1
|
Teraoka M, Hato N, Inufusa H, You F. Role of Oxidative Stress in Sensorineural Hearing Loss. Int J Mol Sci 2024; 25:4146. [PMID: 38673731 PMCID: PMC11050000 DOI: 10.3390/ijms25084146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hearing is essential for communication, and its loss can cause a serious disruption to one's social life. Hearing loss is also recognized as a major risk factor for dementia; therefore, addressing hearing loss is a pressing global issue. Sensorineural hearing loss, the predominant type of hearing loss, is mainly due to damage to the inner ear along with a variety of pathologies including ischemia, noise, trauma, aging, and ototoxic drugs. In addition to genetic factors, oxidative stress has been identified as a common mechanism underlying several cochlear pathologies. The cochlea, which plays a major role in auditory function, requires high-energy metabolism and is, therefore, highly susceptible to oxidative stress, particularly in the mitochondria. Based on these pathological findings, the potential of antioxidants for the treatment of hearing loss has been demonstrated in several animal studies. However, results from human studies are insufficient, and future clinical trials are required. This review discusses the relationship between sensorineural hearing loss and reactive oxidative species (ROS), with particular emphasis on age-related hearing loss, noise-induced hearing loss, and ischemia-reperfusion injury. Based on these mechanisms, the current status and future perspectives of ROS-targeted therapy for sensorineural hearing loss are described.
Collapse
Affiliation(s)
- Masato Teraoka
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Naohito Hato
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan;
| | - Haruhiko Inufusa
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| | - Fukka You
- Division of Anti-Oxidant Research, Life Science Research Center, Gifu University, Yanagito 1-1, Gifu 501-1194, Japan; (H.I.); (F.Y.)
| |
Collapse
|
2
|
Le Prell CG. Preclinical prospects of investigational agents for hearing loss treatment. Expert Opin Investig Drugs 2023; 32:685-692. [PMID: 37695693 DOI: 10.1080/13543784.2023.2253141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION : Hearing loss has a high prevalence, with aging, noise exposure, ototoxic drug therapies, and genetic mutations being some of the leading causes of hearing loss. Health conditions such as cardiovascular disease and diabetes are associated with hearing loss, perhaps due to shared vascular pathology in the ear and in other tissues. AREAS COVERED : Issues in the design of preclinical research preclude the ability to make comparisons regarding the relative efficacy of different drugs of interest for possible hearing loss prevention or hearing restoration. This has not slowed the advancement of candidate therapeutics into human clinical testing. There is a robust pipeline with drugs that have different mechanisms of action providing diverse candidate therapies and opportunities for combination therapies to be considered. EXPERT OPINION : Much of the preclinical research literature lacks standard study design elements such as dose response testing, and lack of standardization of test protocols significantly limits conclusions regarding relative efficacy. Nonetheless, the many positive results to date have supported translation of preclinical efforts into clinical trials assessing potential human benefits. Approval of the first hearing loss prevention therapeutic is a major success, providing a pathway for other drugs to follow.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing, University of Texas at Dallas, Richardson, TX, USA
- Callier Center for Communication Disorders, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
3
|
Uribe PM, Hudson AM, Lockard G, Jiang M, Harding J, Steyger PS, Coffin AB. Hepatocyte growth factor mimetic confers protection from aminoglycoside-induced hair cell death in vitro. Hear Res 2023; 434:108786. [PMID: 37192594 DOI: 10.1016/j.heares.2023.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Loss of sensory hair cells from exposure to certain licit drugs, such as aminoglycoside antibiotics, can result in permanent hearing damage. Exogenous application of the neurotrophic molecule hepatocyte growth factor (HGF) promotes neuronal cell survival in a variety of contexts, including protecting hair cells from aminoglycoside ototoxicity. HGF itself is not an ideal therapeutic due to a short half-life and limited blood-brain barrier permeability. MM-201 is a chemically stable, blood-brain barrier permeable, synthetic HGF mimetic that serves as a functional ligand to activate the HGF receptor and its downstream signaling cascade. We previously demonstrated that MM-201 robustly protects zebrafish lateral line hair cells from aminoglycoside ototoxicity. Here, we examined the ability of MM-201 to protect mammalian sensory hair cells from aminoglycoside damage to further evaluate MM-201's clinical potential. We found that MM-201 exhibited dose-dependent protection from neomycin and gentamicin ototoxicity in mature mouse utricular explants. MM-201's protection was reduced following inhibition of mTOR, a downstream target of HGF receptor activation, implicating the activation of endogenous intracellular substrates by MM-201 as critical for the observed protection. We then asked if MM-201 altered the bactericidal properties of aminoglycosides. Using either plate or liquid growth assays we found that MM-201 did not alter the bactericidal efficacy of aminoglycoside antibiotics at therapeutically relevant concentrations. We therefore assessed the protective capacity of MM-201 in an in vivo mouse model of kanamycin ototoxicity. In contrast to our in vitro data, MM-201 did not attenuate kanamycin ototoxicity in vivo. Further, we found that MM-201 was ototoxic to mice across the dose range tested here. These data suggest species- and tissue-specific differences in otoprotective capacity. Next generation HGF mimetics are in clinical trials for neurodegenerative diseases and show excellent safety profiles, but neither preclinical studies nor clinical trials have examined hearing loss as a potential consequence of pharmaceutical HGF activation. Further research is needed to determine the consequences of systemic MM-201 application on the auditory system.
