal nerve ligation (SNL). Furthermore, we study the possible participation of the NO-cyclic GMP-ATP-sensitive K+ channels pathway in the anti-allodynic effect induced by curcumin. METHODS Tactile allodynia was measured using von Frey filaments by the up-down method in female Wistar rats subjected to SNL model of neuropathic pain. RESULTS Intrathecal and oral administration of curcumin prevented, in a dose-dependent fashion, SNL-induced tactile allodynia. The anti-allodynic effect induced by curcumin was prevented by the intrathecal administration of L-NAME (100 μg/rat, a non-selective nitric oxide synthase inhibitor), ODQ (10 μg/rat, an inhibitor of guanylate-cyclase), and glibenclamide (50 μg/rat, channel blocker of ATP-sensitive K+ channels). CONCLUSIONS These data suggest that the anti-allodynic effect induced by curcumin is mediated, at least in part, by the NO-cyclic GMP-ATP-sensitive K+ channels pathway in the SNL model of neuropathic pain in rats.
Collapse
Affiliation(s)
- Tracy Pastrana-Quintos
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960, Mexico, D.F., Mexico
| | - Giovanna Salgado-Moreno
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960, Mexico, D.F., Mexico
| | - Julia Pérez-Ramos
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960, Mexico, D.F., Mexico
| | - Arrigo Coen
- Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Apartado Postal 20-726, 01000, México, Mexico
| | - Beatriz Godínez-Chaparro
- Departamento de Sistemas Biológicos, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Colonia Villa Quietud, 04960, Mexico, D.F., Mexico.
| |
Collapse
|
21
|
Dehghani S, Dalirfardouei R, Jafari Najaf Abadi MH, Ebrahimi Nik M, Jaafari MR, Mahdipour E. Topical application of curcumin regulates the angiogenesis in diabetic-impaired cutaneous wound. Cell Biochem Funct 2020; 38:558-566. [PMID: 32030812 DOI: 10.1002/cbf.3500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/24/2019] [Accepted: 12/27/2019] [Indexed: 12/23/2022]
Abstract
Diabetic wound characterizes with a delayed repair as a result of the lack of neoangiogenesis and the excess of inflammation. Natural products such as curcumin have shown great promises in their regulatory potentials on inflammation and angiogenesis. However, natural agents have several shortages in their bioavailability and stability when used in vivo. In this study, we have evaluated the efficacy of a topical formulation of curcumin in the enhancement of diabetic wound repair. Streptozocin-induced diabetic mice were wounded, and cream of curcumin (1%) was applied topically to wounds twice daily for different treatment periods. Inflammation, neoangiogenesis, and re-epithelialization were evaluated in each experimental group. Wounds of animals treated with curcumin showed an enhanced neoangiogenesis. Application of topical curcumin also increased the expression level of RelA as the main subunit of the nuclear factor-κB (NF-κB) signalling pathway. However, no significant effects on macrophage polarization and re-epithelialization were observed in the curcumin-treated animals. Our study using a higher concentration of curcumin in the form of a topical cream further confirmed the efficacy of curcumin as an angiogenesis-promoting agent; however, it also conveyed uncertainty over the claimed regulatory effects of curcumin on inflammation. SIGNIFICANCE OF THE STUDY: Diabetes results in several complications such as impaired cutaneous wound repair. Excess of inflammation and lack of angiogenesis are among the main causes of delayed healing in diabetes. Curcumin is famous for its anti-inflammatory properties. However, when in the body curcumin has shown to have a limited benefit unless in high-dosage consumes. This is because of its poor absorption from digestive system and its bioavailability. In this study, we have used a topical formulation of curcumin at a relatively high concentration to enhance the healing of a diabetic wound in an animal model of diabetes. We also have studied different cellular and molecular mechanisms by which curcumin may help the wound repair. Our results re-emphasize the proangiogenic potential of curcumin in diabetic wound environment.
Collapse
Affiliation(s)
- Sadegh Dehghani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Razieh Dalirfardouei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Maryam Ebrahimi Nik
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Mahdipour
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
|
23
|
Iron chelation by curcumin suppresses both curcumin-induced autophagy and cell death together with iron overload neoplastic transformation. Cell Death Discov 2019; 5:150. [PMID: 31839992 PMCID: PMC6901436 DOI: 10.1038/s41420-019-0234-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Iron overload, notably caused by hereditary hemochromatosis, is an excess storage of iron in various organs that causes tissue damage and may promote tumorigenesis. To manage that disorder, free iron depletion can be induced by iron chelators like deferoxamine that are of increasing interest also in the cancer field since iron stock could be a potent target for managing tumorigenesis. Curcumin, a well-known active substance extracted from the turmeric rhizome, destabilizes endoplasmic reticulum, and secondarily lysosomes, thereby increasing mitophagy/autophagy and subsequent apoptosis. Recent findings show that cells treated with curcumin also exhibit a decrease in ferritin, which is consistent with its chemical structure and iron chelating activity. Here we investigated how curcumin influences the intracellular effects of iron overload via Fe-nitriloacetic acid or ferric ammonium citrate loading in Huh-7 cells and explored the consequences in terms of antioxidant activity, autophagy, and apoptotic signal transduction. In experiments with T51B and RL-34 epithelial cells, we have found evidence that curcumin-iron complexation abolishes both curcumin-induced autophagy and apoptosis, together with the tumorigenic action of iron overload.
