1
|
Zhang Z, Xu Q, Wang Y, Qu S, Tan J, Tang Y, Li P, Zheng X. Exploiting the synergistic antibacterial activity of shikimic acid and ceftiofur against methicillin-resistant Staphylococcus aureus. World J Microbiol Biotechnol 2024; 40:78. [PMID: 38253730 DOI: 10.1007/s11274-023-03876-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024]
Abstract
Efforts to curtail the escalating health threat posed by methicillin-resistant Staphylococcus aureus (MRSA), a formidable superbug, necessitate the development of innovative treatment strategies. Leveraging potential compounds from natural sources in tandem with antibiotics has emerged as a promising approach against MRSA. These strategies should enhance the antibiotic efficacy, reduce dosage and toxicity, and bypass MRSA resistance. In this study, we used a checkerboard assay to illustrate the significant synergistic anti-MRSA effect of shikimic acid (SA), a naturally occurring compound, and ceftiofur (CF). Time-kill curves further revealed that a combination of 1/4 of the minimum inhibitory concentration (MIC) of SA and 1/8 MIC of the sodium CF eradicated MRSA within 2 h, with no noticeable toxicity observed with these concentrations. In vivo experiments confirmed that this combination therapy demonstrated robust antimicrobial activity against MRSA-induced bacteremia in mice, significantly reducing bacterial loads in the kidneys, liver, and spleen, attenuating inflammatory cell infiltration, and alleviating pathological damage. This study not only offers a compelling strategy, capitalizing on the synergistic potential of SA and CF, to rapidly address antibiotic resistance but also contributes significantly to the refinement of antimicrobial therapeutic strategies.
Collapse
Affiliation(s)
- Zhuohui Zhang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Qianqian Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Shiyin Qu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Junjie Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Tang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Pishun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| | - Xiaofeng Zheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Nazli A, Tao W, You H, He X, He Y. Treatment of MRSA Infection: Where are We? Curr Med Chem 2024; 31:4425-4460. [PMID: 38310393 DOI: 10.2174/0109298673249381231130111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 02/05/2024]
Abstract
Staphylococcus aureus is a leading cause of septicemia, endocarditis, pneumonia, skin and soft tissue infections, bone and joint infections, and hospital-acquired infections. In particular, methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality, and continues to be a major public health problem. The emergence of multidrug-resistant MRSA strains along with the wide consumption of antibiotics has made anti-MRSA treatment a huge challenge. Novel treatment strategies (e.g., novel antimicrobials and new administrations) against MRSA are urgently needed. In the past decade, pharmaceutical companies have invested more in the research and development (R&D) of new antimicrobials and strategies, spurred by favorable policies. All research articles were collected from authentic online databases, including Google Scholar, PubMed, Scopus, and Web of Science, by using different combinations of keywords, including 'anti-MRSA', 'antibiotic', 'antimicrobial', 'clinical trial', 'clinical phase', clinical studies', and 'pipeline'. The information extracted from articles was compared to information provided on the drug manufacturer's website and Clinical Trials.gov (https://clinicaltrials.gov/) to confirm the latest development phase of anti-MRSA agents. The present review focuses on the current development status of new anti-MRSA strategies concerning chemistry, pharmacological target(s), indications, route of administration, efficacy and safety, pharmacokinetics, and pharmacodynamics, and aims to discuss the challenges and opportunities in developing drugs for anti-MRSA infections.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Wenlan Tao
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Hengyao You
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaoli He
- Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing, 400714, China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
3
|
Andrades-Lagos J, Campanini-Salinas J, Sabadini G, Andrade V, Mella J, Vásquez-Velásquez D. QSAR Studies, Synthesis, and Biological Evaluation of New Pyrimido-Isoquinolin-Quinone Derivatives against Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals (Basel) 2023; 16:1621. [PMID: 38004487 PMCID: PMC10675065 DOI: 10.3390/ph16111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
According to the WHO, antimicrobial resistance is among the top 10 threats to global health. Due to increased resistance rates, an increase in the mortality and morbidity of patients has been observed, with projections of more than 10 million deaths associated with infections caused by antibacterial resistant microorganisms. Our research group has developed a new family of pyrimido-isoquinolin-quinones showing antibacterial activities against multidrug-resistant Staphylococcus aureus. We have developed 3D-QSAR CoMFA and CoMSIA studies (r2 = 0.938; 0.895), from which 13 new derivatives were designed and synthesized. The compounds were tested in antibacterial assays against methicillin-resistant Staphylococcus aureus and other bacterial pathogens. There were 12 synthesized compounds active against Gram-positive pathogens in concentrations ranging from 2 to 32 µg/mL. The antibacterial activity of the derivatives is explained by the steric, electronic, and hydrogen-bond acceptor properties of the compounds.