Collapse
Affiliation(s)
- Phillip M Uribe
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Alexandria M Hudson
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Gavin Lockard
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Joseph Harding
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Peter S Steyger
- Translational Hearing Center, Creighton University, Omaha, NE, 68178, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
4
|
Gordis TM, Shah SR, Ward C, Rizk HG. Disease-Modifying Antirheumatic Drugs in the Treatment of Autoimmune Inner Ear Disease: A Systematic Review and Meta-Analysis of Auditory and Vestibular Outcomes. Otol Neurotol 2023; 44:2-9. [PMID: 36509432 DOI: 10.1097/mao.0000000000003743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To answer the following question: In patients with primary autoimmune inner ear disease (AIED), (population) what impact do disease-modifying antirheumatic agents (DMARDs) (intervention) when compared with no treatment or corticosteroids (comparison) have on auditory and vestibular outcomes (outcome)? STUDY DESIGN Systematic review and meta-analysis. DATA SOURCES According to PRISMA guidelines, PubMed, Scopus, CINAHL, and Cochrane Library databases were searched from inception to March 10, 2022. STUDY SELECTION Studies of patients receiving DMARDs for the treatment of AIED were selected for review. Case reports, phase I/II trials, studies of patients with secondary AIED, and studies of AIED patients receiving solely corticosteroids were excluded. DATA EXTRACTION Primary outcomes were pure-tone audiometry and speech discrimination scores at baseline and after DMARD treatment. Secondary outcomes were rates of subjective audiovestibular complaints and rates of adverse reactions. No objective vestibular outcomes underwent meta-analysis. DATA SYNTHESIS Mean differences were calculated using RevMan 5.4. Heterogeneity was assessed with the Q test and I2 statistic. Pooled prevalence rates of audiovestibular symptoms were expressed as a percentage with 95% confidence intervals. RESULTS Ten studies with a total of 187 patients were included. Treatments included methotrexate, etanercept, azathioprine, anakinra, cyclophosphamide, rituximab, and infliximab. Mean treatment duration was 10.8 ± 22.2 months and mean follow-up was 13.7 ± 8.1 months. The pure-tone audiometry and speech discrimination scores mean differences between baseline and post-DMARD were -2.1 [-4.1, -0.1] dB and 13.9 [8.5, 19.4] %, respectively. Seven studies reported 38 adverse events, four of which were classified as serious. CONCLUSION DMARDs showed statistically significant improvement in auditory outcomes, as well as subjective symptoms, with relatively low rates of adverse events. They warrant further exploration to better compare with corticosteroids.
