1
|
Liu LY, Tian L, Gao LH, Cui HJ, Li XM, Li YH. E2F8 facilitates malignant phenotypes of muscle-invasive bladder cancer via increasing MCM7 expression. Biochem Cell Biol 2024. [PMID: 39601318 DOI: 10.1139/bcb-2024-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
E2F transcription factor 8 (E2F8) is an important regulator of the cell cycle. In this study, we first assessed the expression of E2F8 in bladder cancer and examined its effects in the malignant phenotypes of bladder cancer cell lines. We found that E2F8 was upregulated in bladder cancer tissues, and the increased expression was positively associated with higher clinical stage. E2F8 knockdown suppressed bladder cancer cell proliferation, accompanied by the performance of G1 phase arrest and the upregulated Cyclin D1 protein expression. The migrative and invasive capability was reduced in E2F8-depleted bladder cancer cells. Cisplatin resistance is an important cause of bladder cancer relapse. E2F8 downregulation facilitated cisplatin-induced apoptosis of bladder cancer cells. MCM7 is regulated by E2F and has been shown to participate in bladder cancer. There was a positive correlation between E2F8 and MCM7 expression in bladder cancer. We confirmed that E2F8 bound to the promoter region of MCM7 and activated MCM7 transcription. MCM7 overexpression abrogated the suppressive effects of E2F8 knockdown on malignant phenotypes of bladder cancer cells. We also demonstrated that E2F8 knockdown suppressed bladder cancer progression in vivo. In conclusion, we verify that E2F8 functioned in bladder cancer, and might exert its function via MCM7.
Collapse
Affiliation(s)
- Li-Yun Liu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, People's Republic of China
| | - Liang Tian
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, People's Republic of China
| | - Ling-Huan Gao
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, People's Republic of China
| | - Hai-Jun Cui
- Department of Urology, Tangshan Gongren Hospital, Tangshan, People's Republic of China
| | - Xue-Mei Li
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, People's Republic of China
| | - Yue-Hong Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
2
|
Chen H, Zhang M, Li J, Liu M, Cao D, Li YY, Yamashita T, Nio K, Tang H. BMP9-ID1 Pathway Attenuates N 6-Methyladenosine Levels of CyclinD1 to Promote Cell Proliferation in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:981. [PMID: 38256056 PMCID: PMC10816017 DOI: 10.3390/ijms25020981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal malignant neoplasm, and the involvement of bone morphogenetic protein 9 (BMP9) has been implicated in the pathogenesis of liver diseases and HCC. Our goal was to investigate the role of BMP9 signaling in regulating N6-methyladenosine (m6A) methylation and cell cycle progression, and evaluate the therapeutic potential of BMP receptor inhibitors for HCC treatment. We observed that elevated levels of BMP9 expression in tumor tissues or serum samples from HCC patients were associated with a poorer prognosis. Through in vitro experiments utilizing the m6A dot blotting assay, we ascertained that BMP9 reduced the global RNA m6A methylation level in Huh7 and Hep3B cells, thereby facilitating their cell cycle progression. This effect was mediated by an increase in the expression of the inhibitor of DNA-binding protein 1 (ID1). Additionally, using methylated RNA immunoprecipitation qPCR(MeRIP-qPCR), we showed that the BMP9-ID1 pathway promoted CyclinD1 expression by decreasing the m6A methylation level in the 5' UTR of mRNA. This occurred through the upregulation of the fat mass and obesity-associated protein (FTO) in Huh7 and Hep3B cells. In our in vivo mouse xenograft models, we demonstrated that blocking the BMP receptor with LDN-212854 effectively suppressed HCC growth and induced global RNA m6A methylation. Overall, our findings indicate that the BMP9-ID1 pathway promotes HCC cell proliferation by down-regulating the m6A methylation level in the 5' UTR of CyclinD1 mRNA. Targeting the BMP9-ID1 pathway holds promise as a potential therapeutic strategy for treating HCC.
Collapse
Affiliation(s)
- Han Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mingming Zhang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jianhao Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Miao Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Cao
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ying-Yi Li
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (Y.-Y.L.); (T.Y.)
| | - Taro Yamashita
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (Y.-Y.L.); (T.Y.)
| | - Kouki Nio
- Department of Gastroenterology, Kanazawa University Hospital, Kanazawa 9208641, Japan; (Y.-Y.L.); (T.Y.)
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China; (H.C.); (M.Z.); (J.L.); (M.L.); (D.C.)
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Gao Y, Li Y, Liu Z, Dong Y, Yang S, Wu B, Xiao M, Chen C, Wen Y, Chen L, Jiang H, Yao Y. AHSA1 Regulates Hepatocellular Carcinoma Progression via the TGF-β/Akt-Cyclin D1/CDK6 Pathway. J Hepatocell Carcinoma 2023; 10:2021-2036. [PMID: 38022728 PMCID: PMC10640837 DOI: 10.2147/jhc.s407680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Activator of heat shock protein 90 (HSP90) ATPase Activity 1 (AHSA1) regulates proliferation, apoptosis, migration, and invasion of osteosarcoma and hepatocellular carcinoma (HCC). However, the novel mechanism of AHSA1 in the tumor biology of hepatocellular carcinoma (HCC) remains unclear. Methods We analyzed AHSA1 expression in 85 pairs of clinical samples of HCC and the Cancer Genome Atlas database. The role of AHSA1 in HCC was proved by cell proliferation, colony formation, migration, cell cycle analysis in vitro, xenograft models and tumor metastasis assay in vivo, and bioinformatics. Results High AHSA1 expression was demonstrated in HCC and associated with invasive depth, clinical stage, and poor overall survival of patients. Univariate Cox analysis confirmed that AHSA1 was an independent prognostic factor for patients with HCC. Meanwhile, AHSA1 upregulation promoted cell proliferation, colony formation, and cell migration in vitro and tumor cell proliferation and metastasis of HCC cells in vivo. AHSA1 upregulation increased the cell cycle transition from G1 to S phase by increasing the expression of cyclinD1, cyclinD3, and cyclin-dependent kinase 6(CD). Transforming growth factor beta 1 (TGF-β1)-induced protein kinase B (Akt) signaling regulated the expression of downstream targets, including cyclinD1. AHSA1 expression was closely correlated with the expression of TGF-β, Akt, cyclinD1, cyclinD3, and CDK6 using the Gene Expression Profiling Interactive Analysis database. AHSA1 upregulation participated in HCC progression by regulating TGF-β/Akt-cyclinD1/CDK6 signaling. Conclusion AHSA1 might serve as a biomarker for predicting the clinical outcome of patients with HCC. It is vital in tumor metastasis and disease progression of HCC and may facilitate the development of clinical intervention strategies against HCC.
Collapse
Affiliation(s)
- Yanjun Gao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Yi Dong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Siqi Yang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Bin Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Department of Oncology, Huang-Gang Central Hospital, Huanggang, 438000, People’s Republic of China
| | - Mengxia Xiao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Department of Oncology, Yichun People’s Hospital, Yichun, 336000, People’s Republic of China
| | - Chen Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Yingmei Wen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Lei Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Haijuan Jiang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| |
Collapse
|
4
|
Jiang D, Song Q, Zhang F, Xu C, Li X, Zeng H, Su J, Huang J, Xu Y, Lu S, Hou Y. Prognostic significance of CCND1 amplification/overexpression in smoking patients with esophageal squamous cell carcinoma. Cancer Genet 2023; 278-279:1-8. [PMID: 37556965 DOI: 10.1016/j.cancergen.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/11/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer, with 5-year survival rate less than 30%. In order to offer an individual therapeutic approach, it is necessary to identify novel prognostic factors to recognize high-risk patients. Given the high frequency of CCND1 abnormalities and the important biological effects of smoking in ESCC, we explored the potential relationship between CCND1 abnormalities and smoking in ESCC patients. CCND1 status was examined by fluorescence in situ hybridization and immunohistochemical staining in ESCC tissue microarrays (n = 519). CCND1 amplification and cyclinD1 overexpression were found in 53.2 and 34.1% ESCC, respectively. CCND1 amplification (P = 0.142 for DFS and P = 0.191 for OS) and cyclinD1 overexpression (P = 0.035 for DFS and P = 0.092 for OS) tended to be poorer prognostic factors in all patients. Among smoking patients, those with CCND1 amplification had significantly poorer prognosis, with a median DFS and OS of 25.0 and 30.0 months compared to not reached and 52.0 months for those without CCND1 amplification (P = 0.020 and 0.018). A similar trend was found in the 68 patients with cyclinD1 overexpression (P = 0.043 and 0.048). Further univariate and multivariate analysis revealed CCND1 amplification was independently poorer prognostic factor in smoking patients, which was not found in non-smoking patients. Smokers with CCND1 amplification or cyclinD1 overexpression have poorer survival, which help us to identify distinct groups of patients with apparently poorer outcome and would enable appropriate follow-up and treatment strategies.
Collapse
Affiliation(s)
- Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Fuhan Zhang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Xiaojing Li
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Haiying Zeng
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Yifan Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | - Shaohua Lu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, PR China.
| |
Collapse
|
5
|
Zhou C, Liang A, Zhang J, Leng J, Xi B, Zhou B, Yang Y, Zhu R, Zhong L, Jiang X, Wan D. Depleting ANTXR1 suppresses glioma growth via deactivating PI3K/AKT pathway. Cell Cycle 2023; 22:2097-2112. [PMID: 37974357 PMCID: PMC10732648 DOI: 10.1080/15384101.2023.2275900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2023] [Indexed: 11/19/2023] Open
Abstract
Gliomas are commonly known as primary brain tumors and associated with frequent recurrence and an unsatisfactory prognosis despite extensive research in the underlying molecular mechanisms. We aimed to examine the role of ANTXR1 in glioma tumorigenesis and explore its downstream regulatory mechanism. ANTXR1 expression in clinical specimens and its relationship with some pathological characteristics were detected using immunohistochemical staining. After silencing/upregulating ANTXR1 through lentiviral transfection in glioma cell lines, qRT-PCR and western blotting were used to examine mRNA and protein levels, and cell phenotype was also detected. ANTXR1-knockdown and -overexpression cells were then processed by AKT activator and PI3K inhibitor, respectively, to verify downstream PI3K/AKT pathway regulated by ANTXR1. Xenograft nude mice models were constructed to verify the role of ANTXR1 in vivo. We found overexpression of ANTXR1 in both cell lines in comparison with those in normal brain tissues. Glioma cell growth and migratory ability were dramatically impaired as a result of silencing ANTXR1 by shANTXR1 lentiviruses. ANTXR1 blockade also accelerated cell apoptosis and held back cell cycle via targeting G2 phrase during cell mitosis. In vivo xenograft models verified in vitro findings above. Further exploration disclosed that AKT activator promoted anti-tumor effects mediated by ANTXR1 knockdown, while PI3K inhibitor limited pro-tumor effects mediated by ANTXR1 overexpression, indicating that ANTXR1 functioned in glioma cells through regulating PI3K/AKT pathway. ANTXR1 could play an indispensable role in glioma tumorigenesis via activating PI3K/AKT-mediated cell growth. Our study provides a theoretical basis for targeting ANTXR1 as a molecular target in glioma clinical therapeutics.