Collapse
Affiliation(s)
- Juan Andrades-Lagos
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510157, Chile;
- Drug Development Laboratory, Faculty of Chemical and Pharmaceutical, Sciences, Universidad de Chile, Santiago 8380492, Chile
| | - Javier Campanini-Salinas
- Drug Development Laboratory, Faculty of Chemical and Pharmaceutical, Sciences, Universidad de Chile, Santiago 8380492, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt 5501842, Chile
| | - Gianfranco Sabadini
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile;
- Centro de Investigación Farmacopea Chilena, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso 2360102, Chile
| | - Victor Andrade
- Laboratory of Neuroscience and Functional Medicine, International Center for Biomedicine, Faculty of Sciences, University of Chile, Santiago 7800003, Chile;
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, 50923 Köln, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso 2360102, Chile;
- Centro de Investigación Farmacopea Chilena, Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Valparaíso 2360102, Chile
| | - David Vásquez-Velásquez
- Drug Development Laboratory, Faculty of Chemical and Pharmaceutical, Sciences, Universidad de Chile, Santiago 8380492, Chile
| |
Collapse
|
4
|
Chowdhury RR, Dhar J, Robinson SM, Lahiri A, Basak K, Paul S, Banerjee R. MACI: A machine learning-based approach to identify drug classes of antibiotic resistance genes from metagenomic data. Comput Biol Med 2023; 167:107629. [PMID: 39491376 DOI: 10.1016/j.compbiomed.2023.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Novel methodologies are now essential for identification of antibiotic resistant pathogens in order to resist them. Here, we are presenting a model, MACI (Machine learning-based Antibiotic resistance gene-specific drug Class Identification) that can take metagenomic fragments as input and predict the drug class of antibiotic resistant genes. In our study, we trained a model using the Comprehensive Antibiotic Resistance Database, containing 5138 representative sequences across 134 drug classes. Among these classes, 23 dominated, contributing 85% of the sequence data. The model achieved an average precision of 0.8389 ± 0.0747 and recall of 0.8197 ± 0.0782 for these 23 drug classes. Additionally, it exhibited higher performance (precision and recall: 0.8817 ± 0.0540 and 0.8620 ± 0.0493) for predicting multidrug resistant classes compared to single drug resistant categories (0.7923 ± 0.0669 and 0.7737 ± 0.0794). The model also showed promising results when tested on an independent data. We then analysed these 23 drug classes to identify class-specific overlapping nucleotide patterns. Five significant drug classes, viz. "Carbapenem; cephalosporin; penam", "cephalosporin", "cephamycin", "cephalosporin; monobactam; penam; penem", and "fluoroquinolone" were identified, and their patterns aligned with the functional domains of antibiotic resistance genes. These class-specific patterns play a pivotal role in rapidly identifying drug classes with antibiotic resistance genes. Further analysis revealed that bacterial species containing these five drug classes are associated with well-known multidrug resistance properties.
Collapse
Affiliation(s)
- Rohit Roy Chowdhury
- Centre for Data Science, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| | - Jesmita Dhar
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, WB, India
| | - Stephy Mol Robinson
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, WB, India
| | - Abhishake Lahiri
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, WB, India; Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Kausik Basak
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, WB, India
| | - Sandip Paul
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, WB, India
| | - Rachana Banerjee
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research, JIS University, Kolkata, WB, India.
| |
Collapse
|
5
|
Radka CD. Interfacial Enzymes Enable Gram-Positive Microbes to Eat Fatty Acids. MEMBRANES 2023; 13:423. [PMID: 37103850 PMCID: PMC10146087 DOI: 10.3390/membranes13040423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Exogenous fatty acid (eFA) activation and utilization play key roles in bacterial physiology and confer growth advantages by bypassing the need to make fatty acids for lipid synthesis. In Gram-positive bacteria, eFA activation and utilization is generally carried out by the fatty acid kinase (FakAB) two-component system that converts eFA to acyl phosphate, and the acyl-ACP:phosphate transacylase (PlsX) that catalyzes the reversible conversion of acyl phosphate to acyl-acyl carrier protein. Acyl-acyl carrier protein is a soluble format of the fatty acid that is compatible with cellular metabolic enzymes and can feed multiple processes including the fatty acid biosynthesis pathway. The combination of FakAB and PlsX enables the bacteria to channel eFA nutrients. These key enzymes are peripheral membrane interfacial proteins that associate with the membrane through amphipathic helices and hydrophobic loops. In this review, we discuss the biochemical and biophysical advances that have established the structural features that drive FakB or PlsX association with the membrane, and how these protein-lipid interactions contribute to enzyme catalysis.