Collapse
Affiliation(s)
- Tamar M Gordis
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC
| | | | | | | |
Collapse
|
5
|
Gill G, Blakley BW. Does N-acetylcysteine Improve Established Hearing Loss in Guinea Pigs? OTO Open 2022; 6:2473974X221100545. [PMID: 35602237 PMCID: PMC9118440 DOI: 10.1177/2473974x221100545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To assess whether multiple injections of a powerful antioxidant can improve established sensorineural hearing loss in guinea pigs. Study Design Animal study. Setting Animal science laboratory, University of Manitoba. Methods A total of 16 guinea pigs were used in our study: 8 underwent unilateral intracochlear neomycin injection, and 8 underwent unilateral saline to serve as controls. After a period of 3 weeks for hearing loss to stabilize, 4 guinea pigs from each group received weekly intraperitoneal injections of N-acetylcysteine (NAC) for 4 weeks. Click auditory brainstem response (ABR) testing was conducted at baseline, weekly after the start of NAC injections, and after the last injection. Pure tone ABR tests were conducted prior to intracochlear injections and at completion of the study. Results Click ABR thresholds were significantly worse in ears treated with neomycin (P < .001), as expected, but not significantly different when treated with NAC (P = .664). Thresholds for pure tone ABR were also not statistically different in neomycin-treated ears with or without NAC (P > .99). Conclusions The aggressive antioxidant therapy performed in this study was not successful in improving established hearing loss via an antioxidant regimen that is known to change the oxidation-reduction potential in the cochlea.
Collapse
Affiliation(s)
- Gia Gill
- Department of Otolaryngology–Head and Neck Surgery, University of Manitoba, Winnipeg, Canada
| | - Brian W. Blakley
- Department of Otolaryngology–Head and Neck Surgery, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Bennion DM, Horne R, Peel A, Reineke P, Henslee A, Kaufmann C, Guymon CA, Hansen MR. Zwitterionic Photografted Coatings of Cochlear Implant Biomaterials Reduce Friction and Insertion Forces. Otol Neurotol 2021; 42:1476-1483. [PMID: 34310554 DOI: 10.1097/mao.0000000000003288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Application of photografted zwitterionic coatings to cochlear implant (CI) biomaterials will reduce friction and insertion forces. BACKGROUND Strategies to minimize intracochlear trauma during implantation of an electrode array are critical to optimize outcomes including preservation of residual hearing. To this end, advances in thin-film zwitterionic hydrogel coatings on relevant biomaterials may show promise, in addition to the potential of these materials for decreasing the intracochlear foreign body response. METHODS Using a recently designed one-step process, thin-film coatings derived from zwitterionic sulfobetaine methacrylate (SBMA) were photopolymerized and photografted to the surface of polydimethylsiloxane (PDMS, silastic) samples and also to CI arrays from two manufacturers. Fluorescein staining and scanning electron microscopy with energy-dispersive X-ray spectroscopy verified and characterized the coatings. Tribometry was used to measure the coefficient of friction between uncoated and coated PDMS and synthetic and biological tissues. Force transducer measurements were obtained during insertion of uncoated (n = 9) and coated (n = 9) CI electrode arrays into human cadaveric cochleae. RESULTS SBMA thin-film coating of PDMS resulted in >90% reduction in frictional coefficients with steel, ceramic, and dermal tissue from guinea pigs (p < 0.0001). We employed a novel method for applying covalently bonded, durable, and uniform coating in geographically selective areas at the electrode array portion of the implant. Image analysis confirmed uniform coating of PDMS systems and the CI electrode arrays with SBMA polymer films. During insertion of electrode arrays into human cadaveric cochleae, SBMA coatings reduced maximum force by ∼40% during insertion (p < 0.001), as well as decreasing force variability and the overall work of insertion. CONCLUSION Thin-film SBMA photografted coatings on PDMS and electrode arrays significantly reduce frictional coefficients and insertional forces in cadaveric cochleae. These encouraging findings support that thin-film zwitterionic coating of CI electrode arrays may potentially reduce insertional trauma and thereby promote improved hearing and other long-term outcomes.
Collapse
Affiliation(s)
- Douglas M Bennion
- Department of Otolaryngology-Head and Neck Surgery Department of Chemical and Biochemical Engineering, University of Iowa iotaMotion, Inc, Iowa City, Iowa
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Hearing loss is often caused by death of sensory hair cells (HCs) in the inner ear. HCs are vulnerable to some ototoxic drugs, such as aminoglycosides(AGs) and the cisplatin.The most predominant form of drug-induced cell death is apoptosis. Many efforts have been made to protect HCs from cell death after ototoxic drug exposure. These mechanisms and potential targets of HCs protection will be discussed in this review.And we also propose further investigation in the field of HCs necrosis and regeneration, as well as future clinical utilization.