Collapse
Affiliation(s)
- Chaoyang Zhou
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Aijun Liang
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Jianzhong Zhang
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Jingxing Leng
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Bin Xi
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Bin Zhou
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Yu Yang
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Ronglan Zhu
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Liangchen Zhong
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Xingxing Jiang
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Dengfeng Wan
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
6
|
Bideh M, Safari S, Khedri A, Zangooei M. The effect of hesperetin on estrogen receptor gene expression and its relationship with the downstream pathways of estrogen receptor alpha. Mol Biol Rep 2023; 50:7225-7236. [PMID: 37418087 DOI: 10.1007/s11033-023-08616-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Estrogen receptor (ER) is a transcription factor that affects the expression of some genes involved in the progression and development of breast cancer (BC). Hesperetin (Hst) is a flavonoid that inhibits the proliferation of BC cells. In this study, we investigated the effect of Hst on the cell viability of MCF-7 cells and the gene expression of the ERα, ERβ, IL-6, Ps2, and Cyclin D1. METHODS In this study, cell viability was determined by MTT assay. The cells were seeded in RPMI-1640 medium and then exposed to different concentrations of Hst (0, 25, 50, 100, 200, and 400 µM) for 24 h, and IC50 was calculated. Real-time PCR was used to assess the expression of ERα, ERβ, pS2, Cyclin D1, and IL-6 mRNA. MCF-7 cells were seeded in RPMI-1640 medium and then exposed to different concentrations of Hst (0, 25, 50, 100, and 200 µM) for 24 h. Real-time PCR was carried out using a Step One Real-Time PCR System (ABI, USA) and Amplicon SYBR Green reagents. RESULTS The MTT assay revealed increased cytotoxicity with higher concentrations of Hst, and the IC50 was calculated at 200 µM. Real-time PCR analysis following treatment with Hst showed a significant increase in ERα gene expression at 25 µM of Hst and a decrease in expression at 50, 100, and 200 µM of Hst (p < 0.0001). ERβ gene expression significantly decreased across all concentrations of Hst (p < 0.0001), while IL-6 gene expression decreased significantly in all concentrations (p < 0.0001). pS2 gene expression increased significantly with all concentrations of Hst (p < 0.0001), while Cyclin D1 gene expression did not significantly decrease upon Hst exposure (p > 0.05). CONCLUSIONS The results of our study demonstrate that Hst has the ability to induce cell death in MCF-7 cells. Furthermore, it was observed that Hst reduces the expression of the ER gene and enhances its activity, which can affect the downstream pathways of the ER.
Collapse
Affiliation(s)
- Milad Bideh
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Safari
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Azam Khedri
- Department of Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - Mohammad Zangooei
- Department of Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
7
|
Saleban M, Harris EL, Poulter JA. D-Type Cyclins in Development and Disease. Genes (Basel) 2023; 14:1445. [PMID: 37510349 PMCID: PMC10378862 DOI: 10.3390/genes14071445] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
D-type cyclins encode G1/S cell cycle checkpoint proteins, which play a crucial role in defining cell cycle exit and progression. Precise control of cell cycle exit is vital during embryonic development, with defects in the pathways regulating intracellular D-type cyclins resulting in abnormal initiation of stem cell differentiation in a variety of different organ systems. Furthermore, stabilisation of D-type cyclins is observed in a wide range of disorders characterized by cellular over-proliferation, including cancers and overgrowth disorders. In this review, we will summarize and compare the roles played by each D-type cyclin during development and provide examples of how their intracellular dysregulation can be an underlying cause of disease.
Collapse
Affiliation(s)
- Mostafa Saleban
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Erica L Harris
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - James A Poulter
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
8
|
Yin M, Lu C, Zhou H, Liu Q, Yang J. Differential molecular pathway expression according to chemotherapeutic response in ovarian clear cell carcinoma. BMC Womens Health 2023; 23:298. [PMID: 37270486 DOI: 10.1186/s12905-023-02420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023] Open
Abstract
OBJECTIVE Ovarian clear cell carcinoma (OCCC) is a distinct entity from epithelial ovarian cancer. The prognosis of advanced and recurrent disease is very poor due to resistance to chemotherapeutic agents. Our aim was to explore the molecular alterations among OCCC patients with different chemotherapeutic responses and to obtain insights into potential biomarkers. METHODS Twenty-four OCCC patients were included in this study. The patients were divided into two groups based on the relapse time after the first-line platinum-based chemotherapy: the platinum-sensitive group (PS) and the platinum-resistant group (PR). Gene expression profiling was performed using NanoString nCounter PanCancer Pathways Panel. RESULTS Gene expression analysis comparing PR vs. PS identified 32 differentially expressed genes: 17 upregulated genes and 15 downregulated genes. Most of these genes are involved in the PI3K, MAPK and Cell Cycle-Apoptosis pathways. In particular, eight genes are involved in two or all three pathways. CONCLUSION The dysregulated genes in the PI3K, MAPK, and Cell Cycle-Apoptosis pathways identified and postulated mechanisms could help to probe biomarkers of OCCC platinum sensitivity, providing a research basis for further exploration of targeted therapy.
Collapse
Affiliation(s)
- Min Yin
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunli Lu
- Neurospine Center, Xuanwu Hospital, National Center for Neurological Disorders, China International Neuroscience Institute (CHINA-INI), Capital Medical University, Beijing, China
| | - Huimei Zhou
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qian Liu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Wang J, Zhang J, Ma Q, Zhang S, Ma F, Su W, Zhang T, Xie X, Di C. Influence of cyclin D1 splicing variants expression on breast cancer chemoresistance via CDK4/CyclinD1-pRB-E2F1 pathway. J Cell Mol Med 2023; 27:991-1005. [PMID: 36915230 PMCID: PMC10064037 DOI: 10.1111/jcmm.17716] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
Cyclin D1 (CCND1), a mediator of cell cycle control, has a G870A polymorphism which results in the formation of two splicing variants: full-length CCND1 (CCND1a) and C-terminally truncated CCND1 species (CCND1b). However, the role of CCND1a and CCND1b variants in cancer chemoresistance remains unknown. Therefore, this study aimed to explore the molecular mechanism of alternative splicing of CCND1 in breast cancer (BC) chemoresistance. To address the contribution of G870A polymorphism to the production of CCND1 variants in BC chemoresistance, we sequenced the G870A polymorphism and analysed the expressions of CCND1a and CCND1b in MCF-7 and MCF-7/ADM cells. In comparison with MCF-7 cells, MCF-7/ADM cells with the A allele could enhance alternative splicing with the increase of SC-35, upregulate the ratio of CCND1b/a at both mRNA and protein levels, and activate the CDK4/CyclinD1-pRB-E2F1 pathway. Furthermore, CCND1b expression and the downstream signalling pathway were analysed through Western blotting and cell cycle in MCF-7/ADM cells with knockdown of CCND1b. Knockdown of CCND1b downregulated the ratio of CCND1b/a, demoted cell proliferation, decelerated cell cycle progression, inhibited the CDK4/CyclinD1-pRB-E2F1 pathway and thereby decreased the chemoresistance of MCF-7/ADM cells. Finally, CCND1 G870A polymorphism, the alternative splicing of CCDN1 was detected through Sequenom Mass ARRAY platform, Sanger sequencing, semi-quantitative RT-PCR, Western blotting and immunohistochemistry in clinical BC specimens. The increase of the ratio of CCND1b/a caused by G870A polymorphism was involved in BC chemoresistance. Thus, these findings revealed that CCND1b/a ratio caused by the polymorphism is involved in BC chemoresistance via CDK4/CyclinD1-pRB-E2F1 pathway.
Collapse
Affiliation(s)
- Jing Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouChina
- Bio‐Medical Research Center, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
| | - Jiaxin Zhang
- School of Biological and Pharmaceutical EngineeringLanzhou Jiaotong UniversityLanzhouChina
| | - Qinglong Ma
- School of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Shasha Zhang
- School of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Fengdie Ma
- School of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Wei Su
- Bio‐Medical Research Center, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
| | - Taotao Zhang
- Bio‐Medical Research Center, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
| | - Xiaodong Xie
- School of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Cuixia Di
- Bio‐Medical Research Center, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
| |
Collapse
|
10
|
Zhang J, Sun J, Li C, Qiao H, Hussain Z. Functionalization of curcumin nanomedicines: a recent promising adaptation to maximize pharmacokinetic profile, specific cell internalization and anticancer efficacy against breast cancer. J Nanobiotechnology 2023; 21:106. [PMID: 36964547 PMCID: PMC10039588 DOI: 10.1186/s12951-023-01854-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
Owing to its diverse heterogeneity, aggressive nature, enormous metastatic potential, and high remission rate, the breast cancer (BC) is among the most prevalent types of cancer associated with high mortality. Curcumin (Cur) is a potent phytoconstituent that has gained remarkable recognition due to exceptional biomedical viability against a wide range of ailments including the BC. Despite exhibiting a strong anticancer potential, the clinical translation of Cur is restricted due to intrinsic physicochemical properties such as low aqueous solubility, chemical instability, low bioavailability, and short plasma half-life. To overcome these shortcomings, nanotechnology-aided developments have been extensively deployed. The implication of nanotechnology has pointedly improved the physicochemical properties, pharmacokinetic profile, cell internalization, and anticancer efficacy of Cur; however, majority of Cur-nanomedicines are still facing grandeur challenges. The advent of various functionalization strategies such as PEGylation, surface decoration with different moieties, stimuli-responsiveness (i.e., pH, light, temperature, heat, etc.), tethering of specific targeting ligand(s) based on the biochemical targets (e.g., folic acid receptors, transferrin receptors, CD44, etc.), and multifunctionalization (multiple functionalities) has revolutionized the fate of Cur-nanomedicines. This study ponders the biomedical significance of various Cur-nanomedicines and adaptable functionalizations for amplifying the physicochemical properties, cytotoxicity via induction of apoptosis, cell internalization, bioavailability, passive and active targeting to the tumor microenvironment (TME), and anticancer efficacy of the Cur while reversing the multidrug resistance (MDR) and reoccurrence in BC. Nevertheless, the therapeutic outcomes of Cur-nanomedicines against the BC have been remarkably improved after adaptation of various functionalizations; however, this evolving strategy still demands extensive research for scalable clinical translation.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China.
| | - Jirui Sun
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China
| | - Chong Li
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haizhi Qiao
- Department of Pathology, Baoding First Central Hospital, Baoding, 071000, Hebei, China
| | - Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| |
Collapse
|
11
|
Bhattacharya A, Shukla VK, Kachariya N, Preeti, Sehrawat P, Kumar A. Disorder in the Human Skp1 Structure is the Key to its Adaptability to Bind Many Different Proteins in the SCF Complex Assembly. J Mol Biol 2022; 434:167830. [PMID: 36116539 DOI: 10.1016/j.jmb.2022.167830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 08/20/2022] [Accepted: 09/09/2022] [Indexed: 11/30/2022]
Abstract
Skp1(S-phase kinase-associated protein 1 - Homo sapiens) is an adapter protein of the SCF(Skp1-Cullin1-Fbox) complex, which links the constant components (Cul1-RBX) and the variable receptor (F-box proteins) in Ubiquitin E3 ligase. It is intriguing how Skp1 can recognise and bind to a variety of structurally different F-box proteins. For practical reasons, previous efforts have used truncated Skp1, and thus it has not been possible to track the crucial aspects of the substrate recognition process. In this background, we report the solution structure of the full-length Skp1 protein determined by NMR spectroscopy for the first time and investigate the sequence-dependent dynamics in the protein. The solution structure reveals that Skp1 has an architecture: β1-β2-H1-H2-L1-H3-L2-H4-H5-H6-H7(partially formed) and a long tail-like disordered C-terminus. Structural analysis using DALI (Distance Matrix Alignment) reveals conserved domain structure across species for Skp1. Backbone dynamics investigated using NMR relaxation suggest substantial variation in the motional timescales along the length of the protein. The loops and the C-terminal residues are highly flexible, and the (R2/R1) data suggests μs-ms timescale motions in the helices as well. Further, the dependence of amide proton chemical shift on temperature and curved profiles of their residuals indicate that the residues undergo transitions between native state and excited state. The curved profiles for several residues across the length of the protein suggest that there are native-like low-lying excited states, particularly for several C-terminal residues. Our results provide a rationale for how the protein can adapt itself, bind, and get functionally associated with other proteins in the SCF complex by utilising its flexibility and conformational sub-states.