Collapse
Affiliation(s)
- Christopher D Radka
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
6
|
Hazlett LD, Xu S, Somayajulu M, McClellan SA. Host-microbe interactions in cornea. Ocul Surf 2023; 28:413-423. [PMID: 34619389 PMCID: PMC8977393 DOI: 10.1016/j.jtos.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/23/2022]
Abstract
Corneal infections result through interaction between microbes and host innate immune receptors. Damage to the cornea occurs as a result of microbial virulence factors and is often exacerbated by lack of a controlled host immune response; the latter contributing to bystander damage to corneal structure. Understanding mechanisms involved in host microbial interactions is critical to development of novel therapeutic targets, ultimate control of microbial pathogenesis, and restoration of tissue homeostasis. Studies on these interactions continue to provide exciting findings directly related to this ultimate goal.
Collapse
Affiliation(s)
- Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Mallika Somayajulu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Sharon A McClellan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
7
|
Oselusi S, Fadaka AO, Wyckoff GJ, Egieyeh SA. Computational Target-Based Screening of Anti-MRSA Natural Products Reveals Potential Multitarget Mechanisms of Action through Peptidoglycan Synthesis Proteins. ACS OMEGA 2022; 7:37896-37906. [PMID: 36312373 PMCID: PMC9609086 DOI: 10.1021/acsomega.2c05061] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/22/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the leading causes of bacterial infections in both healthcare and community settings. MRSA can acquire resistance to any current antibiotic, which has major implications for its current and future treatment options. As such, it is globally a major focus for infection control efforts. The mechanical rigidity provided by peptidoglycans in the bacteria cell walls makes it a promising target for broad-spectrum antibacterial drug discovery. The development of drugs that can target different stages of the synthesis of peptidoglycan in MRSA may compromise the integrity of its cell wall and consequently result in the rapid decline of diseases associated with this drug-resistant bacteria. The present study is aimed at screening natural products with known in vitro activities against MRSA to identify their potential to inhibit the proteins involved in the biosynthesis of the peptidoglycan cell wall. A total of 262 compounds were obtained when a literature survey was conducted on anti-MRSA natural products (AMNPs). Virtual screening of the AMNPs was performed against various proteins (targets) that are involved in the biosynthesis of the peptidoglycan (PPC) cell wall using Schrödinger software (release 2020-3) to determine their binding affinities. Nine AMNPs were identified as potential multitarget inhibitors against peptidoglycan biosynthesis proteins. Among these compounds, DB211 showed the strongest binding affinity and interactions with six protein targets, representing three stages of peptidoglycan biosynthesis, and thus was selected as the most promising compound. The MD simulation results for DB211 and its proteins indicated that the protein-ligand complexes were relatively stable over the simulation period of 100 ns. In conclusion, DB211 showed the potential to inhibit six proteins involved in the biosynthesis of the peptidoglycan cell wall in MRSA, thus reducing the chance of MRSA developing resistance to this compound. Therefore, DB211 provided a starting point for the design of new compounds that can inhibit multiple targets in the biosynthesis of the peptidoglycan layer in MRSA.