Collapse
|
24
|
Lang TC, Zhao R, Kim A, Wijewardena A, Vandervord J, Xue M, Jackson CJ. A Critical Update of the Assessment and Acute Management of Patients with Severe Burns. Adv Wound Care (New Rochelle) 2019; 8:607-633. [PMID: 31827977 PMCID: PMC6904939 DOI: 10.1089/wound.2019.0963] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Significance: Burns are debilitating, life threatening, and difficult to assess and manage. Recent advances in assessment and management have occurred since a comprehensive review of the care of patients with severe burns was last published, which may influence research and clinical practice. Recent Advances: Recent advances have occurred in the understanding of burn pathophysiology, which has led to the identification of potential biomarkers of burn severity, such as protein C. There is new evidence about the potential superiority of natural colloids over crystalloids during fluid resuscitation, and new evidence about components of initial and perioperative management, including an improved understanding of pain following burns. Critical Issues: The limitations of the clinical examination highlight the need for imaging and biomarkers to assist in estimations of burn severity. Fluid resuscitation reduces mortality, although there is conjecture over the ideal method. The subsequent perioperative period is associated with significant morbidity and the evidence for preventing and treating pain, infection, and fluid overload while maximizing wound healing potential is described. Future Directions: Promising developments are ongoing in imaging technology, histopathology, biomarkers, and wound healing adjuncts such as hyperbaric oxygen therapy, topical negative pressure therapy, stem cell treatments, and skin substitutes. The greatest benefit from further research on management of patients with burns would most likely be derived from the elucidation of optimal fluid resuscitation protocols, pain management protocols, and surgical techniques from randomized controlled trials.
Collapse
Affiliation(s)
- Thomas Charles Lang
- Department of Anesthesia, Prince of Wales and Sydney Children's Hospitals, Randwick, Australia
| | - Ruilong Zhao
- Sutton Laboratories, The Kolling Institute, St. Leonards, Australia
| | - Albert Kim
- Department of Critical Care Medicine, Royal North Shore Hospital, St. Leonards, Australia
| | - Aruna Wijewardena
- Department of Burns, Reconstructive and Plastic Surgery, Royal North Shore Hospital, St. Leonards, Australia
| | - John Vandervord
- Department of Burns, Reconstructive and Plastic Surgery, Royal North Shore Hospital, St. Leonards, Australia
| | - Meilang Xue
- Sutton Laboratories, The Kolling Institute, St. Leonards, Australia
| | | |
Collapse
|
25
|
Chen Z, Hu Y, Li J, Zhang C, Gao F, Ma X, Zhang J, Fu C, Geng F. A feasible biocompatible hydrogel film embedding Periplaneta americana extract for acute wound healing. Int J Pharm 2019; 571:118707. [DOI: 10.1016/j.ijpharm.2019.118707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/24/2019] [Accepted: 09/16/2019] [Indexed: 01/20/2023]
|
26
|
Does diet play a role in reducing nociception related to inflammation and chronic pain? Nutrition 2019; 66:153-165. [DOI: 10.1016/j.nut.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
27
|
Anil A, Gujjari SK, Venkatesh MP. Evaluation of a curcumin-containing mucoadhesive film for periodontal postsurgical pain control. J Indian Soc Periodontol 2019; 23:461-468. [PMID: 31543620 PMCID: PMC6737849 DOI: 10.4103/jisp.jisp_700_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/26/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Management of pain and discomfort is important to make the postoperative period as pleasant as possible. Nonsteroidal anti-inflammatory drugs are traditionally prescribed; however, they are associated with numerous side effects. As a result, nutraceuticals such as curcumin are widely used for its well-known safety and medicinal values. Hence, the aim of this study is to evaluate the efficacy of a curcumin mucoadhesive film for postsurgical pain control. MATERIALS AND METHODS This was a split-mouth study, consisting of 15 systemically healthy patients with 30 sites, who were randomly allocated into test (curcumin mucoadhesive film) and control (placebo mucoadhesive film) groups using coin toss method. A questionnaire was given to patients to evaluate the postoperative pain and swelling and the number of rescue medications taken. Statistical analyses used were Friedman test, Wilcoxon signed-rank test, and McNemar's test. RESULTS No adverse effects were reported and healing was uneventful in all patients. The Numerical rating scale pain score showed significantly lesser pain at 1, 2, 3, 4, 5, and 24 h in the test group. Significantly more number of analgesics was consumed in total in the control group than that in the test group. CONCLUSION Within the limitations of this study, it may be concluded that curcumin mucoadhesive film showed promising results in reducing postoperative pain and swelling over a period of 1 week, hence showing its analgesic effect after periodontal surgeries.