Collapse
Affiliation(s)
- Amrita Bhattacharya
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Vaibhav Kumar Shukla
- Biophysical Chemistry & Structural Biology Laboratory, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Vidyanagari Campus, Mumbai 400098, India. https://twitter.com/bhu_vaibhav
| | - Nitin Kachariya
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Preeti
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Parveen Sehrawat
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ashutosh Kumar
- Lab No. 606, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
12
|
Wu HZ, Li LY, Jiang SL, Li YZ, Shi XM, Sun XY, Li Z, Cheng Y. RSK2 promotes melanoma cell proliferation and vemurafenib resistance via upregulating cyclin D1. Front Pharmacol 2022; 13:950571. [PMID: 36210843 PMCID: PMC9541206 DOI: 10.3389/fphar.2022.950571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
BRAF inhibitors are commonly used in targeted therapies for melanoma patients harboring BRAFV600E mutant. Despite the benefit of vemurafenib therapy, acquired resistance during or after treatment remains a major obstacle in BRAFV600E mutant melanoma. Here we found that RSK2 is overexpressed in melanoma cells and the high expression of RSK2 indicates poor overall survival (OS) in melanoma patients. Overexpression of RSK2 leads to vemurafenib resistance, and the deletion of RSK2 inhibits cell proliferation and sensitizes melanoma cells to vemurafenib. Mechanistically, RSK2 enhances the phosphorylation of FOXO1 by interacting with FOXO1 and promoting its subsequent degradation, leading to upregulation of cyclin D1 in melanoma cells. These results not only reveal the presence of a RSK2-FOXO1-cyclin D1 signaling pathway in melanoma, but also provide a potential therapeutic strategy to enhance the efficacy of vemurafenib against cancer.
Collapse
Affiliation(s)
- Hai-Zhou Wu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Shi-Long Jiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Zhi Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
| | - Xiao-Mei Shi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xin-Yuan Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhuo Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yan Cheng, ; Zhuo Li,
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Provincial Engineering Research Centre of Translational Medicine and Innovative Drug, Changsha, China
- *Correspondence: Yan Cheng, ; Zhuo Li,
| |
Collapse
|
13
|
Koh SS, Lau SK, Cassarino DS. Absence of Differential Cyclin D1 Immunohistochemical Protein Expression in Nevi and Melanoma Evaluated by Digital Image Analysis. Appl Immunohistochem Mol Morphol 2022; 30:441-445. [PMID: 35797676 DOI: 10.1097/pai.0000000000001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Distinction of superficial spreading melanoma (SSM) from compound nevi (CN) sometimes poses difficult diagnostic challenges. Herein, we studied cyclin D1 protein expression by immunohistochemistry in SSM and CN and evaluated the results by digital image analysis. DESIGN A total of 13 CN and 12 SSM cases were retrospectively reviewed and cyclin D1 immunohistochemistry was performed. Immunohistochemical stained slides were evaluated by digital imaging analysis that included quantification and staining intensity of the cyclin D1 expressing dermal cells. RESULTS Cyclin D1 expression was observed in all CN and SSM. CN-positive staining was present in 30% to 93% of the dermal nevocytes, more positive in the upper (mean 85%), than lower half (mean 57%). SSM-positive staining was present in 44% to 96% of the dermal lesion, more positive in the upper (mean 88%) than lower half (mean 49%). When analyzed based on 3+ strong staining intensity, similar regional differences in cyclin D1 expression were observed. CONCLUSIONS Digital image analysis of Cyclin D1 expression showed no differences between CN and SSM. Quantity and regional distribution of cyclin D1 positivity were found to be similar in both lesions. Our findings argue against the routine use of cyclin D1 immunohistochemistry as a diagnostic tool for differentiating CN from SSM.
Collapse
Affiliation(s)
- Stephen S Koh
- Department of Pathology and Dermatopathology, Southern California Permanente Medical Group, Kaiser Permanente Anaheim/Irvine Medical Center, Anaheim
| | - Sean K Lau
- Department of Pathology and Dermatopathology, Southern California Permanente Medical Group, Kaiser Permanente Anaheim/Irvine Medical Center, Anaheim
| | | |
Collapse
|
14
|
Xu S, Liu D, Cui M, Zhang Y, Zhang Y, Guo S, Zhang H. Identification of Hub Genes for Early Diagnosis and Predicting Prognosis in Colon Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1893351. [PMID: 35774271 PMCID: PMC9239823 DOI: 10.1155/2022/1893351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023]
Abstract
Colon adenocarcinoma (COAD) is among the most common digestive system malignancies worldwide, and its pathogenesis and gene signatures remain unclear. This study explored the genetic characteristics and molecular mechanisms underlying colon cancer development. Three gene expression data sets were obtained from the Gene Expression Omnibus (GEO) database. GEO2R was used to determine differentially expressed genes (DEGs) between COAD and normal tissues. Then, the intersection of the data sets was obtained. Metascape was used to perform the functional enrichment analyses. Next, STRING was used to build protein-protein interaction (PPI) networks. Hub genes were identified and analysed using Cytoscape. Next, survival analysis and expression analysis of the hub genes were performed. ROC curve analysis was performed for further test of the diagnostic efficacy. Finally, alterations in the hub genes were predicted and analysed by cBioPortal. Altogether, 436 DEGs were detected. The DEGs were mainly enriched in cell cycle phase transition, nuclear division, meiotic nuclear division, and cytokinesis. Based on PPI networks, 20 hub genes were selected. Among them, 6 hub genes (CCNB1, CCNA2, AURKA, NCAPG, DLGAP5, and CENPE) showed significant prognostic value in colon cancer (P < 0.05), while 5 hub genes (CDK1, CCNB1, CCNA2, MAD2L1, and DLGAP5) were associated with early colon cancer diagnosis and ROC curve analysis showed good diagnostic accuracy. In conclusion, integrated bioinformatics analysis was used to identify hub genes that reveal the potential mechanism of carcinogenesis and progression of colon cancer. The hub genes might be novel biomarkers for early diagnosis, treatment, and prognosis of colon cancer.
Collapse
Affiliation(s)
- Shuo Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Dingsheng Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Mingming Cui
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Yao Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Yu Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Shiqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang 110004, China
| |
Collapse
|
15
|
Wang C, Lin Y, Zhu H, Zhou Y, Mao F, Huang X, Sun Q, Li C. Efficacy and Safety Profile of Histone Deacetylase Inhibitors for Metastatic Breast Cancer: A Meta-Analysis. Front Oncol 2022; 12:901152. [PMID: 35712478 PMCID: PMC9192957 DOI: 10.3389/fonc.2022.901152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Acquired resistance to endocrine therapy (ET) remains a big challenge in the management of metastatic breast cancer (MBC). A novel therapeutic agent, histone deacetylase inhibitors (HDACi), targets the abnormal epigenetic modification and may overcome acquired resistance. However, HDACi efficacy and the safety profile for hormone receptor (HoR)-positive/human epidermal growth factor receptor 2 (HER2)-negative MBC remain controversial. Methods Two independent reviewers searched PubMed, Embase, and Cochrane Central Register of Controlled Trials databases for relevant studies on HDACi and HoR+/HER2- MBC. Demographic and clinicopathological parameters were extracted and presented as means and proportions, and between-group differences were assessed by Pearson chi-square test. Fixed- or random-effects models were used for meta-analysis based on inter-study heterogeneity. Pooled results were presented as L’Abbé plot and forest plot. Funnel plot and Egger’s test were employed for evaluation of publication bias. Results Four studies with 1,457 patients were included for meta-analysis. The overall objective response rates (ORRs) of HDACi + ET (HE) and placebo + ET (PE) groups were 11.52% and 6.67%, respectively. The HE regimen significantly increased ORR (odds ratio [OR] 1.633, 95% confidence interval [CI] = 1.103–2.418, p < 0.05) and showed higher clinical benefit rate (CBR) than the PE regimen (HE vs. PE groups: 38.82% vs. 30.58%, OR 1.378, 95% CI = 1.020–1.861, p < 0.05). Additionally, the HE regimen was associated with prolonged progression-free survival (PFS) (hazard ratio [HR] 0.761, 95% CI = 0.650–0.872, p < 0.001) and overall survival (OS) (HR 0.849, 95% CI = 0.702–0.996, p < 0.001). Regarding safety profile, the HE regimen had increasing toxicity in terms of higher overall adverse event (AE), Grade ≥3 AE, dose modification, and discontinuation rate. Conclusions This meta-analysis validated that the HE regimen had superior efficacy over control in terms of ORR, CBR, PFS, and OS, but was accompanied with increasing toxicity. HDACi plus ET could serve as an important option in managing HoR+/HER2- MBC. Future studies may focus on the clinical difference among different HDACi and AE managements to enhance tolerability.
Collapse
Affiliation(s)
- Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hanjiang Zhu
- Department of Dermatology, University of California San Francisco, San Francisco, CA, United States
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xin Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Qiang Sun, ; Chenggang Li,
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
- *Correspondence: Qiang Sun, ; Chenggang Li,
| |
Collapse
|
16
|
Liu Y, Ma G, Gao Z, Li J, Wang J, Zhu X, Ma R, Yang J, Zhou Y, Hu K, Zhang Y, Guo Y. Global chromosome rearrangement induced by CRISPR-Cas9 reshapes the genome and transcriptome of human cells. Nucleic Acids Res 2022; 50:3456-3474. [PMID: 35244719 PMCID: PMC8989517 DOI: 10.1093/nar/gkac153] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/29/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chromosome rearrangement plays important roles in development, carcinogenesis and evolution. However, its mechanism and subsequent effects are not fully understood. Large-scale chromosome rearrangement has been performed in the simple eukaryote, wine yeast, but the relative research in mammalian cells remains at the level of individual chromosome rearrangement due to technical limitations. In this study, we used CRISPR-Cas9 to target the highly repetitive human endogenous retrotransposons, LINE-1 and Alu, resulting in a large number of DNA double-strand breaks in the chromosomes. While this operation killed the majority of the cells, we eventually obtained live cell groups. Karyotype analysis and genome re-sequencing proved that we have achieved global chromosome rearrangement (GCR) in human cells. The copy number variations of the GCR genomes showed typical patterns observed in tumor genomes. The ATAC-seq and RNA-seq further revealed that the epigenetic and transcriptomic landscapes were deeply reshaped by GCR. Gene expressions related to p53 pathway, DNA repair, cell cycle and apoptosis were greatly altered to facilitate the cell survival. Our study provided a new application of CRISPR-Cas9 and a practical approach for GCR in complex mammalian genomes.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Guangwei Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zenghong Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangping Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ruowu Ma
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Jiawen Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiting Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yin Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yabin Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
17
|
Activated cell-cycle CDK4/CyclinD1-pRB-E2F1 signaling pathway is involved in the apoptosis of dorsal raphe nucleus in the rat model of PTSD. Biochem Biophys Res Commun 2022; 602:142-148. [PMID: 35272144 DOI: 10.1016/j.bbrc.2022.02.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 02/26/2022] [Indexed: 11/23/2022]
Abstract
Dysregulation of the dorsal raphe nucleus (DRN) has been revealed to contribute to cognitive and arousal impairments associated with post-traumatic stress disorder (PTSD) in an animal model. In our research an acute exposure to single prolonged stress (SPS) was used to establish PTSD rat model and the effects related to cell-cycle signaling pathway in DRN were examined. Apoptosis in DRN was detected by TUNEL staining, showing that DRN apoptosis number was sharply increased after SPS. SPS triggered cell-cycle CDK4/CyclinD1-pRB-E2F1 signal pathway. Treatment with CDK4 inhibitor Abemaciclib successfully attenuated the DRN apoptosis and rescued decreased spatial learning and memory abilities in SPS rats, indicating that activation of CDK4/CyclinD1-pRB-E2F1 pathway was involved in DRN apoptosis, which may be one of the pathogenesis for PTSD.