Collapse
Affiliation(s)
- Samson
Olaitan Oselusi
- University
of the Western Cape, School of Pharmacy,
Faculty of Natural Sciences, Robert Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| | - Adewale Oluwaseun Fadaka
- University
of the Western Cape, Science and Innovation/Mintek
Nanotechnology Innovation Centre, Department of Biotechnology, Faculty
of Natural Sciences, Robert
Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| | - Gerald J. Wyckoff
- University
of Missouri Kansas City, School of Pharmacy,
Division of Pharmacology and Pharmaceutical Sciences, 5000 Holmes Street, Kansas
City, Missouri 64110-2446, United States
| | - Samuel Ayodele Egieyeh
- University
of the Western Cape, School of Pharmacy,
Faculty of Natural Sciences, Robert Sobukwe Road, Bellville, Cape Town, Western Cape ZA 7535, South Africa
| |
Collapse
|
8
|
Yu H, Liu J, Wang L, Guan S, Jin Y, Zheng J, Xiang H, Wang D, Liu D. 2,3-Dehydrokievitone combats methicillin-resistant Staphylococcus aureus infection by reducing alpha-hemolysin expression. Front Microbiol 2022; 13:969215. [PMID: 36090058 PMCID: PMC9454091 DOI: 10.3389/fmicb.2022.969215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022] Open
Abstract
Due to powerful drug resistance and fatal toxicity of methicillin-resistant Staphylococcus aureus (MRSA), therapeutic strategies against virulence factors present obvious advantages since no evolutionary pressure will induce bacterial resistance. Alpha-hemolysin (Hla) is an extracellular toxin secreted by Staphylococcus aureus and contributes to bacterial pathogenicity. Herein, we identified a natural product 2,3-dehydrokievitone (2,3-DHKV) for inhibiting Hla activity of MRSA strain USA300 but not affecting bacteria growth. 2,3-DHKV significantly decreased hemolysin expression in a dose-dependent manner, but it did not potently neutralize hemolysin activity. Subsequently, cellular thermal shift and heptamer formation assays confirmed that 2,3-DHK affects hemolytic activity through indirect binding to Hla. RT-qPCR and western blot revealed that 2,3-DHKV suppressed Hla expression at the mRNA and protein levels, and further decreased accessory gene regulator A (agrA) transcription levels. We also observed that 2,3-DHK significantly attenuated the damage of A549 cells by S. aureus and reduced the release of lactate dehydrogenase (LDH). Moreover, in the MRSA-induced pneumonia mouse model, 2,3-DHK treatment prolonged the life span of mice and reduced the bacterial load in the lungs, which significantly alleviated the damage to the lungs. In summary, this study proved that 2,3-DHK as a Hla inhibitor is a potential antivirulence agent against MRSA infection.
Collapse
Affiliation(s)
- Hangqian Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Jingyu Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Li Wang
- College of Animal Science, Jilin University, Changchun, China
- Changchun University of Chinese Medicine, Changchun, China
| | - Shuhan Guan
- College of Animal Science, Jilin University, Changchun, China
| | - Yajing Jin
- College of Animal Science, Jilin University, Changchun, China
| | - Jianze Zheng
- College of Animal Science, Jilin University, Changchun, China
| | - Hua Xiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun, China
- *Correspondence: Dianfeng Liu,
| |
Collapse
|
9
|
Liang M, Ge X, Xua H, Ma K, Zhang W, Zan Y, Efferth T, Xue Z, Hua X. Phytochemicals with activity against methicillin-resistant Staphylococcus aureus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154073. [PMID: 35397285 DOI: 10.1016/j.phymed.2022.154073] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The evolution of resistance to antimicrobials is a ubiquitous phenomenon. The evolution of antibiotic resistance in Staphylococcus aureus suggests that there is no remedy with sustaining effectiveness against this pathogen. The limited number of antibacterial drug classes and the common occurrence of cross-resistant bacteria reinforce the urgent need to discover new compounds targeting novel cellular functions. Natural products are a potential source of novel antibacterial agents. Anti-MRSA (methicillin-resistant S. aureus) bioactive compounds from Streptomyces and the anti-MRSA activity of a series of plant extracts have been reviewed respectively. However, there has been no detailed review of the precise bioactive components from plants. PURPOSE The present review aimed to summarize the phytochemicals that have been reported with anti-MRSA activities, analyze their structure-activity relationship and novel anti-MRSA mechanisms. METHODS Data contained in this review article are compiled from the authoritative databases PubMed, Web of Science, Google Scholar, and so on. RESULTS This review summarizes 100 phytochemicals (27 flavonoids, 23 alkaloids, 17 terpenes and 33 others) that have been tested for their anti-MRSA activity. Among these phytochemicals, 39 compounds showed remarkable anti-MRSA activity with MIC values less than 10 μg/ml, 14 compounds with MIC ranges including values < 10 μg/ml, 5 compounds with MIC values less than 5 μM; 11 phytochemicals show synergism anti-MRSA effects in combination with antibiotics. Phytochemicals exerted anti-MRSA activities mainly by destroying the membrane structure and inhibiting the efflux pump. CONCLUSIONS The 58 compounds with excellent anti-MRSA activity the 11 compounds with synergistic anti-MRSA effect, especially cannabinoids, xanthones and fatty acids should be further studied in vitro. Novel targets, such as cell membrane and efflux pump could be promising alternatives to develop antibacterial drugs in the future in order to prevent drug resistance.