Collapse
|
8
|
Zheng Z, Zeng S, Liu C, Li W, Zhao L, Cai C, Nie G, He Y. The DNA methylation inhibitor RG108 protects against noise-induced hearing loss. Cell Biol Toxicol 2021; 37:751-771. [PMID: 33723744 PMCID: PMC8490244 DOI: 10.1007/s10565-021-09596-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
Background Noise-induced hearing loss represents a commonly diagnosed type of hearing disability, severely impacting the quality of life of individuals. The current work is aimed at assessing the effects of DNA methylation on noise-induced hearing loss. Methods Blocking DNA methyltransferase 1 (DNMT1) activity with a selective inhibitor RG108 or silencing DNMT1 with siRNA was used in this study. Auditory brainstem responses were measured at baseline and 2 days after trauma in mice to assess auditory functions. Whole-mount immunofluorescent staining and confocal microcopy of mouse inner ear specimens were performed to analyze noise-induced damage in cochleae and the auditory nerve at 2 days after noise exposure. Results The results showed that noise exposure caused threshold elevation of auditory brainstem responses and cochlear hair cell loss. Whole-mount cochlea staining revealed a reduction in the density of auditory ribbon synapses between inner hair cells and spiral ganglion neurons. Inhibition of DNA methyltransferase activity via a non-nucleoside specific pharmacological inhibitor, RG108, or silencing of DNA methyltransferase-1 with siRNA significantly attenuated ABR threshold elevation, hair cell damage, and the loss of auditory synapses. Conclusions This study suggests that inhibition of DNMT1 ameliorates noise-induced hearing loss and indicates that DNMT1 may be a promising therapeutic target. Graphical abstract Graphical Headlights • RG108 protected against noise-induced hearing loss • RG108 administration protected against noise-induced hair cell loss and auditory neural damage. • RG108 administration attenuated oxidative stress-induced DNA damage and subsequent apoptosis-mediated cell loss in the cochlea after noise exposure. ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s10565-021-09596-y.
Collapse
Affiliation(s)
- Zhiwei Zheng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Shan Zeng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chang Liu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Wen Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Liping Zhao
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chengfu Cai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
| | - Guohui Nie
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Yingzi He
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
9
|
Longenecker RJ, Gu R, Homan J, Kil J. A Novel Mouse Model of Aminoglycoside-Induced Hyperacusis and Tinnitus. Front Neurosci 2020; 14:561185. [PMID: 33041759 PMCID: PMC7530258 DOI: 10.3389/fnins.2020.561185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides (AG) such as amikacin are commonly used in cystic fibrosis patients with opportunistic pulmonary infections including multi-drug resistant mycobacterium tuberculous and non-tuberculous mycobacterium. Unfortunately, this class of drugs is known to cause peripheral damage to the cochlea leading to hearing loss that can fluctuate and become permanent over time or multiple exposures. However, whether amikacin can lead to central auditory dysfunction like hyperacusis (increased sensitivity to sound) or tinnitus (perception of sound in the absence of acoustic stimulation) is not well-described in the literature. Thus, an animal model needs to be developed that documents these side effects in order to develop therapeutic solutions to reduce AG-induced auditory dysfunction. Here we present pioneer work in mice which demonstrates that amikacin can lead to fluctuating behavioral evidence of hyperacusis and tinnitus as assessed by the acoustic startle reflex. Additionally, electrophysiological assessments of hearing via auditory brainstem response demonstrate increased central activity in the auditory brainstem. These data together suggest that peripheral AG-induced dysfunction can lead to central hyperactivity and possible behavioral manifestations of hyperacusis and tinnitus. Importantly, we demonstrate that ebselen, a novel investigational drug that acts as both an antioxidant and anti-inflammatory, can mitigate AG-induced hyperacusis.