Collapse
|
18
|
Jiang Y, Zhang C, Lu L, Wang X, Liu H, Jiang Y, Hong L, Chen Y, Huang H, Guo D. The Prognostic Role of Cyclin D1 in Multiple Myeloma: A Systematic Review and Meta-Analysis. Technol Cancer Res Treat 2022; 21:15330338211065252. [PMID: 35098809 PMCID: PMC8811435 DOI: 10.1177/15330338211065252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: Cyclin D1 has been identified as a proto-oncogene associated with the uncontrolled proliferation of tumor cells. This systematic review and meta-analysis aims to estimate the prognostic significance of cyclin D1 in multiple myeloma (MM) patients. Method: We searched for qualified data in PubMed, Embase, and Web of Science up to February 2020. Data quality was assessed by the Newcastle-Ottawa scale (NOS). Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were used to evaluate the relationship between cyclin D1 expression and overall survival (OS), progression-free survival (PFS)/event-free survival (EFS) in patients with MM. Result: A total of 13 studies involving 961 patients were included. Overall, pooled analysis revealed significant heterogeneity between cyclin D1 expression and the prognosis of MM (OS, HR = 1.08, 95% CI: 0.71-1.64, I2 = 67.9%; PFS/EFS, HR = 0.97, 95% CI: 0.49-1.93, I2 = 85.8%). Subgroup analysis revealed that the prolongation of OS was relevant to increased expression of cyclin D1 in MM patients in the relapsed and refractory group (OS, HR = 0.46, 95% CI: 0.24-0.90). Another subgroup assessment of OS established that MM patients with CCND1 overexpression in the bortezomib group had longer survival time (HR = 0.30, 95% CI: 0.11-0.82), whereas, those overexpressing CCND1 in the conventional chemotherapy group had poor prognosis (HR = 2.19, 95% CI: 1.18-4.08). We also found that increased cyclin D1 expression correlated favorably with PFS in the autologous stem cell transplantation (ASCT) (HR = 0.45, 95% CI: 0.28-0.73) or reverse transcription-polymerase chain reaction (RT-PCR) group (HR = 0.41, 95% CI: 0.26-0.64). Conclusion: The result of this meta-analysis suggested that CCND1 overexpression might be a predictive biomarker for MM patients when treated with bortezomib, receiving ASCT, or in relapsed and refractory period.
Collapse
Affiliation(s)
- Yuwen Jiang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenlu Zhang
- Department of Hematology, Zhangjiagang Hospital Affiliated to Suzhou University, Suzhou, China
| | - Ling Lu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yijing Jiang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lemin Hong
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | | | - Hongming Huang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Dan Guo
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
19
|
Kim JY, Kim J, Bandara BMR, Tilakaratne WM, Kim D. Leaf extract of Osbeckia octandra induces apoptosis in oral squamous cell carcinoma cells. BMC Complement Med Ther 2022; 22:20. [PMID: 35078428 PMCID: PMC8787916 DOI: 10.1186/s12906-022-03505-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
Background Osbeckia octandra is a plant endemic to Sri Lanka and is used in ethnomedicine for treating various diseases. However, the anti-cancer properties of O. octandra are yet to be fully investigated. In the present study, we evaluated the anti-cancer effects of O. octandra on oral cancer cells. Methods Human oral cancer cell lines (HSC2, YD10B, YD38, YD9, and YD32) were used in this study. BrdU incorporation, cell cycle and annexin-V/PI staining were all evaluated using flow cytometry to determine the extent to which O. octandra leaf extract inhibits cell proliferation and induces apoptosis. Cell viability and reactive oxygen species (ROS) were also measured in order to investigate the anti-cancer effects of O. octandra extracts. Western blotting was performed to detect cell cycle related protein such as cyclin d1 and cdk4, and to detect apoptosis-related proteins such as Bcl-2, Bcl-XL, Bax, Caspase-9, Cleaved caspase-3, Fas, Caspase-8, and Bid. Results Leaf extract of O. octandra reduced oral squamous cell carcinoma (OSCC) cell viability in a dose-dependent manner. Leaf extract of O. octandra has non-toxic in normal keratinocytes. Also, O. octandra extract interrupted the DNA replication via G1 phase arrests, and this effect was independent of ROS generation. In the apoptosis-related experiments, the population of annexin V-positive cells increased upon treatment with O. octandra extract. Furthermore, the expression of anti-apoptotic protein (Bcl-2 and Bcl-xL) was decreased, whereas the expression of cleaved caspase-3 protein was increased in O. octandra-treated OSCC cells. Conclusions The results suggest that a leaf extract of O. octandra inhibited the proliferation of OSCC cells through G1 phase arrest and interrupting DNA replication. The leaf extract of O. octandra could trigger the apoptotic response via caspase 3 activation in OSCC cells. These results suggest that O. octandra has the potential to be developed as an alternative medicine for treating OSCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03505-4.
Collapse
Affiliation(s)
- Jue Young Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea.,Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Jin Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - B M Ratnayake Bandara
- Department of Chemistry, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Wanninayake M Tilakaratne
- Department of Oral Pathology, Faculty of Dental Sciences, Center for Research in Oral Cancer, University of Peradeniya, Peradeniya, 20400, Sri Lanka.,Department of Oral Maxillofacial Clinical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Dokyeong Kim
- Oral Cancer Research Institute, Department of Oral Pathology, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea. .,Precision Medicine Research Center, Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea.
| |
Collapse
|
20
|
Zhao Z, Zeng J, Guo Q, Pu K, Yang Y, Chen N, Zhang G, Zhao M, Zheng Q, Tang J, Hu Q. Berberine Suppresses Stemness and Tumorigenicity of Colorectal Cancer Stem-Like Cells by Inhibiting m 6A Methylation. Front Oncol 2021; 11:775418. [PMID: 34869024 PMCID: PMC8634032 DOI: 10.3389/fonc.2021.775418] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/21/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are able to survive after cancer therapies, resulting in tumor progression and recurrence, as is seen in colorectal cancer. Therapies targeting CSCs are regarded as novel and promising strategies for efficiently eradicating tumors. Berberine, an isoquinoline alkaloid extracted from the Chinese herbal medicine Coptis chinensis, was found to have antitumor activities against colorectal cancer, without knowing whether it exerts inhibitory effects on colorectal CSCs and the potential mechanisms. METHODS In this study, we examined the inhibitory roles of Berberine on CSCs derived from HCT116 and HT29 by culturing in serum-free medium. We also examined the effects of Berberine on m6A methylation via regulating fat mass and obesity-associated protein (FTO), by downregulating β-catenin. RESULTS We examined the effects of Berberine on the tumorigenicity, growth, and stemness of colorectal cancer stem-like cells. The regulatory effect of Berberine on N6-methyladenosine (m6A), an abundant mRNA modification, was also examined. Berberine treatment decreased cell proliferation by decreasing cyclin D1 and increasing p27 and p21 and subsequently induced cell cycle arrest at the G1/G0 phase. Berberine treatment also decreased colony formation and induced apoptosis. Berberine treatment transcriptionally increased FTO and thus decreased m6A methylation, which was reversed by both FTO knockdown and the addition of the FTO inhibitor FB23-2. Berberine induced FTO-related decreases in stemness in HCT116 and HT29 CSCs. Berberine treatment also increased chemosensitivity in CSCs and promoted chemotherapy agent-induced apoptosis. Moreover, we also found that Berberine treatment increased FTO by decreasing β-catenin, which is a negative regulator of FTO. CONCLUSIONS Our observation that Berberine effectively decreased m6A methylation by decreasing β-catenin and subsequently increased FTO suggests a role of Berberine in modulating stemness and malignant behaviors in colorectal CSCs.
Collapse
Affiliation(s)
- Ziyi Zhao
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Geriatric Department, Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
| | - Qiang Guo
- Department of Geriatrics, Chengdu First People’s Hospital, Chengdu, China
| | - Kunming Pu
- Department of Ultrasound, the Second People’s Hospital of Chengdu, Chengdu, China
| | - Yi Yang
- Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
21
|
Stingless Bee Propolis: New Insights for Anticancer Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2169017. [PMID: 34603594 PMCID: PMC8483912 DOI: 10.1155/2021/2169017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Natural products are important sources of biomolecules possessing antitumor activity and can be used as anticancer drug prototypes. The rich biodiversity of tropical and subtropical regions of the world provides considerable bioprospecting potential, including the potential of propolis produced by stingless bee species. Investigations of the potential of these products are extremely important, not only for providing a scientific basis for their use as adjuvants for existing drug therapies but also as a source of new and potent anticancer drugs. In this context, this article organizes the main studies describing the anticancer potential of propolis from different species of stingless bees with an emphasis on the chemical compounds, mechanisms of action, and cell death profiles. These mechanisms include apoptotic events; modulation of BAX, BAD, BCL2-L1 (BCL-2 like 1), and BCL-2; depolarization of the mitochondrial membrane; increased caspase-3 activity; poly (ADP-ribose) polymerase (PARP) cleavage; and cell death induction by necroptosis via receptor interacting protein kinase 1 (RIPK1) activation. Additionally, the correlation between compounds with antioxidant and anti-inflammatory potential is demonstrated that help in the prevention of cancer development. In summary, we highlight the important antitumor potential of propolis from stingless bees, but further preclinical and clinical trials are needed to explore the selectivity, efficacy, and safety of propolis.
Collapse
|
22
|
Wang Y, Liu Y, Xiang L, Han L, Yao X, Hu Y, Wu F. Cyclin D1b induces changes in the macrophage phenotype resulting in promotion of tumor metastasis. Exp Biol Med (Maywood) 2021; 246:2559-2569. [PMID: 34514884 DOI: 10.1177/15353702211038511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In breast cancer, tumor-associated macrophages with activated phenotypes promote tumor invasion and metastasis. The more aggressive mesenchymal-like breast cancer cells have a selective advantage, skewing macrophages toward the more immunosuppressive subtype. However, the mechanism underlying this shift is poorly understood. Cyclin D1b is a highly oncogenic variant of cyclin D1. Our previous study showed that non-metastatic epithelial-like breast cancer cells were highly metastatic in vivo when cyclin D1b was overexpressed. The present study determined whether cyclin D1b contributed to the interaction between breast cancer cells and macrophages. The results showed that cyclin D1b promoted the invasion of breast cancer cells in vitro. Specifically, through overexpression of cyclin D1b, breast cancer cells regulated the differentiation of macrophages into a more immunosuppressive M2 phenotype. Notably, tumor cells overexpressing cyclin D1b activated macrophages and induced migration of breast cancer cells. Further investigations indicated that SDF-1 mediated macrophage activation through breast cancer cells overexpressing cyclin D1b. These results revealed a previously unknown link between aggressive breast cancer cells and Tumor-associated macrophages, and highlighted the importance of cyclin D1b activity in the breast cancer microenvironment.
Collapse
Affiliation(s)
- Yuxue Wang
- Department of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Yi Liu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Lei Xiang
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Lintao Han
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Xiaowei Yao
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Yibing Hu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| | - Fenghua Wu
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan 430065, P.R. China
| |
Collapse
|
23
|
Rahmani F, Hashemzehi M, Avan A, Barneh F, Asgharzadeh F, Moradi Marjaneh R, Soleimani A, Parizadeh M, Ferns GA, Ghayour Mobarhan M, Ryzhikov M, Afshari AR, Ahmadian MR, Giovannetti E, Jafari M, Khazaei M, Hassanian SM. Rigosertib elicits potent anti-tumor responses in colorectal cancer by inhibiting Ras signaling pathway. Cell Signal 2021; 85:110069. [PMID: 34214591 DOI: 10.1016/j.cellsig.2021.110069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/02/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The therapeutic potency of Rigosertib (RGS) in the treatment of the myelodysplastic syndrome has been investigated previously, but little is known about its mechanisms of action. METHODS The present study integrates systems and molecular biology approaches to investigate the mechanisms of the anti-tumor effects of RGS, either alone or in combination with 5-FU in cellular and animal models of colorectal cancer (CRC). RESULTS The effects of RGS were more pronounced in dedifferentiated CRC cell types, compared to cell types that were epithelial-like. RGS inhibited cell proliferation and cell cycle progression in a cell-type specific manner, and that was dependent on the presence of mutations in KRAS, or its down-stream effectors. RGS increased both early and late apoptosis, by regulating the expression of p53, BAX and MDM2 in tumor model. We also found that RGS induced cell senescence in tumor tissues by increasing ROS generation, and impairing oxidant/anti-oxidant balance. RGS also inhibited angiogenesis and metastatic behavior of CRC cells, by regulating the expression of CD31, E-cadherin, and matrix metalloproteinases-2 and 9. CONCLUSION Our findings support the therapeutic potential of this potent RAS signaling inhibitor either alone or in combination with standard regimens for the management of patients with CRC.