Collapse
Affiliation(s)
- Miaomiao Liang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Uppsala SE-75124, Sweden
| | - Hui Xua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Kaifeng Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Wei Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Yibo Zan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany
| | - Zheyong Xue
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| | - Xin Hua
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China.
| |
Collapse
|
10
|
Zhu F, Zhuang H, Di L, Wang Z, Chen Y, Jiang S, Gu C, Sun L, Wang H, Zhu Y, Lan P, Wu D, Yu Y, Ji S, Chen Y. SCCmec amplification as a mechanism for ceftobiprole resistance in clinical MRSA isolates. Clin Microbiol Infect 2022; 28:1151.e1-1151.e7. [DOI: 10.1016/j.cmi.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/03/2022]
|
11
|
Amin F, Tabassum S, Sarwar S, Qureshi R, Sohaib Khalid M, Riaz N, Al-Qahtani WH, Murtaza I. Neuroprotective Effect of Otostegia limbata Against PTZ-Induced Mice Model of Epilepsy by Attenuated Expression of p-NFκB and TNF-α. Front Neurosci 2022; 16:779681. [PMID: 35392411 PMCID: PMC8982360 DOI: 10.3389/fnins.2022.779681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent unprovoked seizures. Currently available antiepileptic drugs have severe side effects and do not offer complete cure. Herbal remedies have been used for centuries to treat many neurodegenerative disorders. Otostegia limbata L. belongs to the largest and medicinally important family Lamiaceae and is distributed in hilly areas of Pakistan. This study was designed to assess the antioxidant, anti-inflammatory, and anticonvulsant potential of O. limbata. The methanolic extract showed significant antioxidant activity assessed by (1,1-diphenyl 2-picrylhydrazyl) free-radical scavenging assay, nitric oxide scavenging, and iron chelation antioxidant assays. The methanolic extract was evaluated for its anticonvulsant effect, employing the pentylenetetrazole (PTZ)-induced mice model of epilepsy. Three different doses of O. limbata (100, 200, and 300 mg/kg) were administered orally 30 min before PTZ [50 mg/kg, intraperitoneal (i.p.)] injection, while diazepam was used as a positive control. The extract at 300 mg/kg significantly decreased the duration and increased the latency of the PTZ-induced seizures. The expression of inflammatory cytokines tumor necrosis factor α (p-TNF-α) and phosphorylated transcription factor nuclear factor kappa B (p-NF-κB), in the cortex and hippocampus of the brains of treated mice were analyzed through enzyme-linked immunosorbent assay and western blot analysis. The morphological changes and number of surviving neurons were recorded through hematoxylin and eosin staining. The seizure score and survival rate of the treated group showed considerable differences as compared to the PTZ group. TNF-α and p-NF-K b expression were downregulated as compared to the PTZ group. The anticonvulsant effect may be the outcome of the antioxidant potential and high levels of phenols and flavonoids detected in the methanolic plant extract through Fourier transform infrared spectrophotometer and gas chromatography–mass spectrometry analysis.