Collapse
Affiliation(s)
- Anu Anil
- Department of Periodontology, JSS Dental College and Hospital, JSSAHER, Mysore, Karnataka, India
| | - Sheela Kumar Gujjari
- Department of Periodontology, JSS Dental College and Hospital, JSSAHER, Mysore, Karnataka, India
| | - Madhugiri Prakash Venkatesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Research, Mysore, Karnataka, India
| |
Collapse
|
28
|
Bjørklund G, Chirumbolo S, Dadar M, Pen JJ, Doşa MD, Pivina L, Semenova Y, Aaseth J. Insights on Nutrients as Analgesics in Chronic Pain. Curr Med Chem 2019; 27:6407-6423. [PMID: 31309880 DOI: 10.2174/0929867326666190712172015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Many serious inflammatory disorders and nutrient deficiencies induce chronic pain, and anti-inflammatory diets have been applied successfully to modify the inflammatory symptoms causing chronic pain. Numerous scientific data and clinical investigations have demonstrated that long-term inflammation could lead to an inappropriate or exaggerated sensibility to pain. In addition, some Non-steroidal Anti-inflammatory Drugs (NSAID), which directly act on the many enzymes involved in pain and inflammation, including cyclooxygenases, are used to dampen the algesic signal to the central nervous system, reducing the responses of soft C-fibers to pain stimuli. On the other hand, there are a few reports from both health authorities and physicians, reporting that decreased transmission of pain signals can be achieved and improved, depending on the patient's dietary habit. Many nutrients, as well as a suitable level of exercise (resistance training), are the best methods for improving the total mitochondrial capacity in muscle cells, which can lead to a reduction in sensitivity to pain, particularly by lowering the inflammatory signaling to C-fibers. According to the current literature, it could be proposed that chronic pain results from the changed ratio of neuropeptides, hormones, and poor nutritional status, often related to an underlying inflammatory disorder. The current review also evaluates the effective role of nutrition-related interventions on the severity of chronic pain. This review pointed out that nutritional interventions can have a positive effect on pain experience through the indirect inhibitory effect on prostaglandin E2 and attenuation of mitochondrial dysfunction caused by ischemia/reperfusion in skeletal muscle, improving the intracellular antioxidant defense system. These data highlight the need for more nutrition studies where chronic pain is the primary outcome, using accurate interventions. To date, no nutritional recommendation for chronic pain has been officially proposed. Therefore, the goal of this article is to explore pain management and pain modulation, searching for a mode of nutrition efficient in reducing pain.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy,CONEM Scientific Secretary, Verona, Italy
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Yulia Semenova
- Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Faculty of Health and Social Science, Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
29
|
Wound Healing Property of Curcuminoids as a Microcapsule-Incorporated Cream. Pharmaceutics 2019; 11:pharmaceutics11050205. [PMID: 31052413 PMCID: PMC6572040 DOI: 10.3390/pharmaceutics11050205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/23/2019] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
Curcuminoids have been used for the management of burns and wound healing in traditional Chinese medicine practices but the wide application of curcuminoids as a healing agent for wounds has always been a known problem due to their poor solubility, bioavailability, colour staining properties, as well as due to their intense photosensitivity and the need for further formulation approaches to maximise their various properties in order for them to considerably contribute towards the wound healing process. In the present study, a complex coacervation microencapsulation was used to encapsulate curcuminoids using gelatin B and chitosan. This study also focused on studying and confirming the potential of curcuminoids in a microencapsulated form as a wound healing agent. The potential of curcuminoids for wound management was evaluated using an in vitro human keratinocyte cell (HaCaT) model and the in vivo heater-inflicted burn wound model, providing evidence that the antioxidant activities of both forms of curcuminoids, encapsulated or not, are higher than those of butylated hydroxyanisole and butylated hydroxytoluene in trolox equivalent antioxidant capacity (TEAC) and (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) studies. However, curcuminoids did not have much impact towards cell migration and proliferation in comparison with the negative control in the in vitro HaCaT study. The micoencapsulation formulation was shown to significantly influence wound healing in terms of increasing the wound contraction rate, hydroxyproline synthesis, and greater epithelialisation, which in turn provides strong justification for the incorporation of the microencapsulated formulation of curcuminoids as a topical treatment for burns and wound healing management as it has the potential to act as a crucial wound healing agent in healthcare settings.
Collapse
|
30
|
Ahangari N, Kargozar S, Ghayour-Mobarhan M, Baino F, Pasdar A, Sahebkar A, Ferns GAA, Kim HW, Mozafari M. Curcumin in tissue engineering: A traditional remedy for modern medicine. Biofactors 2019; 45:135-151. [PMID: 30537039 DOI: 10.1002/biof.1474] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023]
Abstract
Curcumin is the principal polyphenolic compound present in turmeric with broad applications in tissue engineering and regenerative medicine. It has some important inherent properties with the potential to facilitate tissue healing, including anti-inflammatory, anti-oxidant, and antibacterial activities. Therefore, curcumin has been used for the treatment of various damaged tissues, especially wound injuries. There are different forms of curcumin, among which nano-formulations are of a great importance in regenerative medicine. It is also important to design sophisticated delivery systems for controlled/localized delivery of curcumin to the target tissues and organs. Although there are many reports on the advantages of this compound, further research is required to fully explore its clinical usage. The review describes the physicochemical and biological properties of curcumin and the current state of the evidence on its applications in tissue engineering. © 2018 BioFactors, 45(2):135-151, 2019.