Collapse
Affiliation(s)
| | - Rende Gu
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| | | | - Jonathan Kil
- Sound Pharmaceuticals, Inc., Seattle, WA, United States
| |
Collapse
|
10
|
Evidence Supporting the Hypothesis That Inflammation-Induced Vasospasm Is Involved in the Pathogenesis of Acquired Sensorineural Hearing Loss. Int J Otolaryngol 2019; 2019:4367240. [PMID: 31781229 PMCID: PMC6875011 DOI: 10.1155/2019/4367240] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022] Open
Abstract
Sensorineural hearing loss is mainly acquired and affects an estimated 1.3 billion humans worldwide. It is related to aging, noise, infection, ototoxic drugs, and genetic defects. It is essential to identify reversible and preventable causes to be able to reduce the burden of this disease. Inflammation is involved in most causes and leads to tissue injury through vasospasm-associated ischemia. Vasospasm is reversible. This review summarized evidence linking inflammation-induced vasospasm to several forms of acquired sensorineural hearing loss. The link between vasospasm and sensorineural hearing loss is directly evident in subarachnoid haemorrhage, which involves the release of vasoconstriction-inducing cytokines like interleukin-1, endothelin-1, and tumour necrosis factor. These proinflammatory cytokines can also be released in response to infection, autoimmune disease, and acute or chronically increased inflammation in the ageing organism as in presbyacusis or in noise-induced cochlear injury. Evidence of vasospasm and hearing loss has also been discovered in bacterial meningitis and brain injury. Resolution of inflammation-induced vasospasm has been associated with improvement of hearing in autoimmune diseases involving overproduction of interleukin-1 from inflammasomes. There is mainly indirect evidence for vasospasm-associated sensorineural hearing loss in most forms of systemic or injury- or infection-induced local vascular inflammation. This opens up avenues in prevention and treatment of vascular and systemic inflammation as well as vasospasm itself as a way to prevent and treat most forms of acquired sensorineural hearing loss. Future research needs to investigate interventions antagonising vasospasm and vasospasm-inducing proinflammatory cytokines and their production in randomised controlled trials of prevention and treatment of acquired sensorineural hearing loss. Prime candidates for interventions are hereby inflammasome inhibitors and vasospasm-reducing drugs like nitric oxide donors, rho-kinase inhibitors, and magnesium which have the potential to reduce sensorineural hearing loss in meningitis, exposure to noise, brain injury, arteriosclerosis, and advanced age-related and autoimmune disease-related inflammation.
Collapse
|
11
|
Cousins RPC. Medicines discovery for auditory disorders: Challenges for industry. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3652. [PMID: 31795652 DOI: 10.1121/1.5132706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Currently, no approved medicines are available for the prevention or treatment of hearing loss. Pharmaceutical industry productivity across all therapeutic indications has historically been disappointing, with a 90% chance of failure in delivering a marketed drug after entering clinical evaluation. To address these failings, initiatives have been applied in the three cornerstones of medicine discovery: target selection, clinical candidate selection, and clinical studies. These changes aimed to enable data-informed decisions on the translation of preclinical observations into a safe, clinically effective medicine by ensuring the best biological target is selected, the most appropriate chemical entity is advanced, and that the clinical studies enroll the correct patients. The specific underlying pathologies need to be known to allow appropriate patient selection, so improved diagnostics are required, as are methodologies for measuring in the inner ear target engagement, drug delivery and pharmacokinetics. The different therapeutic strategies of protecting hearing or preventing hearing loss versus restoring hearing are reviewed along with potential treatments for tinnitus. Examples of current investigational drugs are discussed to highlight key challenges in drug discovery and the learnings being applied to improve the probability of success of launching a marketed medicine.
Collapse
Affiliation(s)
- Rick P C Cousins
- University College London Ear Institute, University College London, London, WC1X 8EE, United Kingdom
| |
Collapse
|
12
|
The effect of intratympanic oxytocin treatment on rats exposed to acoustic trauma. The Journal of Laryngology & Otology 2019; 133:466-476. [PMID: 31099325 DOI: 10.1017/s0022215119001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To investigate whether oxytocin can prevent ototoxicity related to acoustic trauma. METHODS Twenty-eight rats were divided into four groups: noise (group 1), control (group 2), noise plus oxytocin (group 3), and oxytocin (group 4). Intratympanic oxytocin was administered on days 1, 2, 4, 6, 8 and 10 in groups 3 and 4. Groups 1 and 3 were exposed to acoustic trauma. Distortion product otoacoustic emission and auditory brainstem response testing were performed in all groups. RESULTS In group 1, auditory brainstem response thresholds increased significantly after acoustic trauma. In group 3, auditory brainstem response thresholds increased significantly on day 1 after acoustic trauma, but there were no significant differences between thresholds at baseline and on the 7th and 21st days. In group 1, significant differences were observed between distortion product otoacoustic emission signal-to-noise ratios measured before and on days 1, 7 and 21 after acoustic trauma. In group 3, no significant differences were observed between the distortion product otoacoustic emission signal-to-noise ratios measured before and on days 7 and 21 after acoustic trauma. CONCLUSION Oxytocin had a therapeutic effect on rats exposed to acoustic trauma in this experiment.