Collapse
Affiliation(s)
- Farhana Amin
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
- *Correspondence: Sobia Tabassum,
| | - Sadia Sarwar
- Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Rahmatullah Qureshi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Muhammad Sohaib Khalid
- Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Naveeda Riaz
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Wahidah H. Al-Qahtani
- Department of Food Sciences and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Iram Murtaza
- Department of Biochemistry and Molecular Biology, Quaid-I-Azam University, Islamabad, Pakistan
| |
Collapse
|
12
|
Zhao E, Liu H, Jia Y, Xiao T, Li J, Zhou G, Wang J, Zhou X, Liang XJ, Zhang J, Li Z. Engineering a photosynthetic bacteria-incorporated hydrogel for infected wound healing. Acta Biomater 2022; 140:302-313. [PMID: 34954107 DOI: 10.1016/j.actbio.2021.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Treating wounds with multidrug-resistant bacterial infections remains a huge and arduous challenge. In this work, we prepared a "live-drug"-encapsulated hydrogel dressing for the treatment of multidrug-resistant bacterial infections and full-thickness skin incision repair. Our live dressing was comprised of photosynthetic bacteria (PSB) and extracellular matrix (ECM) gel with photothermal, antibacterial and antioxidant properties, as well as good cytocompatibility and blood compatibility. More interestingly, live PSB could be regarded as not only photothermal agents but also as anti-inflammatory agents to promote wound healing owing to their antioxidant metabolites. In vitro and in vivo studies showed that the PSB hydrogel not only had a high killing rate against methicillin-resistant Staphylococcus aureus (MRSA) but it also accelerated collagen deposition and granulation tissue formation by promoting cell proliferation and migration, which significantly promoted skin tissue regeneration and wound healing. We believe that the large-scale production of PSB Gel-based therapeutic dressings has the advantages of easy use and promising clinical applications. STATEMENT OF SIGNIFICANCE: Rapid wound healing and the treatment of bacterial infections have always been the two biggest challenges in the field of wound care. We prepared a "live drug" dressing by encapsulating photosynthetic bacteria into an extracellular matrix hydrogel to sterilize the wound and promote wound healing. First, photosynthetic bacteria are not only a photothermal agent for photothermal wound sterilization, but also possess the anti-inflammatory capacity to enhance wound healing due to their antioxidant metabolites. Second, the extracellular matrix hydrogel is rich in a variety of growth factors and nutrients to promote cell migration and accelerate wound healing. Third, photosynthetic bacteria are not only green and non-toxic, but also can be obtained on a large scale, which facilitates manufacturing and clinical transformation.
Collapse
Affiliation(s)
- Erman Zhao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China.
| | - Yaru Jia
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Tingshan Xiao
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Jiaxin Li
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China
| | - June Wang
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Xiaohan Zhou
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, PR China; College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China.
| | - Zhenhua Li
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, PR China.
| |
Collapse
|
13
|
Liu X, Shen J, Zhu K. Antibacterial activities of plant-derived xanthones. RSC Med Chem 2022; 13:107-116. [PMID: 35308024 PMCID: PMC8864485 DOI: 10.1039/d1md00351h] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 07/26/2023] Open
Abstract
The increasing threat to global health posed by antibiotic resistance remains a serious concern. This troublesome scenario has steered a need for the discovery and evaluation of novel antibacterial agents. Natural products are the main sources of antimicrobials used in clinical practice, serving as a rich reservoir for the discovery of new antibiotics. Pharmaceutical phenolics especially xanthones widely exist in the plant kingdom, and are important plant metabolites. They possess versatile biological activities, including antiviral, antibacterial, neurotrophic, and anticancer. In the present study, we focus on the antibacterial activities of phytoxanthones and summarize their structures and sources, categories and drug-likeness evaluations, and antibacterial activities. A total of 226 different plant xanthones are identified through the NETs screening, and most of them are distributed in Clusiaceae family. These phytoxanthones are divided into four groups according to the intrinsic structural properties, including the most common simple xanthones and the majority of biprenylated ones. Moreover, their physicochemical parameters are calculated and the structure-activity relationships are discussed as well. These results indicate that the biprenylated xanthone derivatives may be promising antibacterial candidates and that the natural products of plants may be a poorly understood repository for the discovery of novel antibacterial agents.