Collapse
Affiliation(s)
- Najmeh Ahangari
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cardiovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Rm 342, Mayfield House, University of Brighton, Brighton, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, South Korea
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Bahrami A, Atkin SL, Majeed M, Sahebkar A. Effects of curcumin on hypoxia-inducible factor as a new therapeutic target. Pharmacol Res 2018; 137:159-169. [PMID: 30315965 DOI: 10.1016/j.phrs.2018.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that consists of two subunits, the HIF-1α and HIF-1β (ARNT). Under hypoxic conditions, HIF-1 is an adaptive system that regulates the transcription of multiple genes associated with growth, angiogenesis, proliferation, glucose transport, metabolism, pH regulation and cell death. However, aberrant HIF-1 activation contributes to the pathophysiology of several human diseases such as cancer, ischemic cardiovascular disorders, and pulmonary and kidney diseases. A growing body of evidence indicates that curcumin, a natural bioactive compound of turmeric root, significantly targets both HIF-1 subunits, but is more potent against HIF-1α. In this review, we have summarized the knowledge about the pharmacological effects of curcumin on HIF-1 and the related molecular mechanisms that may be effective candidates for the development of multi-targeted therapy for several human diseases.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Sun L, Liao L, Wang B. Potential Antinociceptive Effects of Chinese Propolis and Identification on Its Active Compounds. J Immunol Res 2018; 2018:5429543. [PMID: 30356413 PMCID: PMC6178491 DOI: 10.1155/2018/5429543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/27/2018] [Indexed: 11/18/2022] Open
Abstract
Propolis is an important bee product which has been applied to the treatment of several diseases. The aim of this study was to understand the material basis of Chinese propolis on pain relief; different Chinese propolis fractions (40W, 40E, 70E, and 95E raw propolis extracted followed by 40%, 70%, or 95% ethanol) were prepared, and their antinociceptive effects were evaluated. By analyzing using UPLC-Q-TOF-MS, we showed that 40W was rich in phenolic acids, like caffeic acid, while 40E, 70E, and 95E have relatively high levels in flavonoids, like galangin, pinocembrin, and chrysin. Notably, chrysin amounts in 70E and 95E are much higher than those in 40E fraction. Antinociceptive effects by these propolis fractions were evaluated in mice using acetic acid-induced writhing test, hot plate test, and tail immersion test, respectively. We noticed that only 40E fraction showed a significant reduction on acetic acid-induced writhing test. Importantly, in the hot plate test, all groups showed their effectiveness, except for the 70E group. We also noticed that 40W, 40E, and 95E administration caused an increase in the tail withdrawal latency of the mice. These data suggested that the different antinociceptive effects of different fractions from Chinese propolis extracts are directly link to their flavonoid composition.
Collapse
Affiliation(s)
- Liping Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Lei Liao
- Institute of Clinical Pharmacy of Beijing Municipal Health Bureau, Beijing 100035, China
| | - Bei Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
33
|
Sun J, Chen F, Braun C, Zhou YQ, Rittner H, Tian YK, Cai XY, Ye DW. Role of curcumin in the management of pathological pain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 48:129-140. [PMID: 30195871 DOI: 10.1016/j.phymed.2018.04.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 03/12/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pathological pain conditions can be triggered after peripheral nerve injury and/or inflammation. It is a major clinical problem that is poorly treated with available therapeutics. Curcumin is a phenolic compound derived from Curcuma longa, being widely used for its antioxidant, anti-inflammatory and immunomodulatory effects. PURPOSE This review systematically summarized updated information on the traditional uses of curcumin in order to explore antinociceptive effects in pathological pain and evaluate future therapeutic opportunities clinically. Moreover, some structure-activity relationships would greatly enrich the opportunity of finding new and promising lead compounds and promote the reasonable development of curcumin. METHODS PubMed were searched and the literature from the year 1976 to January 2018 was retrieved using keywords pain and curcumin. RESULTS This review systematically summarized updated information on the traditional uses, chemical constituents and bioactivities of curcumin, and highlights the recent development of the mechanisms of curcumin in the pathological pain by sciatic nerve injury, spinal cord injury, diabetic neuropathy, alcoholic neuropathy, chemotherapy induced peripheral neuroinflammtion, complete Freund's adjuvant (CFA) injection or carrageenan injection. Importantly, the clinical studies provide a compelling justification for its use as a dietary adjunct for pain relief. And we also present multiple approaches to improve bioavailability of curcumin for the treatment of pathological pain. CONCLUSION This review focuses on pre-clinical and clinical studies in the treatment of pathological pain. Although the mechanisms of pain mitigating effects are not very clear, there is compelling evidence proved that curcumin plays an essential role. However, further high-quality clinical studies should be undertaken to establish the clinical effectiveness of curcumin in patients suffering from pathological pain. Potential methods of increase the water solubility and bioavailability of curcumin still need to be studied. These approaches will help in establishing it as remedy for pathological pain.
Collapse
Affiliation(s)
- Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, China; Department of Oncology, Xiaogan Hospital Affiliated to Wuhan University of Science and Technology, Xiaogan, China
| | - Cody Braun
- UMKC School of Medicine, Kansas City, United States
| | - Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heike Rittner
- Department of Anesthesiology, University Hospital of Würzburg, Würzburg, Germany
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiu-Yu Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, China.