Collapse
|
13
|
Yu Y, Hu B, Bao J, Mulvany J, Bielefeld E, Harrison RT, Neton SA, Thirumala P, Chen Y, Lei D, Qiu Z, Zheng Q, Ren J, Perez-Flores MC, Yamoah EN, Salehi P. Otoprotective Effects of Stephania tetrandra S. Moore Herb Isolate against Acoustic Trauma. J Assoc Res Otolaryngol 2018; 19:653-668. [PMID: 30187298 PMCID: PMC6249158 DOI: 10.1007/s10162-018-00690-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/08/2018] [Indexed: 01/10/2023] Open
Abstract
Noise is the most common occupational and environmental hazard, and noise-induced hearing loss (NIHL) is the second most common form of sensorineural hearing deficit. Although therapeutics that target the free-radical pathway have shown promise, none of these compounds is currently approved against NIHL by the United States Food and Drug Administration. The present study has demonstrated that tetrandrine (TET), a traditional Chinese medicinal alkaloid and the main chemical isolate of the Stephania tetrandra S. Moore herb, significantly attenuated NIHL in CBA/CaJ mice. TET is known to exert antihypertensive and antiarrhythmic effects through the blocking of calcium channels. Whole-cell patch-clamp recording from adult spiral ganglion neurons showed that TET blocked the transient Ca2+ current in a dose-dependent manner and the half-blocking concentration was 0.6 + 0.1 μM. Consistent with previous findings that modulations of calcium-based signaling pathways have both prophylactic and therapeutic effects against neural trauma, NIHL was significantly diminished by TET administration. Importantly, TET has a long-lasting protective effect after noise exposure (48 weeks) in comparison to 2 weeks after noise exposure. The otoprotective effects of TET were achieved mainly by preventing outer hair cell damage and synapse loss between inner hair cells and spiral ganglion neurons. Thus, our data indicate that TET has great potential in the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Yan Yu
- The First People’s Hospital of Zhangjiagang, 68 W Jiyang Road, Zhangjiagang City, 215600 Jiangsu China
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Bing Hu
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Jianxin Bao
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Jessica Mulvany
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Eric Bielefeld
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Ryan T. Harrison
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Sarah A. Neton
- Department of Speech and Hearing Science, Ohio State University, Columbus, OH 43210 USA
| | - Partha Thirumala
- The University of Pittsburgh Medical Center, Suite B-400, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Yingying Chen
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Debin Lei
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Ziyu Qiu
- Department of Research and Development, Gateway Biotechnology Inc., Rootstown, OH 44272 USA
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Jihao Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Xiangya Hospital of Central South University, Changsha, 440011 Hunan China
| | - Maria Cristina Perez-Flores
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada Reno, 1664 North Virginia St, Reno, NV 89557 USA
| | - Pezhman Salehi
- Translational Research Center, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| |
Collapse
|
14
|
Abstract
Sensorineural hearing impairment is the most common sensory disorder and a major health and socio-economic issue in industrialized countries. It is primarily due to the degeneration of mechanosensory hair cells and spiral ganglion neurons in the cochlea via complex pathophysiological mechanisms. These occur following acute and/or chronic exposure to harmful extrinsic (e.g., ototoxic drugs, noise...) and intrinsic (e.g., aging, genetic) causative factors. No clinical therapies currently exist to rescue the dying sensorineural cells or regenerate these cells once lost. Recent studies have, however, provided renewed hope, with insights into the therapeutic targets allowing the prevention and treatment of ototoxic drug- and noise-induced, age-related hearing loss as well as cochlear cell degeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes are showing promise, as are cell-replacement therapies to repair damaged cells for the future restoration of hearing in deaf people. This review begins by recapitulating our current understanding of the molecular pathways that underlie cochlear sensorineural damage, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. It then guides the reader through to the recent discoveries in pharmacological, gene and cell therapy research towards hearing protection and restoration as well as their potential clinical application.