Collapse
Affiliation(s)
- Farzad Rahmani
- Iranshahr University of Medical Sciences, Iranshahr, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Hashemzehi
- Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr, Iran; Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Farnaz Barneh
- Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Asgharzadeh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi Marjaneh
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Parizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University, School of Medicine, Saint Louis, MO, USA
| | - Amir Reza Afshari
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, AIRC Start-up, University Hospital of Pisa, Pisa, Italy; Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Mohieddin Jafari
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
24
|
Prognostic influences of BCL1 and BCL2 expression on disease-free survival in breast cancer. Sci Rep 2021; 11:11942. [PMID: 34099764 PMCID: PMC8184896 DOI: 10.1038/s41598-021-90506-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated the prognostic influences of BCL1 and BCL2 expression on disease-free survival in breast cancer patients. BCL1 and BCL2 expression statuses were assessed by immunohistochemistry using tissue microarrays from 393 breast cancer patients. The Kaplan–Meier estimator and log-rank test were used for survival analyses. The Cox proportional hazards model was used to calculate hazard ratio (HR) and the 95% confidence interval (CI) of survival analyses. BCL1 expression revealed no impact on survival. The high BCL2 group showed superior disease-free survival compared with the low BCL2 group (p = 0.002), especially regarding local recurrence-free survival (p = 0.045) and systemic recurrence-free survival (p = 0.002). BCL2 expression was a significant prognostic factor by univariable analysis (HR, 0.528; 95% CI, 0.353–0.790; p = 0.002) and by multivariable analysis (HR, 0.547; 95% CI, 0.362–0.826; p = 0.004). High BCL2 expression was associated with higher disease-free survival in the hormone receptor (HRc)-positive and human epidermal growth factor receptor 2 (HER2)-negative (HRc(+)/HER2(−)) subtype only (p = 0.002). The high BCL2 group was associated with positive estrogen receptor (ER), positive progesterone receptor (PR), low histologic grade, and age ≤ 50 years. BCL1 expression had no prognostic impact, but BCL2 expression was a significant independent prognostic factor. High BCL2 expression was associated with higher disease-free survival, especially regarding local recurrence and systemic recurrence. The prognostic effect of BCL2 expression was effective only in the HRc(+)/HER2(−) subtype. Favorable clinicopathologic features and a strong association with the ER/PR status could partly explain the superior prognosis of the high BCL2 group. BCL2 expression could be utilized to assess the prognosis of breast cancer patients in clinical settings.
Collapse
|
25
|
Endogenous Cyclin D1 Promotes the Rate of Onset and Magnitude of Mitogenic Signaling via Akt1 Ser473 Phosphorylation. Cell Rep 2021; 32:108151. [PMID: 32937140 PMCID: PMC7707112 DOI: 10.1016/j.celrep.2020.108151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 08/25/2020] [Indexed: 01/07/2023] Open
Abstract
Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates RB and functions as a collaborative nuclear oncogene. The serine threonine kinase Akt plays a pivotal role in the control of cellular metabolism, survival, and mitogenic signaling. Herein, Akt1-mediated phosphorylation of downstream substrates in the mammary gland is reduced by cyclin D1 genetic deletion and is induced by mammary-gland-targeted cyclin D1 overexpression. Cyclin D1 is associated with Akt1 and augments the rate of onset and maximal cellular Akt1 activity induced by mitogens. Cyclin D1 is identified in a cytoplasmic-membrane-associated pool, and cytoplasmic-membrane-localized cyclin D1—but not nuclear-localized cyclin D1—recapitulates Akt1 transcriptional function. These studies identify a novel extranuclear function of cyclin D1 to enhance proliferative functions via augmenting Akt1 phosphorylation at Ser473. Chen et al. show that the rate of onset and maximal cellular Akt1 activity induced by mitogens was augmented by cyclin D1. Cyclin D1 bound and phosphorylated Akt1 at Ser473. These studies identify a novel extranuclear function of cyclin D1 to enhance proliferative functions via augmenting Akt1 phosphorylation at Ser473.
Collapse
|
26
|
Hashemzehi M, Yavari N, Rahmani F, Asgharzadeh F, Soleimani A, Shakour N, Avan A, Hadizadeh F, Fakhraie M, Marjaneh RM, Ferns GA, Reisi P, Ryzhikov M, Khazaei M, Hassanian SM. Inhibition of transforming growth factor-beta by Tranilast reduces tumor growth and ameliorates fibrosis in colorectal cancer. EXCLI JOURNAL 2021; 20:601-613. [PMID: 33883985 PMCID: PMC8056055 DOI: 10.17179/excli2020-2932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Transforming Growth Factor-beta (TGF-β) is dysregulated in colorectal cancer and there is growing evidence that it is associated with a poor prognosis and chemo-resistance in several malignances, including CRC. In this study we have explored the therapeutic potential of targeting TGF-β using Tranilast in colon cancer. The anti-proliferative activity of Tranilast was evaluated in 2- and 3-dimensional cells. We used a xenograft model of colon cancer to investigate the activity of Tranilast alone or in combination with 5-FU on tumor growth using histological staining and biochemical studies, as well as gene expression analyses using RT-PCR and Western blotting. Tranilast alone or in combination with 5-FU inhibited tumor growth and was associated with a reduction of TGF-β expression and CD31 positive endothelial cells. Histological evaluation showed that Tranilast increased tumor necrosis and reduced tumor density and angiogenesis. Tranilast increased MDA and ROS production. It was also found that Tranilast reduced total thiol concentration and reduced SOD and catalase activity. Tranilast plus 5-FU was also found to attenuate collagen deposition, reducing tumor fibrosis in tumor xenografts. Our results show that Tranilast, a TGF inhibitor, in combination with 5-FU reduces tumor growth by inhibiting fibrosis and inducting ROS, thus supporting this therapeutic approach in CRC treatment.
Collapse
Affiliation(s)
- Milad Hashemzehi
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Negar Yavari
- Department of Medical Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzad Rahmani
- Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Fereshteh Asgharzadeh
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Fakhraie
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi Marjaneh
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Parham Reisi
- Department of Medical Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Majid Khazaei
- Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Tulluri V, Nemmara VV. Role of Antizyme Inhibitor Proteins in Cancers and Beyond. Onco Targets Ther 2021; 14:667-682. [PMID: 33531815 PMCID: PMC7846877 DOI: 10.2147/ott.s281157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/05/2020] [Indexed: 01/30/2023] Open
Abstract
Polyamines are multivalent organic cations essential for many cellular functions, including cell growth, differentiation, and proliferation. However, elevated polyamine levels are associated with a slew of pathological conditions, including multiple cancers. Intracellular polyamine levels are primarily controlled by the autoregulatory circuit comprising two different protein types, Antizymes (OAZ) and Antizyme Inhibitors (AZIN), which regulate the activity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC). While OAZ functions to decrease the intracellular polyamine levels by inhibiting ODC activity and exerting a negative control of polyamine uptake, AZIN operates to increase intracellular polyamine levels by binding and sequestering OAZ to relieve ODC inhibition and to increase polyamine uptake. Interestingly, OAZ and AZIN exhibit autoregulatory functions on polyamine independent pathways as well. A growing body of evidence demonstrates the dysregulation of AZIN expression in multiple cancers. Additionally, RNA editing of the Azin1 transcript results in a "gain-of-function" phenotype, which is shown to drive aggressive tumor types. This review will discuss the recent advances in AZIN's role in cancers via aberrant polyamine upregulation and its polyamine-independent protein regulation. This report will also highlight AZIN interaction with proteins outside the polyamine biosynthetic pathway and its potential implication to cancer pathogenesis. Finally, this review will reveal the protein interaction network of AZIN isoforms by analyzing three different interactome databases.
Collapse
Affiliation(s)
- Vennela Tulluri
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ08028, USA
| | - Venkatesh V Nemmara
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ08028, USA
| |
Collapse
|
28
|
Yu YC, Han JM, Kim S. Aminoacyl-tRNA synthetases and amino acid signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118889. [PMID: 33091505 DOI: 10.1016/j.bbamcr.2020.118889] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are a family of evolutionarily conserved housekeeping enzymes used for protein synthesis that have pivotal roles in the ligation of tRNA with their cognate amino acids. Recent advances in the structural and functional studies of ARSs have revealed many previously unknown biological functions beyond the classical catalytic roles. Sensing the sufficiency of intracellular nutrients such as amino acids, ATP, and fatty acids is a crucial aspect for every living organism, and it is closely connected to the regulation of diverse cellular physiologies. Notably, among ARSs, leucyl-tRNA synthetase 1 (LARS1) has been identified to perform specifically as a leucine sensor upstream of the amino acid-sensing pathway and thus participates in the coordinated control of protein synthesis and autophagy for cell growth. In addition to LARS1, other types of ARSs are also likely involved in the sensing and signaling of their cognate amino acids inside cells. Collectively, this review focuses on the mechanisms of ARSs interacting within amino acid signaling and proposes the possible role of ARSs as general intracellular amino acid sensors.
Collapse
Affiliation(s)
- Ya Chun Yu
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea
| | - Jung Min Han
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, South Korea.
| | - Sunghoon Kim
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, South Korea; Medicinal Bioconvergence Research Center, College of Pharmacy and College of Medicine, Gangnam Severance Hospital, Yonsei University, South Korea.
| |
Collapse
|
29
|
Wang PF, Qiu HY, He Y, Zhu HL. Cyclin-dependent kinase 4/6 inhibitors for cancer therapy: a patent review (2015 - 2019). Expert Opin Ther Pat 2020; 30:795-805. [PMID: 32945222 DOI: 10.1080/13543776.2020.1825686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cyclin-dependent kinases 4 and 6 (CDK4/6) along with their upstream/downstream components are pivotal regulators for the cell cycle progression. The dysfunction of CDK4/6 is the common feature and promoting factor in various cancer types. In-depth research on CDK4/6 inhibitors has afforded therapeutic agents, while new challenges and ideas are emerging concomitantly. AREAS COVERED This review focuses on patent publications related to CDK4/6 inhibitors which could be utilized for anti-cancer purposes during the period 2015-2019. EXPERT OPINION The increasingly comprehensive and thorough understanding of CDK4/6 inhibitors facilitates them to break through the current limitations. Hence the utilization of CDK4/6 inhibitors for cancer therapy in the near future is likely to be performed in diverse forms and for distinct purposes. Selectivity over kinases is still crucial to new agent development but shall be prudently dealt with. The gradually revealing of resistance and adverse events proposed another issue that calls for new tackling strategies.
Collapse
Affiliation(s)
- Peng-Fei Wang
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University , Chongqing, People's Republic of China
| | - Han-Yue Qiu
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University , Chongqing, People's Republic of China
| | - Yun He
- School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University , Chongqing, People's Republic of China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University , Nanjing, People's Republic of China
| |
Collapse
|
30
|
Gao Y, Yang H, Wang Y, Tian J, Li R, Zhou X. Evaluation of the inhibitory effect of tacrolimus combined with mycophenolate mofetil on mesangial cell proliferation based on the cell cycle. Int J Mol Med 2020; 46:1582-1592. [PMID: 32945359 PMCID: PMC7447332 DOI: 10.3892/ijmm.2020.4696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
The inhibition of mesangial cell proliferation has become an important therapy for the prevention of glomerular proliferation‑associated diseases. The combined application of immunosuppressants with multiple targets presents a novel direction in the treatment of kidney diseases. The present study was designed to explore the inhibitory effects of tacrolimus (TAC) combined with mycophenolate mofetil (MMF) on the proliferation of mesangial cells based on the cell cycle. In vitro, the levels of the proliferation index markers, Ki67 and cyclin D1, in human mesangial cells (HMCs) were determined by immunofluorescence staining and western blot analysis, respectively. In mice with lupus nephritis (LN), the proliferation of mesangial cells was determined using PAS and Masson's trichrome staining, while immunohistochemistry was used to detect Ki67 and western blot analysis was employed for the evaluation of cyclin D1 levels. The expression of platelet‑derived growth factor (PDGF), a proliferation‑associated protein, was estimated using immunohistochemistry and western blot analysis. In patients with LN, Ki67, cyclin D1 and PDGF expression was estimated by immunohistochemistry. The transforming growth factor‑β1/Smad pathway influenced by TAC and the p38 pathway influenced by MMF were also examined by western blot analysis. The results suggested that the combination of TAC and MMF at half the concentration based on the cell cycle was more effective than monotherapy in inhibiting mesangial cell proliferation in vitro and in vivo. TAC inhibited HMC proliferation by affecting the Smad2 signaling pathway. MMF inhibited HMC proliferation by affecting the p38 signaling pathway. Combined treatment with TAC and MMF significantly improved the clinical indexes of patients with LN without severe adverse effects. On the whole, the findings of the present study validate and reinforce the potential use of the combination of TAC and MMF for the treatment of mesangial proliferative diseases.