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Panahi Y, Fazlolahzadeh O, Atkin SL, Majeed M, Butler AE, Johnston TP, Sahebkar A. Evidence of curcumin and curcumin analogue effects in skin diseases: A narrative review. J Cell Physiol 2018; 234:1165-1178. [PMID: 30073647 DOI: 10.1002/jcp.27096] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Curcumin, a natural polyphenolic and yellow pigment obtained from the spice turmeric, has strong antioxidative, anti-inflammatory, and antibacterial properties. Due to these properties, curcumin has been used as a remedy for the prevention and treatment of skin aging and disorders such as psoriasis, infection, acne, skin inflammation, and skin cancer. Curcumin has protective effects against skin damage caused by chronic ultraviolet B radiation. One of the challenges in maximizing the therapeutic potential of curcumin is its low bioavailability, limited aqueous solubility, and chemical instability. In this regard, the present review is focused on recent studies concerning the use of curcumin for the treatment of skin diseases, as well as offering new and efficient strategies to optimize its pharmacokinetic profile and increase its bioavailability.
Collapse
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Omid Fazlolahzadeh
- Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, Tehran, Iran
| | | | | | - Alexandra E Butler
- Life Sciences Research Division, Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Kianvash N, Bahador A, Pourhajibagher M, Ghafari H, Nikoui V, Rezayat SM, Dehpour AR, Partoazar A. Evaluation of propylene glycol nanoliposomes containing curcumin on burn wound model in rat: biocompatibility, wound healing, and anti-bacterial effects. Drug Deliv Transl Res 2018; 7:654-663. [PMID: 28707264 DOI: 10.1007/s13346-017-0405-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Curcumin is an effective wound healing agent in burn therapy, but due to its low bioavailability, it is required to be formulated for topical therapy. Liposomal nanocarriers are developed as stable and efficient dermal delivery systems. In this study, we prepared curcumin-propylene glycol liposomes (Cur-PgL) to treat animals subjected to second degree burns. The characterization tests confirmed the production of monodisperse nanoliposomes of average size of about 145 nm with high entrapment efficiency percentage and a sustained release behavior. TEM analysis of nanocarriers showed no aggregation in long time storage up to 60 days. The biocompatibility of the Cur-PgL formulation was evaluated by ISO standards. We found that Cur-PgL 0.3% was the effective dose in injured rats without any side effects on intact skin. The cytotoxicity of the Cur-PgL 0.3% nanovesicles was also assessed on human dermal fibroblast (HDF) cells. The results showed no detectable cytotoxicity, but considerable cytotoxicity was observed in higher concentration of 1.5 and 3 mg/ml of free and PgL forms of curcumin. Eight days of application of Cur-PgL on burned rats resulted in a significant (P<0.001) recovery of wound repair parameters, and after 18 days, wound contraction occurred significantly (P < 0.001) compared to the other groups. The antibacterial activity of the Cur-PgL formulation was found to be similar to the silver sulfadiazine (SSD) cream 1% regarding the inhibition of the bacterial growth. In conclusion, the low dose of curcumin nanoliposomal formulation efficiently improved injuries and infections of burn wounds and it can be considered in burn therapy.
Collapse
Affiliation(s)
- Nooshin Kianvash
- Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Keshavarz Blvd, 100 Poursina Ave., Tehran, Iran
| | - Maryam Pourhajibagher
- Department of Microbiology, School of Medicine, Dental Implant Research Center, Dentistry Research Institute, Laser Research Center of Dentistry (LRCD), Tehran University of Medical Sciences, Tehran, Iran
| | - Homanaz Ghafari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sayed Mehdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Setti C, Suarato G, Perotto G, Athanassiou A, Bayer IS. Investigation of in vitro hydrophilic and hydrophobic dual drug release from polymeric films produced by sodium alginate-MaterBi® drying emulsions. Eur J Pharm Biopharm 2018; 130:71-82. [PMID: 29928979 DOI: 10.1016/j.ejpb.2018.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/02/2023]
Abstract
Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for in vivo controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi®, and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi®/alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells.