Collapse
Affiliation(s)
- Jing Wang
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| | - Jean-Luc Puel
- INSERM UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; and University of Montpellier, Montpellier, France
| |
Collapse
|
15
|
Generating inner ear organoids containing putative cochlear hair cells from human pluripotent stem cells. Cell Death Dis 2018; 9:922. [PMID: 30206231 PMCID: PMC6134051 DOI: 10.1038/s41419-018-0967-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022]
Abstract
In view of the prevalence of sensorineural hearing defects in an ageing population, the development of protocols to generate cochlear hair cells and their associated sensory neurons as tools to further our understanding of inner ear development are highly desirable. We report herein a robust protocol for the generation of both vestibular and cochlear hair cells from human pluripotent stem cells which represents an advance over currently available methods that have been reported to generate vestibular hair cells only. Generating otic organoids from human pluripotent stem cells using a three-dimensional culture system, we show formation of both types of sensory hair cells bearing stereociliary bundles with active mechano-sensory ion channels. These cells share many morphological characteristics with their in vivo counterparts during embryonic development of the cochlear and vestibular organs and moreover demonstrate electrophysiological activity detected through single-cell patch clamping. Collectively these data represent an advance in our ability to generate cells of an otic lineage and will be useful for building models of the sensory regions of the cochlea and vestibule.
Collapse
|
16
|
Balta B, Gundogdu R, Erdogan M, Alisik M, Kiraz A, Ozcan I, Erel O. Decreased disulphide/thiol ratio in patients with autosomal recessive non-syndromic hearing loss. Int J Pediatr Otorhinolaryngol 2018; 112:188-192. [PMID: 30055731 DOI: 10.1016/j.ijporl.2018.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Oxidative stress plays a key role in the formation of age-related, noise-induced and drug-induced hearing loss. Thiols are organic compounds which can react with free radicals to protect against tissue and cell damage caused by reactive oxygen. There are no studies in literature on the association between autosomal recessive non-syndromic hearing loss(ARNSHL) including GJB2 and non-GJB2 mutations and thiol-disulphide balance. In this study, we aim to assess whether thiol-disulphide balance is disrupted in patients with ARNSHL. METHODS Thirty-one ARNSHL patients and thirty-one healthy controls were included in this study. Patients whose parents were first degree cousins and who had at least two congenital hearing loss in the same family were included in the study. Audiological tests included air - bone pure tone audiometry and auditory brain stem response. GJB2 gene analysis was performed using sanger sequence method. Tests of thiol/disulphide homeostasis were conducted using the automated spectrophotometric method. We first investigated whether there was a significant difference between ARNSHL patients and healthy controls. Then, in order to determine the differential effect of the GJB2 gene mutations and non-GJB2 gene mutations on the thiol-disulphide balance, subjects were divided into three groups: Group 1 included patients with GJB2 mutations; Group 2 included patients with non-GJB2 mutations; Group 3 included healthy subjects. RESULTS Patients with ARNSHL had significantly higher native thiol (411.6 ± 54.3 μmol/l vs. 368.0 ± 64.3 μmol/l, p = 0.006), total thiol levels (440.3 ± 56.2 μmol/l vs. 402.4 ± 65.9 μmol/l, p = 0.018), and lower disulphide levels (14.3 ± 5.7 μmol/l) vs. (17.1 ± 4.9 μmol/l), (p = 0.043) compared to the control group. Moreover, disulphide /native thiol (p < 0.001) and disulphide/total thiol (p < 0.001) were also detected lower in the ARNSHL group compared to the control group. Thiol-disulphide hemostasis parameters between all three groups showed that the native thiol and total thiol were increased in the Group 1 and Group 2. The disulphide levels decreased in Group 1 and 2, although not statistically significant. CONCLUSION It was shown that thiol levels increased and disulphide levels decreased in patients with autosomal recessive non-syndromic hearing loss. It also may suggest that there is a reverse association between ARNSHL and oxidative stress. Further studies are needed on whether or not ARNSHL cause oxidative stress limited to the inner ear and cochlea.
Collapse
Affiliation(s)
- Burhan Balta
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri, Turkey.
| | - Ramazan Gundogdu
- Department of Otorhinolaryngology, Kayseri Training and Research Hospital, Kayseri, Turkey.
| | - Murat Erdogan
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri, Turkey.
| | - Murat Alisik
- Department of Biochemistry, Yıldırım Beyazıd University, Ankara, Turkey.
| | - Aslihan Kiraz
- Department of Medical Genetics, Kayseri Training and Research Hospital, Kayseri, Turkey.
| | - Ibrahim Ozcan
- Department of Otorhinolaryngology, Kayseri Training and Research Hospital, Kayseri, Turkey.