Collapse
Affiliation(s)
- Yanfang Gao
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi 030001, P.R. China
| | - Hui Yang
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi 030001, P.R. China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Rongshan Li
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaoshuang Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
31
|
Targeting of Lung Cancer Stem Cell Self-Renewal Pathway by a Small Molecule Verrucarin J. Stem Cell Rev Rep 2020; 15:601-611. [PMID: 30835047 DOI: 10.1007/s12015-019-09874-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite considerable advances made in understanding of lung cancer biology, there has been meek improvement in lung cancer treatment outcome with 4% to 5% increase in 5-year survival rates in the last four decades. Underlying problem of lung cancer recurrence and poor prognosis is attributed to the presence of cancer stem cells (CSCs) which possess the potential to differentiate, proliferate and trigger chemo-resistance, tumor progression and metastasis, despite initial elimination of the tumor. To address specific targeting of CSCs, we investigated the effects of a small molecule Verrucarin J (VJ) on lung cancer cell lines A549 and H1793. VJ significantly inhibited cell proliferation of both cell lines, with IC50 values of approximately 10 nM for A549 and 20 nM for H1793 respectively after 48 h of treatment. A549 cell line when treated with VJ, induced cell apoptosis with concomitant down regulation of key CSC specific genes- ALDH1, LGR5, OCT4 and CD133 in a dose-dependent manner. To delineate the molecular mechanism by which VJ targets lung cancer cells and CSCs, we determined the effects of VJ on CSC self-renewal pathways Wnt1/β-catenin and Notch1. Treatment of A549 cell line with VJ inhibited significantly both the signalling pathways, suggesting inhibition of expression of CSC genes by VJ through the inhibition of CSC self-renewal signalling pathways. Taken together, our results suggest that VJ may serve as a potent anticancer drug to target cancer cells and CSCs.
Collapse
|
32
|
Role of regulatory miRNAs of the Wnt/ β-catenin signaling pathway in tumorigenesis of breast cancer. Gene 2020; 754:144892. [PMID: 32534060 DOI: 10.1016/j.gene.2020.144892] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/30/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most commonly diagnosed malignancy in women worldwide. Recently, uncontrolled expression of microRNAs was detected in several human disorders like cardiovascular, neurological, intestinal and autoimmunity diseases. MicroRNAs (miRNAs) are now investigated as novel prognostic and diagnostic biomarkers for several solid tumors like breast, lung, and gastrointestinal cancers. Current data suggest that miRNAs are implicated in various oncogenic processes implicated in breast cancer carcinogenesis trough modulating canonical Wnt pathway. Aberrant activation of Wnt/b-catenin signaling was shown to be significantly associated with tumor progression and poor prognosis in patients with breast cancer. This review presents recent findings on the molecular mechanism of microRNAs in regulation of Wnt/β-catenin signaling involved in tumorigenesis of breast cancer.
Collapse
|
33
|
Yan X, Gao M, Zhang P, Ouyang G, Mu Q, Xu K. MiR-181a functions as an oncogene by regulating CCND1 in multiple myeloma. Oncol Lett 2020; 20:758-764. [PMID: 32566002 PMCID: PMC7286114 DOI: 10.3892/ol.2020.11579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/04/2020] [Indexed: 01/08/2023] Open
Abstract
MicroRNA-181a (miR-181a) has been demonstrated to be upregulated in patients with multiple myeloma (MM). In several studies, miR-181a has been demonstrated to be significantly overexpressed in MM; however, its potential role in development and progression of MM remains unknown. In the present study, the functions of miR-181a and the potential underlying molecular mechanisms in the pathogenesis of MM were examined. Increased expression of miR-181a was observed in bone marrow samples from patients with MM and the MM RPMI8226 cell line. The role of miR-181a was examined and it was demonstrated that it participated in the proliferation and migration processes of the MM cell line. Furthermore, it was demonstrated that the downregulation of miR-181a inhibited the expression of CCND1, a cell cycle regulatory gene, and caused cell cycle arrest in MM cells. The results of the present study suggested that miR-181a functions as an onco-miRNA in MM, which serves regulatory roles by upregulating expression of CCND1 and may therefore serve as a potential target in patients with MM.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Minjie Gao
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Ping Zhang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Guifang Ouyang
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Qitian Mu
- Stem Cell Laboratory, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Kaihong Xu
- Department of Hematology, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
34
|
Targeting of oncogenic signaling pathways by berberine for treatment of colorectal cancer. Med Oncol 2020; 37:49. [PMID: 32303850 DOI: 10.1007/s12032-020-01367-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Studies indicate that inhibiting a single signaling pathway or one single product of a gene is insufficient for the prevention and treatment of cancer. This is due to the fact that dysregulation must occur in more than 500 genes in order to produce a cancerous phenotype. Despite this evidence, available drugs used for cancer treatment focus on a single target. Meanwhile, berberine as a nutraceutical is capable of targeting various processes involved in tumor development including proliferation, invasion, angiogenesis, and metastasis. In comparison with synthetic agents, berberine is cheaper, safer, and more available. Berberine has shown anti-inflammatory properties which make it an ideal option in order to prevent inflammation-associated cancers. Colorectal cancer is one of the most common cancers all over the world and its incidence is increasing each day. Therefore, further investigations about berberine could be helpful in the discovery of novel agents for preventing and/or treating colorectal cancer. This review emphasizes the studies investigating the roles of berberine in colorectal cancer such as controlling cell signaling pathways, inducing apoptosis, regulating microRNAs, attenuating oxidative stress, and affecting inflammation.
Collapse
|
35
|
Effects of the Bone/Bone Marrow Microenvironments on Prostate Cancer Cells and CD59 Expression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2753414. [PMID: 32337233 PMCID: PMC7165328 DOI: 10.1155/2020/2753414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/02/2020] [Accepted: 02/21/2020] [Indexed: 11/17/2022]
Abstract
Objective To evaluate the effects of human bone marrow mesenchymal stem cells (hBMSCs) and osteoblasts (hFOB1.19) on PC3 prostate cancer cells. Methods To simulate the in vivo interaction between the bone/bone marrow microenvironments and prostate cancer cells, we established cocultures of PC3 cells with hBMSC or hFOB1.19 cells and evaluated their effects on the proliferation, cell cycle distribution, cell migration, and invasion of PC3 cells. Quantitative reverse transcription polymerase chain reaction was used to detect CD59 mRNA expression in PC3 cells. The expression of receptor activator of nuclear factor- (NF-) κB (RANK), RANK ligand (RANKL), osteoprotegerin (OPG), CD59, NF-κB (p50 subunit), and cyclin D1 in PC3 cells was analyzed by immunofluorescence and western blotting. Results hBMSCs and hFOB1.19 cells enhanced the proliferation, migration, and invasion of PC3 cells; increased the proportion of PC3 cells in the S and G2/M phases of the cell cycle; and upregulated RANK, RANKL, OPG, CD59, cyclin D1, and NF-κB (p50 subunit) expression by PC3 cells. The RANKL inhibitor, scutellarin, inhibited these effects in PC3-hFOB1.19 cocultures. Conclusion hBMSCs and hFOB1.19 cells modulate the phenotype of PC3 prostate cancer cells and the expression of CD59 by activating the RANK/RANKL/OPG signaling pathway.
Collapse
|
36
|
Common Functions of Disordered Proteins across Evolutionary Distant Organisms. Int J Mol Sci 2020; 21:ijms21062105. [PMID: 32204351 PMCID: PMC7139818 DOI: 10.3390/ijms21062105] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered proteins and regions typically lack a well-defined structure and thus fall outside the scope of the classic sequence–structure–function relationship. Hence, classic sequence- or structure-based bioinformatic approaches are often not well suited to identify homology or predict the function of unknown intrinsically disordered proteins. Here, we give selected examples of intrinsic disorder in plant proteins and present how protein function is shared, altered or distinct in evolutionary distant organisms. Furthermore, we explore how examining the specific role of disorder across different phyla can provide a better understanding of the common features that protein disorder contributes to the respective biological mechanism.
Collapse
|
37
|
Identification of extracellular vesicles-transported miRNAs in Erlotinib-resistant head and neck squamous cell carcinoma. J Cell Commun Signal 2020; 14:389-402. [PMID: 32157550 DOI: 10.1007/s12079-020-00546-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
Erlotinib is an oral tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR) pathway. Although our previous study has proved the efficacy of Erlotinib in head and neck squamous cell carcinoma (HNSCC), it has also demonstrated poor clinical response rates and disappointing results in clinical trials for HNSCC to date. In this study, we discovered elevated cell proliferation and invasion ability in erlotinib-resistant HNSCC cells. The contributions of miRNAs within extracellular vesicles (EVs) during the formation of chemoresistance were investigated in this study. Among up-regulated miRNAs in EVs derived from resistant cells, miR-7704, miR-21-5p and miR-3960 showed the most pro-tumorigenic alterations after transfection. Conversely, let-7i-5p, miR-619-5p and miR-30e-3p demonstrated tumor suppressive effects. By performing qRT-PCR and Western blot analysis, we found Vimentin played a pivotal role in modulating erlotinib resistance. Additionally, immune system was highlighted in the GO and KEGG analyses. Transfection of miR-7704, miR-21-5p significantly elevated CTLA-4 and LAG3 mRNA levels. Meanwhile, miR-3960 increased the relative mRNA expression of TIM3 in HNSCC cells. Transfection of let-7i-5p, miR-619-5p and miR-30e-3p decreased these checkpoint factors. To conclude, the present study described the roles of EVs-transmitted miRNAs on erlotinib resistance. Targeting the disregulated immune system could be the effective method to overcome erlotinib-resistance in HNSCC cells.
Collapse
|
38
|
Guo L, Yang T. Oxymatrine Inhibits the Proliferation and Invasion of Breast Cancer Cells via the PI3K Pathway. Cancer Manag Res 2019; 11:10499-10508. [PMID: 31853201 PMCID: PMC6916680 DOI: 10.2147/cmar.s221950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/04/2019] [Indexed: 01/12/2023] Open
Abstract
Purpose Oxymatrine has been reported to possess anti-cancer activity, but its role in breast cancer (BC) is weakly defined. We investigated the anti-cancer effects of oxymatrine in human BC cells, and the underlying molecular mechanisms of these effects. Methods BC lines were treated with oxymatrine. The MTT assay was conducted to evaluate cell viability. The cell cycle and apoptosis of BC cells were analyzed using flow cytometry and Hoechst 33258 staining. Transwell™ assays were undertaken to measure the migratory and invasive abilities of MCF-7 or MDA-MB-231 cells. Expression of phosphatidylinositol 3-kinase (PI3K), Akt, cyclin D1, cluster of differentiation (CD)K2, PARP, Gsk3β, caspase-3, matrix metalloproteinase (MMP)2 and Bax at protein and RNA levels was measured by Western blotting and quantitative real-time polymerase chain reaction. Results Oxymatrine inhibited the proliferation of BC cells in a time-dependent manner. It induced apoptosis in a dose- and time-dependent way according to Annexin V and Hoechst 33258 staining. Oxymatrine could inhibit the invasion of BC cells as shown by the Transwell assay. Oxymatrine inhibited expression of B-cell lymphoma-2 while increasing that of Bax as well as increasing expression of caspase-3 and caspase-9. Addition of oxymatrine to BC cells attenuated the PI3K/Akt signaling pathway cascade, as evidenced by dephosphorylation of P13K and Akt. Conclusion Oxymatrine exerts its anti-tumor effects in BC cells by abolishing the PI3K pathway. Oxymatrine may be a new compound for BC treatment.