Collapse
Affiliation(s)
- Chiara Setti
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita Degli Studi di Genova, Via All'Opera Pia 13, 16145 Genova, Italy
| | - Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
37
|
|
38
|
Affiliation(s)
- Jeffrey M Levine
- Jeffrey M. Levine is an attending physician at Mount Sinai Beth Israel Medical Center and Icahn School of Medicine at Mount Sinai, New York, N.Y
| |
Collapse
|
39
|
Hashmi MU, Khan F, Khalid N, Shahid AA, Javed A, Alam T, Jalal N, Hayat MQ, Abbas SR, Janjua HA. Hydrogels incorporated with silver nanocolloids prepared from antioxidant rich Aerva javanica as disruptive agents against burn wound infections. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
|
41
|
Gaffey A, Slater H, Porritt K, Campbell JM. The effects of curcuminoids on musculoskeletal pain: a systematic review. JBI DATABASE OF SYSTEMATIC REVIEWS AND IMPLEMENTATION REPORTS 2017; 15:486-516. [PMID: 28178024 DOI: 10.11124/jbisrir-2016-003266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Western countries are increasingly using complementary and alternative medicine (CAM) to assist with relieving ailments. Turmeric, from the ginger family Zingiberaceae, has a history of use for medicinal purposes. The polyphenols found in turmeric (curcuminoids) have demonstrated anti-inflammatory and pain relieving properties. With the use of CAMs increasing, it is important for the effectiveness of curcuminoids to be established. OBJECTIVES To identify the effectiveness of the use of curcuminoids for the amelioration of musculoskeletal pain. INCLUSION CRITERIA TYPES OF PARTICIPANTS Persons experiencing musculoskeletal pain, including experimentally induced musculoskeletal pain. TYPES OF INTERVENTION(S)/PHENOMENA OF INTEREST The current review considered studies that evaluated the use of curcuminoids. TYPES OF CONTROLS Any form including placebo, treatment as usual or before and after measurements. TYPES OF STUDIES Both experimental and epidemiological study designs including randomized controlled trials (RCTs), non-RCTs, quasi-experimental and before and after studies were eligible for consideration in this review. Studies published in English were considered without date restriction. OUTCOMES The current review considered studies that included measurement of pain. Outcome measures included visual analog scales, and/or pain questionnaires. Secondary outcome measures of functionality (activities of daily living and range of motion) were included. Any data provided on adverse events were considered. SEARCH STRATEGY The databases PubMed, CINAHL, Embase and ProQuest were searched in March 2015 (and updated in April 2016) using the Joanna Briggs Institute (JBI) three-step search strategy. The reference lists of identified articles were reviewed for additional studies. METHODOLOGICAL QUALITY Papers selected were assessed by two independent reviewers using standardized instruments from the JBI Meta-Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI). DATA EXTRACTION Data were extracted using the data extraction tool from JBI-MAStARI. Data extracted included details about the populations, interventions, study methods and outcomes. DATA SYNTHESIS Narrative and tabular synthesis was conducted. Meta-analysis was precluded due to methodological and clinical heterogeneity across all included studies. RESULTS Thirteen studies with a combined total of 1101 participants were included. Three studies of limited sample size examined the effects of curcuminoids compared with the use of placebo on musculoskeletal pain, with one study showing a statistically significant effect. Four studies examined the effects of curcuminoids compared with non-selective non-steroidal anti-inflammatory drugs on musculoskeletal pain. Two of these four studies were non-inferiority studies showed that the use of both curcuminoids and ibuprofen were associated with a similar significant reduction in pain over the study durations of four and six weeks, respectively, with curcuminoid use non-inferior to the use of ibuprofen over the study durations. Six studies investigated presentations of curcuminoid-containing herbomineral mixtures versus placebo or active controls. CONCLUSION There is insufficient evidence to recommend that curcuminoids be considered for relieving pain and improving function in musculoskeletal pain conditions. This finding needs to be considered in the context of limitations imposed by the variability in the quality of studies, small sample sizes, short duration of interventions, a gender-bias toward females, absence of long-term data extraction and small number of relevant studies.
Collapse
Affiliation(s)
- Andrew Gaffey
- 1The Joanna Briggs Institute, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia 2School of Physiotherapy and Exercise Science, Curtin University, Perth, Australia
| | | | | | | |
Collapse
|
42
|
Sahebkar A, Saboni N, Pirro M, Banach M. Curcumin: An effective adjunct in patients with statin-associated muscle symptoms? J Cachexia Sarcopenia Muscle 2017; 8:19-24. [PMID: 27897416 PMCID: PMC5326825 DOI: 10.1002/jcsm.12140] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022] Open
Abstract
In spite of the unequivocal efficacy of statins in reducing primary and secondary cardiovascular events, the use of these drugs in a considerable number of patients is limited because of statin intolerance, mainly statin-associated muscle symptoms (SAMS). SAMS encompass a broad spectrum of clinical presentations, including mild muscular aching and other types of myalgias, myopathy with the significant elevation of creatine kinase, and the rare but life-threatening rhabdomyolysis. Among several pathophysiologic mechanisms of SAMS, mitochondrial dysfunction is thought to be one of the main one. Curcumin is the polyphenolic ingredient of Curcuma longa L., which has various pharmacological properties against a vast range of diseases. Curcumin has several mechanisms of actions relevant to the treatment of SAMS. These effects include the capacity to prevent and reduce delayed onset muscle soreness by blocking the nuclear factor inflammatory pathway, attenuation of muscular atrophy, enhancement of muscle fibre regeneration following injury, and analgesic and antioxidant effects. Curcumin can also increase the levels of cyclic adenosine monophosphate, which leads to an increase in the number of mitochondrial DNA duplicates in skeletal muscle cells. Finally, owing to its essential lipid-modifying properties, curcumin might serve as an adjunct to statin therapy in patients with SAMS, allowing for effective lowering of low-density lipoprotein cholesterol and possibly for statin dose reduction. Owing to the paucity of effective treatments, and the safety of curcumin in clinical practice, proof-of-concept trials are recommended to assess the potential benefit of this phytochemical in the treatment of SAMS.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Biotechnology Research CenterMashhad University of Medical SciencesMashhad9177948564Iran
- Metabolic Research Centre, Royal Perth Hospital, School of Medicine and PharmacologyUniversity of Western AustraliaPerthAustralia
| | - Nikou Saboni
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhad9177948564Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of MedicineUniversity of PerugiaPerugiaItaly
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and HypertensionMedical University of LodzŁódźPoland
| |
Collapse
|
43
|