| | - Ozcan Erel
- Department of Biochemistry, Yıldırım Beyazıd University, Ankara, Turkey.
| |
Collapse
|
17
|
Fluvastatin protects cochleae from damage by high-level noise. Sci Rep 2018; 8:3033. [PMID: 29445111 PMCID: PMC5813011 DOI: 10.1038/s41598-018-21336-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/02/2018] [Indexed: 02/06/2023] Open
Abstract
Exposure to noise and ototoxic drugs are responsible for much of the debilitating hearing loss experienced by about 350 million people worldwide. Beyond hearing aids and cochlear implants, there have been no other FDA approved drug interventions established in the clinic that would either protect or reverse the effects of hearing loss. Using Auditory Brainstem Responses (ABR) in a guinea pig model, we demonstrate that fluvastatin, an inhibitor of HMG-CoA reductase, the rate-limiting enzyme of the mevalonate pathway, protects against loss of cochlear function initiated by high intensity noise. A novel synchrotron radiation based X-ray tomographic method that imaged soft tissues at micrometer resolution in unsectioned cochleae, allowed an efficient, qualitative evaluation of the three-dimensional internal structure of the intact organ. For quantitative measures, plastic embedded cochleae were sectioned followed by hair cell counting. Protection in noise-exposed cochleae is associated with retention of inner and outer hair cells. This study demonstrates the potential of HMG-CoA reductase inhibitors, already vetted in human medicine for other purposes, to protect against noise induced hearing loss.
Collapse
|
18
|
Korver AMH, Smith RJH, Van Camp G, Schleiss MR, Bitner-Glindzicz MAK, Lustig LR, Usami SI, Boudewyns AN. Congenital hearing loss. Nat Rev Dis Primers 2017; 3:16094. [PMID: 28079113 PMCID: PMC5675031 DOI: 10.1038/nrdp.2016.94] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital hearing loss (hearing loss that is present at birth) is one of the most prevalent chronic conditions in children. In the majority of developed countries, neonatal hearing screening programmes enable early detection; early intervention will prevent delays in speech and language development and has long-lasting beneficial effects on social and emotional development and quality of life. A diagnosis of hearing loss is usually followed by a search for an underlying aetiology. Congenital hearing loss might be attributed to environmental and prenatal factors, which prevail in low-income settings; congenital infections, particularly cytomegalovirus infection, are also a common risk factor for hearing loss. Genetic causes probably account for the majority of cases in developed countries; mutations can affect any component of the hearing pathway, in particular, inner ear homeostasis (endolymph production and maintenance) and mechano-electrical transduction (the conversion of a mechanical stimulus into electrochemical activity). Once the underlying cause of hearing loss is established, it might direct therapeutic decision making and guide prevention and (genetic) counselling. Management options include specific antimicrobial therapies, surgical treatment of craniofacial abnormalities and implantable or non-implantable hearing devices. An improved understanding of the pathophysiology and molecular mechanisms that underlie hearing loss and increased awareness of recent advances in genetic testing will promote the development of new treatment and screening strategies.
Collapse
Affiliation(s)
- Anna M H Korver
- Department of Pediatrics, St Antonius Hospital, PO BOX 2500, 3430 EM Nieuwegein, The Netherlands
| | - Richard J H Smith
- Molecular Otolaryngology and Renal Research Laboratories and the Genetics PhD Program, University of Iowa, Iowa City, Iowa, USA
| | - Guy Van Camp
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Mark R Schleiss
- Division of Pediatric Infectious Diseases and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Maria A K Bitner-Glindzicz
- Genetics and Genomic Medicine Programme, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Lawrence R Lustig
- Department of Otolaryngology-Head and Neck Surgery, Columbia University Medical Center, New York, New York, USA
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - An N Boudewyns
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
19
|
Kurabi A, Keithley EM, Housley GD, Ryan AF, Wong ACY. Cellular mechanisms of noise-induced hearing loss. Hear Res 2016; 349:129-137. [PMID: 27916698 PMCID: PMC6750278 DOI: 10.1016/j.heares.2016.11.013] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022]
Abstract
Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Arwa Kurabi
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Elizabeth M Keithley
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Gary D Housley
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| | - Allen F Ryan
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States.
| | - Ann C-Y Wong
- Division of Otolaryngology, Department of Surgery, UCSD School of Medicine and San Diego VA Medical Center, La Jolla, CA, 92093, United States
| |
Collapse
|