Collapse
Affiliation(s)
- Lin Guo
- Department of Gastrointestinal and Nutriology Surgery, Shengjing Hospital of China Medical University, Shenyang, LiaoNing 110004, People's Republic of China
| | - Tengfei Yang
- The Department of Social Service, Shengjing Hospital of China Medical University, Shenyang, LiaoNing 110004, People's Republic of China
| |
Collapse
|
39
|
6-Gingerol induces cell-cycle G1-phase arrest through AKT-GSK 3β-cyclin D1 pathway in renal-cell carcinoma. Cancer Chemother Pharmacol 2019; 85:379-390. [PMID: 31832810 PMCID: PMC7015962 DOI: 10.1007/s00280-019-03999-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023]
Abstract
Purpose 6-Gingerol, a major biochemical and pharmacological active ingredient of ginger, has shown anti-inflammatory and antitumor activities against various cancers. Searching for natural products with fewer side effects for developing adjunctive therapeutic options is necessary. Methods The effects of 6-gingerol on proliferation, colony formation, and cell cycle in RCC cells were detected by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, colony formation assay, and propidium iodide (PI) staining, respectively. Western blotting, an immunofluorescence assay, and immunohistochemical staining were performed to assess the expression of relevant proteins. A subcutaneous tumor model was set up to investigate the 6-gingerol effects on tumor growth in vivo, and the pharmacokinetics of 6-gingerol in mice were detected by LC/MS assays. Results 6-Gingerol treatment exerted time- and dose-dependent inhibition of the growth and colony formation of ACHN, 786-O, and 769-P cells, leading to a concomitant induction of cell-cycle G1-phase arrest and decrease in Ki-67 expression in the cell nucleus. Western-blotting results showed that 6-gingerol reduces phosphorylation of protein kinase B (AKT) Ser 473, cyclin-dependent kinases (CDK4), and cyclin D1 and, meanwhile, increases glycogen synthase kinase (GSK 3β) protein amount. Furthermore, the efficacy of 6-gingerol was demonstrated in an in vivo murine model of 786-O. Conclusion The above results indicate that 6-gingerol can induce cell-cycle arrest and cell-growth inhibition through the AKT–GSK 3β–cyclin D1 signaling pathway in vitro and in vivo, suggesting that 6-gingerol should be useful for renal-cell carcinoma treatment. Electronic supplementary material The online version of this article (10.1007/s00280-019-03999-9) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
D-site binding protein regulates cell proliferation through mediating cell cycle progression in rat mesangial cells. Tissue Cell 2019; 61:35-43. [PMID: 31759405 DOI: 10.1016/j.tice.2019.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 11/22/2022]
Abstract
Over proliferation of glomerular mesangial cells (MCs) disturbs mesangial homeostasis and leads to renal damage in mesangioproliferative glomerulonephritis. It is documented that transcriptional factors may be involved in the proliferation of MCs. This study aims to identify the key transcriptional factor that prevents the MCs from over proliferation and to clarify its regulatory mechanism. Microarray analysis of glomeruli isolated from Sprague-Dawley rats (SD rats) with or without anti-Thy1 nephritis (anti-Thy1N) showed that the cell cycle pathway was the most enriched pathway in anti-Thy1N model, and the D-site binding protein (DBP) ranked first in the cluster of transcription factors. Compare with normal rats, DBP is markedly decreased accompanied by an over proliferation of MCs in rats with anti-Thy1N. The cell proliferative capacity was measured by 5-Ethynyl-2'-deoxyuridine (EdU) assay in primary rat MCs with DBP knockdown or overexpression, respectively. The results showed that the knockdown of DBP significantly promoted the proliferation of MCs, whereas the overexpression of DBP inhibited the MCs' proliferation, compared to that of the control cells. Further study indicated that DBP arrested G1/S-phase transition by inhibiting the expression of p21, p27 and inducing the Cyclin D1 expression in MCs. The current data suggest that DBP effectively inhibits the proliferation of MCs through G1 phase arrest, and the decrease of DBP may induce mesangial over proliferation in rats with anti-Thy1N.
Collapse
|
41
|
Chen Y, Liu X, Wang H, Liu S, Hu N, Li X. Akt Regulated Phosphorylation of GSK-3β/Cyclin D1, p21 and p27 Contributes to Cell Proliferation Through Cell Cycle Progression From G1 to S/G2M Phase in Low-Dose Arsenite Exposed HaCat Cells. Front Pharmacol 2019; 10:1176. [PMID: 31680960 PMCID: PMC6798184 DOI: 10.3389/fphar.2019.01176] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Arsenic is a toxic environmental contaminant. Long-term exposure to arsenic through drinking water induces human cancers. However, it is as yet uncertain about the mechanisms of arsenic induced carcinogenesis. Although the effects of low-dose arsenicals on proliferation and cell cycle have been revealed by short time exposure, the evidences for long-term exposure were seldom reported. The detailed mechanism has been unclear and supplemented constantly. In the present study, we used normal human keratinocytes (HaCat) to study the effects of long-term, low-dose sodium arsenite (NaAsO2) exposure on cell proliferation with emphasis on the Akt regulated cell cycle signaling pathways. Treatment of NaAsO2 resulted in increased cell proliferation and promotion of cell cycle progression from G1 to S/G2M phase, both of which could be attenuated by MK2206, a highly selective inhibitor of Akt. Along with the increased expression of phospho-Akt (p-Akt, Ser 473), increased expression of p-GSK-3β (Ser 9), p-p21 (Thr 145), p-p27 (Thr 157) and total cyclin D1, and decreased expression of p-cyclin D1 (Thr 286), p21 and p27 were also found in the NaAsO2 exposed cells. Treatment of MK2206 markedly reversed the expression of all of the above proteins. Our findings indicated that the phosphorylated activation of Akt played a role in the proliferation of HaCat cells upon long-term, low-dose NaAsO2 exposure through the phosphorylative regulation of its downstream cell cycle regulating factors of GSK-3β/cyclin D1, p21 and p27, which could induce the promotion of cell cycle progression from G1 to S/G2M phase.
Collapse
Affiliation(s)
- Yao Chen
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Xudan Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Huanhuan Wang
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Shiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Nannan Hu
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| | - Xin Li
- Department of Occupational and Environmental Health, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
42
|
Niu Y, Xu J, Sun T. Cyclin-Dependent Kinases 4/6 Inhibitors in Breast Cancer: Current Status, Resistance, and Combination Strategies. J Cancer 2019; 10:5504-5517. [PMID: 31632494 PMCID: PMC6775706 DOI: 10.7150/jca.32628] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 08/06/2019] [Indexed: 12/26/2022] Open
Abstract
Dysregulated activation of the cyclin-dependent kinases (CDKs) 4/6, leading to uncontrolled cell division, is hallmark of cancers. Further study of the cell cycle will advance the cancer treatment. As powerful and effective drugs, inhibitors of CDK 4/6 have been widely used in clinical practice for several malignancies, particularly against breast cancers driven by the estrogen receptor (ER). Three CDK4/6 inhibitors, including palbociclib (PD0332991), ribociclib (LEE011) and abemaciclib (LY2835219), have been approved by the US Food and Drug Administration (FDA) for the treatment of hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced or metastatic breast cancer. However, CDK4/6 inhibitors act downstream of many mitogenic signaling pathways, and this has implications for resistance. It is worth to note that the mechanisms of resistance are not very clear. Up to now, a small number of preclinical and clinical studies have explored potential mechanisms of CDK4/6 inhibitors resistance in breast cancer. On this basis, rational and effective combination therapy is under development. Here we review the current knowledge about the mechanisms and efficacy of CDK4/6 inhibitors, and summarize data on resistance mechanisms to make future combination therapies more accurate and reasonable.
Collapse
Affiliation(s)
- Ying Niu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110042, P.R. China
| | - Junnan Xu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110042, P.R. China.,Key Laboratory of Liaoning Breast Cancer Research, Shenyang, Liaoning 110042, P.R. China
| | - Tao Sun
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xiaoheyan Road, Dadong, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
43
|
Zhou R, Wu K, Su M, Li R. Bioinformatic and experimental data decipher the pharmacological targets and mechanisms of plumbagin against hepatocellular carcinoma. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103200. [PMID: 31158732 DOI: 10.1016/j.etap.2019.103200] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE Plumbagin exerts effective anti-hepatocellular carcinoma (HCC) benefits, however, the detailed mechanisms behind these effects are not yet completely elucidated. The pharmacological targets and molecular mechanisms of plumbagin against HCC were revealed through conducting network pharmacology approach before experimentative verification. METHODS The web-accessible databases of herbal ingredients' targets (HIT), Swiss-Target-Prediction and Super-Pred were used to predict the therapeutic targets of plumbagin, followed by combined with pathogenic targets of HCC from oncogenomic database of hepatocellular carcinoma (OncoDB.HCC) and Liverome databases to obtain the predominant targets of plumbagin-treating HCC. The database for annotation, visualization and integrated discovery (DAVID) was applied to output the gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment by use of all predominant targets for computerized visualization. The validated data of human and cell culture were subjected to a group of medical imaging, biochemical tests and immunostaining, respectively. RESULTS As revealed in bioinformatic data, 19 predominant targets of plumbagin-treating HCC were obtained, and 5 top targets of TP53, MAPK1, MAP2K1, RAF1 and CCND1 were the most important biomolecules in anti-HCC effects exerted by plumbagin. Other identifiable 102 GO items were showed, including 66 biological processes, and 12 cellular components, 24 molecular functions. And 67 KEGG pathways were mainly involved in neoplastic signaling. In human data, HCC sections showed increased expressions of hepatocellular TP53, MAPK1, accompanied with positive clinical imaging results for HCC. In plumbagin-treated HepG2 cells, reduced TP53, MAPK1 protein expressions were observed, accompanied with cell arrest and apoptosis. CONCLUSION Collectively, the pharmacological targets and mechanisms of plumbagin-treating HCC were predicted and integrated through the method of network pharmacology, followed by some investigative validations. Interestingly, these 5 predominant biomolecules may be the potential targets for screening and treating HCC.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Hepatobiliary Surgery, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, Guangxi, PR China
| | - Ka Wu
- Department of Pharmacy, The Second People's Hospital of Nanning City, The Third Affiliated Hospital of Guangxi Medical University, Guangxi, Nanning, PR China
| | - Min Su
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China
| | - Rong Li
- Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China.
| |
Collapse
|
44
|
Zvarych L, Golyarnik N, Ilienko I. Level of Cyclin D1 protein in peripheral blood lymphocytes of Chornobyl clean-up workers in remote period after radiation exposure. SCIENCERISE: BIOLOGICAL SCIENCE 2019. [DOI: 10.15587/2519-8025.2019.165703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Di Sante G, Pagé J, Jiao X, Nawab O, Cristofanilli M, Skordalakes E, Pestell RG. Recent advances with cyclin-dependent kinase inhibitors: therapeutic agents for breast cancer and their role in immuno-oncology. Expert Rev Anticancer Ther 2019; 19:569-587. [PMID: 31219365 PMCID: PMC6834352 DOI: 10.1080/14737140.2019.1615889] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
Abstract
Introduction: Collaborative interactions between several diverse biological processes govern the onset and progression of breast cancer. These processes include alterations in cellular metabolism, anti-tumor immune responses, DNA damage repair, proliferation, anti-apoptotic signals, autophagy, epithelial-mesenchymal transition, components of the non-coding genome or onco-mIRs, cancer stem cells and cellular invasiveness. The last two decades have revealed that each of these processes are also directly regulated by a component of the cell cycle apparatus, cyclin D1. Area covered: The current review is provided to update recent developments in the clinical application of cyclin/CDK inhibitors to breast cancer with a focus on the anti-tumor immune response. Expert opinion: The cyclin D1 gene encodes the regulatory subunit of a proline-directed serine-threonine kinase that phosphorylates several substrates. CDKs possess phosphorylation site selectivity, with the phosphate-acceptor residue preceding a proline. Several important proteins are substrates including all three retinoblastoma proteins, NRF1, GCN5, and FOXM1. Over 280 cyclin D3/CDK6 substrates have b\een identified. Given the diversity of substrates for cyclin/CDKs, and the altered thresholds for substrate phosphorylation that occurs during the cell cycle, it is exciting that small molecular inhibitors targeting cyclin D/CDK activity have encouraging results in specific tumors.