Patel M, Kaneko T, Matsumura K. Switchable release nano-reservoirs for co-delivery of drugs via a facile micelle–hydrogel composite. J Mater Chem B 2017; 5:3488-3497. [DOI: 10.1039/c7tb00701a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Zhou J, Miao H, Li X, Hu Y, Sun H, Hou Y. Curcumin inhibits placental inflammation to ameliorate LPS-induced adverse pregnancy outcomes in mice via upregulation of phosphorylated Akt. Inflamm Res 2016; 66:177-185. [PMID: 27817102 DOI: 10.1007/s00011-016-1004-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 10/09/2016] [Accepted: 10/28/2016] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Excessive inflammation results in adverse pregnancy outcomes, including embryonic resorption, fetal growth restriction, and preeclampsia. This study investigated whether curcumin, a highly safe anti-inflammation drug, had protective effect on lipopolysaccharide (LPS)-treated pregnant mice. METHOD A mouse model of LPS-induced adverse pregnancy outcomes was generated by daily administering LPS from GD 13.5 to GD 16.5. Curcumin was given from GD 0.5. The effects of curcumin on maternal hypertension, proteinuria, pregnancy outcomes, as well as proinflammatory factors, chemokines, Akt, JNK, and P38 levels in placenta were examined. RESULTS Systolic blood pressure (156.6 ± 5.056 versus 125.5 ± 3.617 mmHg; P < 0.05) and proteinuria (22.36 ± 2.22 versus 12.70 ± 1.04 mg/L; P < 0.05) were decreased in the LPS+curcumin-treated group, as compared with the LPS-treated group. Curcumin also increased the number of live pups, fetal weight, and placental weight, while it decreased fetal resorption rate. Moreover, increased placental TNF-α, IL-1β, and IL-6 expressions in LPS-treated group were significantly suppressed after curcumin administration. Furthermore, decreased p-Akt level in placenta induced by LPS was improved by curcumin. Of note, the expression of p-Akt increased by curcumin was accompanied by the decreased chemokines MCP-1 and MIP-1 levels and fewer CD68-positive macrophages in the placenta. CONCLUSION Curcumin inhibited the expression of proinflammatory factors and macrophage infiltration in placenta and ameliorated LPS-induced adverse pregnancy outcomes in mice by inhibiting inflammation via upregulation of phosphorylated Akt.
Collapse
Affiliation(s)
- Jianjun Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, 210008, China
| | - Huishuang Miao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiujun Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210008, China
| | - Yali Hu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, 210008, China
| | - Haixiang Sun
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Drum Tower Hospital Affiliated to Nanjing University Medical College, Nanjing, 210008, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
45
|
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release 2016; 240:77-92. [PMID: 26518723 PMCID: PMC4896846 DOI: 10.1016/j.jconrel.2015.10.049] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023]
Abstract
This review provides the first comprehensive overview of the use of both nanoparticles and nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal applications. This approach employs increased drug concentration in the carrier, in order to increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged period of time. The examples presented provide significant evidence that this area of research has - and will continue to have - a profound impact on both clinical outcomes and the development of new products.
Collapse
Affiliation(s)
- Ritu Goyal
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Lauren K Macri
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers, The State University of New Jersey, 145 Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
46
|
Hou Q, Li M, Lu YH, Liu DH, Li CC. Burn wound healing properties of asiaticoside and madecassoside. Exp Ther Med 2016; 12:1269-1274. [PMID: 27588048 PMCID: PMC4997909 DOI: 10.3892/etm.2016.3459] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/17/2016] [Indexed: 02/07/2023] Open
Abstract
The healing of burn wounds has been widely characterized to be highly intricate, involving processes such as neo-vascularization, granulation, re-epithelialization, inflammation and wound contraction. Various therapies are available for the management of burn wounds; however, a truly effective therapeutic strategy has yet to be identified due to safety issues. The aim of the present study was to assess and confirm the burn wound healing properties of the compounds asiaticoside (AE) and madecassoside (MA), which are found in the herb Centella asiatica. The cytotoxic nature of the AE and MA were inspected and were confirmed to be non-toxic up to 500 ppm. The compounds AE and MA increased monocyte chemoattractant protein-1 production, but caused no significant effect on vascular endothelial growth factor production. In addition, an in vivo animal burn model was employed to represent the features of burn wound healing. Hence, the present results warrant the further investigation of C. asiatica extracts for use in burn healing.
Collapse
Affiliation(s)
- Qiang Hou
- Department of Burns, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| | - Ming Li
- Department of Burns, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| | - Yan-Hua Lu
- Department of Burns, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| | - Dong-Hong Liu
- Department of Burns, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| | - Cheng-Cun Li
- Department of Burns, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
47
|
Verma S, Mundkinajeddu D, Agarwal A, Chatterjee SS, Kumar V. Effects of turmeric curcuminoids and metformin against central sensitivity to pain in mice. J Tradit Complement Med 2016; 7:145-151. [PMID: 28417083 PMCID: PMC5388045 DOI: 10.1016/j.jtcme.2016.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/28/2016] [Accepted: 04/14/2016] [Indexed: 01/06/2023] Open
Abstract
The reported experimental study was conducted to compare the effects of repeated daily oral doses of curcuminoids (CLE) with metformin as potential antidepressants and analgesics. Effects of a single and ten daily oral doses of CLE (5, 20, 80 mg/kg/day) and of 50 mg/kg/day metformin (MET) were compared in mice hot plate test (HPT) for analgesics. On the 11th treatment day, all animals were subjected to foot shock stress triggered hyperthermia test, and on the 12th treatment day to tail suspension test (TST) for antidepressants. Immediately thereafter, their blood levels of glucose, insulin and cortisol were quantified. Dose dependent analgesic activity of CLE was observed in HPT, whereas the metformin dose tested suppressed only pain hypersensitivity in the test. But statistically significant effects of both of them were observed in TST, and both of them also afforded protections against body weight loss and slight elevation in core temperatures induced by daily handling and repeated testing. CLE or metformin had no significant effects in foot shock stress triggered transient hyperthermic responses or on blood glucose, insulin and cortisol levels. Reported results reveal that curcuminoids as well as metformin are stress response modifiers with antidepressants like activities, but only low dose curcuminoids possess centrally acting analgesics like activities. They suggest that the bio-assay system used in this study is well suited for identifying curcuminoids like plant metabolites with analgesic and anti-stress activities, and that low dose curcuminoids are more effective as analgesics than low dose metformin.
Collapse
Affiliation(s)
- Suruchi Verma
- Neuropharmacology Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, Uttar Pradesh, India
| | - Deepak Mundkinajeddu
- Research and Development Center, Natural Remedies Private Limited, Bengaluru 560 100, Karnataka, India
| | - Amit Agarwal
- Research and Development Center, Natural Remedies Private Limited, Bengaluru 560 100, Karnataka, India
| | | | - Vikas Kumar
- Neuropharmacology Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005, Uttar Pradesh, India
| |
Collapse
|
48
|
Thangapazham RL, Sharad S, Maheshwari RK. Phytochemicals in Wound Healing. Adv Wound Care (New Rochelle) 2016; 5:230-241. [PMID: 27134766 DOI: 10.1089/wound.2013.0505] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Significance: Traditional therapies, including the use of dietary components for wound healing and skin regeneration, are very common in Asian countries such as China and India. The increasing evidence of health-protective benefits of phytochemicals, components derived from plants is generating a lot of interest, warranting further scientific evaluation and mechanistic studies. Recent Advances: Phytochemicals are non-nutritive substances present in plants, and some of them have the potential to provide better tissue remodeling when applied on wounds and to also act as proangiogenic agents during wound healing. Critical Issues: In this review, we briefly discuss the current understanding, important molecular targets, and mechanism of action(s) of some of the phytochemicals such as curcumin, picroliv, and arnebin-1. We also broadly review the multiple pathways that these phytochemicals regulate to enhance wound repair and skin regeneration. Future Directions: Recent experimental data on the effects of phytochemicals on wound healing and skin regeneration establish the potential clinical utility of plant-based compounds. Additional research in order to better understand the exact mechanism and potential targets of phytochemicals in skin regeneration is needed. Human studies a2nd clinical trials are pivotal to fully understand the benefits of phytochemicals in wound healing and skin regeneration.
Collapse
Affiliation(s)
- Rajesh L. Thangapazham
- Department of Dermatology, Center for Prostate Disease Research; Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shashwat Sharad
- Department of Surgery, Center for Prostate Disease Research; Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Radha K. Maheshwari
- Department of Pathology, Center for Prostate Disease Research; Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
49
|
Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line. Biomaterials 2016; 84:25-41. [PMID: 26803409 DOI: 10.1016/j.biomaterials.2016.01.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/21/2015] [Accepted: 01/01/2016] [Indexed: 11/23/2022]
Abstract
Curcumin (Cur) has been demonstrated to have wide pharmacological window including anti-oxidant and anti-inflammatory properties. However, phototoxicity under sunlight exposure and poor biological availability limits its applicability. We have synthesized biodegradable and non-toxic polymer-poly (lactic-co-glycolic) acid (PLGA) encapsulated formulation of curcumin (PLGA-Cur-NPs) of 150 nm size range. Photochemically free curcumin generates ROS, lipid peroxidation and induces significant UVA and UVB mediated impaired mitochondrial functions leading to apoptosis/necrosis and cell injury in two different origin cell lines viz., mouse fibroblasts-NIH-3T3 and human keratinocytes-HaCaT as compared to PLGA-Cur-NPs. Molecular docking studies suggested that intact curcumin from nanoparticles, bind with BAX in BIM SAHB site and attenuate it to undergo apoptosis while upregulating anti-apoptotic genes like BCL2. Real time studies and western blot analysis with specific phosphorylation inhibitor of ERK1 and AKT1/2/3 confirm the involvement of ERK/AKT signaling molecules to trigger the survival cascade in case of PLGA-Cur-NPs. Our finding demonstrates that low level sustained release of curcumin from PLGA-Cur-NPs could be a promising way to protect the adverse biological interactions of photo-degradation products of curcumin upon the exposure of UVA and UVB. Hence, the applicability of PLGA-Cur-NPs could be suggested as prolonged radical scavenging ingredient in curcumin containing products.
Collapse
|
50
|
Yousefi A, Yousefi R, Panahi F, Sarikhani S, Zolghadr AR, Bahaoddini A, Khalafi-Nezhad A. Novel curcumin-based pyrano[2,3-d]pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: Implications for their pleiotropic effects against diabetes complications. Int J Biol Macromol 2015; 78:46-55. [DOI: 10.1016/j.ijbiomac.2015.03.060] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/23/2015] [Accepted: 03/26/2015] [Indexed: 02/01/2023]
|