Collapse
Affiliation(s)
- Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Jessica Pagé
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Omar Nawab
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
| | - Massimo Cristofanilli
- Department of Medicine-Hematology and Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
- Xavier University School of Medicine, Woodbury, NY, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
46
|
Wang L, Yang H, Hu L, Hu D, Ma S, Sun X, Jiang L, Song J, Ji L, Masau JF, Zhang H, Qian K. CDKN1C (P57): one of the determinants of human endometrial stromal cell decidualization. Biol Reprod 2019; 98:277-285. [PMID: 29325014 DOI: 10.1093/biolre/iox187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 01/07/2018] [Indexed: 01/14/2023] Open
Abstract
Decidualization is regulated by crosstalk of progesterone and the cAMP pathway. It involves extensive reprogramming of gene expression and includes a wide range of functions. To investigate how cell cycle regulatory genes drive the human endometrial stromal cell (ESC) exit cell cycle and enter differentiation, primary cultured ESC was treated with 8-Br-cAMP and MPA and cell cycle distribution was investigated by flow cytometry. High-throughput cell cycle regulatory gene expression was also studied by microarray. To validate the results of microarray chip, immunohistochemistry and semi-quantitative method of optical density were used to analyze the expression of cell cycle regulator proteins in proliferative phase of endometrium (n = 6) and early pregnancy decidua (n = 6). In addition, we selected cyclin-dependent kinase inhibitor 1c (CDKN1C, also known as P57) and cyclin-dependent kinase inhibitor 2b (CDKN2B, also known as P15) in order to study their role in the process of decidualization by the RNAi method. ESC was arrested at G0/G1 checkpoints during decidualization. Cell cycle regulatory genes P57 and P15 were upregulated, while cyclin D1 (CCND1), cyclin-dependent kinase 2 (CDK2), and cell division cycle protein 2 homolog (CDC2) were downregulated during ESC differentiation both in vitro and vivo. P57 siRNA impaired ESC decidualization and caused different morphological and ultrastructural changes as well as a relatively low secretion of prolactin, but P15 siRNA had no effects. We concluded that P15, CCND1, CDK2, and CDC2 may participate in ESC withdraw from the cell cycle and go into differentiation both in vitro and in vivo. P57 is one of the key determinants of ESC differentiation due to its effect on the cell cycle distribution, but its association with the decidua-specific transcription factor needs further investigation.
Collapse
Affiliation(s)
- Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hui Yang
- Department of Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Linli Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Dan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuxia Ma
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuejiao Sun
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liu Jiang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jianyuan Song
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Licheng Ji
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jackson Ferdinand Masau
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Kun Qian
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
47
|
Lan J, Li M, Wang H. CCDN1 rs603965 polymorphism may serve as a genetic biomarker of brain tumor: A meta-analysis of 5,769 subjects. Mol Genet Genomic Med 2019; 7:e00655. [PMID: 30972946 PMCID: PMC6565547 DOI: 10.1002/mgg3.655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 01/11/2023] Open
Abstract
Introduction Some studies already tried to assess the associations between cyclin D1 (CCND1) polymorphisms and brain tumor. However, the results of these studies were not consistent. Thus, we performed the present meta‐analysis to explore the relationship between CCND1 polymorphisms and brain tumor in a larger pooled population. Methods PubMed, Web of Science, Embase, and CNKI were searched for related articles. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to assess the potential associations. Results Totally nine studies with 5,769 subjects were analyzed. A significant association with brain tumor susceptibility was observed for the rs603965 polymorphism in GG versus GA + AA (dominant comparison, p = 0.003, OR = 0.72, 95% CI 0.57–0.89, I2 = 64%), AA versus GG + GA (recessive comparison, p = 0.004, OR = 1.46, 95% CI 1.13–1.88, I2 = 67%), and G versus A (allele comparison, p = 0.0004, OR = 0.77, 95% CI 0.66–0.89, I2 = 66%) in overall population. Further subgroup analyses by ethnicity yielded similar positive results in both Asians and Caucasians. Moreover, in stratified analyses by type of disease, we noticed that the rs603965 polymorphism was significantly associated with the susceptibility to glioma, but such positive results were not detected in pituitary adenoma or meningioma. Additionally, a significant association with tumor grade was also observed for the rs603965 polymorphism in G versus A (allele comparison, p = 0.02, OR = 0.74, 95% CI 0.59–0.95, I2 = 26%). Conclusions Our findings suggested that CCND1 rs603965 polymorphism may serve as a potential genetic biomarker of brain tumor, especially for glioma.
Collapse
Affiliation(s)
- Jiarong Lan
- Department of Nephrology, Huzhou Hospital of Traditional Chinese Medicine Affiliated Zhejiang University of Traditional Chinese Medicine, Huzhou, Zhejiang, China
| | - Min Li
- Department of Endocrinology, Huzhou Hospital of Traditional Chinese Medicine Affiliated Zhejiang University of Traditional Chinese Medicine, Huzhou, Zhejiang, China
| | - Haifeng Wang
- Department of Neurosurgery, Ningbo No. 1 Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
48
|
Palombo R, Frisone P, Fidaleo M, Mercatelli N, Sette C, Paronetto MP. The Promoter-Associated Noncoding RNA pncCCND1_B Assembles a Protein-RNA Complex to Regulate Cyclin D1 Transcription in Ewing Sarcoma. Cancer Res 2019; 79:3570-3582. [PMID: 31072811 DOI: 10.1158/0008-5472.can-18-2403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/05/2018] [Accepted: 05/03/2019] [Indexed: 11/16/2022]
Abstract
Most Ewing sarcomas are characterized by the in-frame chromosomal translocation t(11;22) generating the EWS-FLI1 oncogene. EWS-FLI1 protein interacts with the RNA helicase DHX9 and affects transcription and processing of genes involved in neoplastic transformation, including CCND1 (the cyclin D1 gene), which contributes to cell-cycle dysregulation in cancer. In this study, we found that CCND1 expression is significantly higher in patients with Ewing sarcoma compared with other sarcomas and that the pncCCND1_B RNA, a previously uncharacterized CCND1 promoter-associated noncoding (pnc) transcript, is expressed in Ewing sarcoma cells. PncCCND1_B interacted with the RNA-binding protein Sam68 and repressed CCND1 expression. Notably, knockdown of Sam68 affected pncCCND1_B subcellular localization and cyclin D1 expression. Pharmacologic impairment of DHX9/EWS-FLI1 interaction promoted RNA-dependent association of Sam68 with DHX9 and recruitment of Sam68 to the CCND1 promoter, thus repressing it. Conversely, mitogenic stimulation of Ewing sarcoma cells with IGF1 impaired Sam68/DHX9 interaction and positively regulated CCND1 expression. These studies uncover a fine-tuned modulation of the proto-oncogene CCND1 in Ewing sarcoma cells via alternative complexes formed by DHX9 with either EWS-FLI1 or pncCCND1_B-Sam68. SIGNIFICANCE: A pncRNA-based mechanism represses expression of CCND1 through the formation of a protein-RNA complex and provides new therapeutic opportunities for patients with Ewing sarcoma.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/14/3570/F1.large.jpg.
Collapse
Affiliation(s)
- Ramona Palombo
- Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, Rome, Italy
| | - Paola Frisone
- Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, Rome, Italy
| | - Marco Fidaleo
- Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, Rome, Italy
| | - Neri Mercatelli
- Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, Rome, Italy
| | - Claudio Sette
- Institute of Human Anatomy and Cell Biology, Catholic University of the Sacred Hearth, Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia, Via del Fosso di Fiorano, Rome, Italy. .,Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Piazza Lauro de Bosis 6, Rome, Italy
| |
Collapse
|
49
|
Pleet ML, DeMarino C, Stonier SW, Dye JM, Jacobson S, Aman MJ, Kashanchi F. Extracellular Vesicles and Ebola Virus: A New Mechanism of Immune Evasion. Viruses 2019; 11:v11050410. [PMID: 31052499 PMCID: PMC6563240 DOI: 10.3390/v11050410] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
Ebola virus (EBOV) disease can result in a range of symptoms anywhere from virtually asymptomatic to severe hemorrhagic fever during acute infection. Additionally, spans of asymptomatic persistence in recovering survivors is possible, during which transmission of the virus may occur. In acute infection, substantial cytokine storm and bystander lymphocyte apoptosis take place, resulting in uncontrolled, systemic inflammation in affected individuals. Recently, studies have demonstrated the presence of EBOV proteins VP40, glycoprotein (GP), and nucleoprotein (NP) packaged into extracellular vesicles (EVs) during infection. EVs containing EBOV proteins have been shown to induce apoptosis in recipient immune cells, as well as contain pro-inflammatory cytokines. In this manuscript, we review the current field of knowledge on EBOV EVs including the mechanisms of their biogenesis, their cargo and their effects in recipient cells. Furthermore, we discuss some of the effects that may be induced by EBOV EVs that have not yet been characterized and highlight the remaining questions and future directions.
Collapse
Affiliation(s)
- Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Spencer W Stonier
- Department, Emergent BioSolutions, Gaithersburg, MD 20879, USA.
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - John M Dye
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - M Javad Aman
- Department. Integrated BioTherapeutics, Inc., Gaithersburg, MD 20850, USA.
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
50
|
Wang S, Wang X, Gao Y, Peng Y, Dong N, Xie Q, Zhang X, Wu Y, Li M, Li JL. RN181 is a tumour suppressor in gastric cancer by regulation of the ERK/MAPK-cyclin D1/CDK4 pathway. J Pathol 2019; 248:204-216. [PMID: 30714150 PMCID: PMC6593865 DOI: 10.1002/path.5246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 12/22/2018] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
RN181, a RING finger domain-containing protein, is an E3 ubiquitin ligase. However, its biological function and clinical significance in cancer biology are obscure. Here, we report that RN181 expression is significantly down-regulated in 165 tumour tissues of gastric carcinoma (GC) versus adjacent non-tumour tissues, and inversely associated with tumour differentiation, tumour size, clinical stage, and patient's overall survival. Alterations of RN181 expression in GC cells by retrovirus-transduced up-regulation and down-regulation demonstrated that RN181 functions as a tumour suppressor to inhibit growth of GC in both in vitro culture and in vivo animal models by decreasing tumour cell proliferation and increasing tumour cell apoptosis. Cell cycle analysis revealed that RN181 controls the cell cycle transition from G1 to S phase. Mechanistic studies demonstrated that RN181 inhibits ERK/MAPK signalling, thereby regulating the activity of cyclin D1-CDK4, and consequently controlling progression in the cell cycle from G1 to S phase. Restoring CDK4 in GC cells rescued the inhibitory phenotype produced by RN181 in vitro and in vivo, suggesting a dominant role of CDK4 in control of the tumour growth by RN181. Importantly, RN181 expression is inversely correlated with the expression of cyclin D1 and CDK4 in GC clinical samples, substantiating the role of the RN181-cyclin D1/CDK4 pathway in control of the tumour growth of GC. Our results provide new insights into the pathogenesis and development of GC and rationale for developing novel intervention strategies against GC by disruption of ERK/MAPK-cyclin D1/CDK4 signalling. In addition, RN181 may serve as a novel biomarker for predicting clinical outcome of GC. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Suihai Wang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, PR China
| | - Xiaobo Wang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, PR China
| | - Yanjun Gao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, PR China
| | - Yingxia Peng
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, PR China
| | - Ningning Dong
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, PR China
| | - Qian Xie
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, PR China
| | - Xian Zhang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, PR China
| | - Yingsong Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, PR China
| | - Ming Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, PR China
| | - Ji-Liang Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, PR China.,Wenzhou Medical University School of Biomedical Engineering and Eye Hospital, Wenzhou Institute of Biomaterials and Engineering, Wenzhou, PR China.,Institute of Translational and Stratified Medicine, University of Plymouth Faculty of Medicine and Dentistry, Plymouth, UK
| |
Collapse
|