Collapse
Affiliation(s)
- Xiaojia Liu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University Beijing 00193 China
| | - Jianzhong Shen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University Beijing 00193 China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University Beijing 100193 China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University Beijing 00193 China
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety and Beijing Laboratory for Food Quality and Safety, China Agricultural University Beijing 100193 China
| |
Collapse
|
14
|
Chauhan A, Sillu D, Dhiman NK, Agnihotri S. Silver-Based Nano-formulations for Treating Antibiotic-Resistant Microbial Strains. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:279-309. [DOI: 10.1007/978-3-031-10220-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Zhuang H, Zhu F, Lan P, Ji S, Sun L, Chen Y, Wang Z, Jiang S, Zhang L, Zhu Y, Jiang Y, Chen Y, Yu Y. A random forest model based on core genome allelic profiles of MRSA for penicillin plus potassium clavulanate susceptibility prediction. Microb Genom 2021; 7. [PMID: 34554083 PMCID: PMC8715440 DOI: 10.1099/mgen.0.000610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Treatment failure of methicillin-resistant Staphylococcus aureus (MRSA) infections remains problematic in clinical practice because therapeutic options are limited. Penicillin plus potassium clavulanate combination (PENC) was shown to have potential for treating some MRSA infections. We investigated the susceptibility of MRSA isolates and constructed a drug susceptibility prediction model for the phenotype of the PENC. We determined the minimum inhibitory concentration of PENC for MRSA (n=284) in a teaching hospital (SRRSH-MRSA). PENC susceptibility genotypes were analysed using a published genotyping scheme based on the mecA sequence. mecA expression in MRSA isolates was analysed by qPCR. We established a random forest model for predicting PENC-susceptible phenotypes using core genome allelic profiles from cgMLST analysis. We identified S2-R isolates with susceptible mecA genotypes but PENC-resistant phenotypes; these isolates expressed mecA at higher levels than did S2 MRSA (2.61 vs 0.98, P<0.05), indicating the limitation of using a single factor for predicting drug susceptibility. Using the data of selected UK-sourced MRSA (n=74) and MRSA collected in a previous national survey (NA-MRSA, n=471) as a training set, we built a model with accuracies of 0.94 and 0.93 for SRRSH-MRSA and UK-sourced MRSA (n=287, NAM-MRSA) validation sets. The AUROC of this model for SRRSH-MRSA and NAM-MRSA was 0.96 and 0.97. Although the source of the training set data affects the scope of application of the prediction model, our data demonstrated the power of the machine learning approach in predicting susceptibility from cgMLST results.
Collapse
Affiliation(s)
- Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Feiteng Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Peng Lan
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Shujuan Ji
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Lu Sun
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yiyi Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zhengan Wang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Shengnan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Linyue Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yiwei Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yan Chen
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| |
Collapse
|
16
|
Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics (Basel) 2021; 10:antibiotics10030318. [PMID: 33808601 PMCID: PMC8003525 DOI: 10.3390/antibiotics10030318] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/29/2022] Open
Abstract
Alkaloids are nitrogen-containing heterocyclic compounds typically isolated from plants. They represent one of the most important types of natural products because of their large number and structural diversity and complexity. Based on their chemical core structures, alkaloids are classified as isoquinolines, quinolines, indoles, piperidine alkaloids, etc. In-depth analyses of alkaloids have revealed their antibacterial activities. To date, due to the widespread use of antibiotics, the problem of drug-resistant bacterial infections has been gradually increasing, which severely affects the clinical efficacy of antibacterial therapies and patient safety. Therefore, significant research efforts are focused on alkaloids because they represent a potentially new type of natural antibiotic with a wide antibacterial spectrum, rare adverse reactions, and a low tendency to produce drug resistance. Their main antibacterial mechanisms include inhibition of bacterial cell wall synthesis, change in cell membrane permeability, inhibition of bacterial metabolism, and inhibition of nucleic acid and protein synthesis. This article reviews recent reports about the chemical structures and the antibacterial activities and mechanisms of alkaloids. The purpose is to solve the problem of bacterial resistance and to provide a certain theoretical basis and research ideas for the development of new antibacterial drugs.
Collapse
Affiliation(s)
- Yumei Yan
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
| | - Xing Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
| | - Chunhong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014040, China
- Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou Medical College, Baotou 014040, China
| | - Lijuan Lv
- Department of Basic Science, Tianjin Agricultural University, Tianjin 300384, China;
| | - Bing Gao
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Correspondence: (B.G.); (M.L.)
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou 014040, China; (Y.Y.); (X.L.); (C.Z.)
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou 014040, China
- Inner Mongolia Engineering Research Center of the Planting and Development of Astragalus Membranaceus of the Geoherbs, Baotou Medical College, Baotou 014040, China
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot 010020, China
- Correspondence: (B.G.); (M.L.)
| |
Collapse
|
17
|
CuFe2O4@Ag Nanocomposite Synthesized in the Presence of Spirulina platensis Decreases the Expression of norB Gene in Staphylococcus aureus. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02018-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Li Z, Zhuang H, Wang G, Wang H, Dong Y. Prevalence, predictors, and mortality of bloodstream infections due to methicillin-resistant Staphylococcus aureus in patients with malignancy: systemic review and meta-analysis. BMC Infect Dis 2021; 21:74. [PMID: 33446122 PMCID: PMC7809798 DOI: 10.1186/s12879-021-05763-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer patients are more likely to develop and die of bloodstream infection (BSI) than noncancer patients. Methicillin-resistant Staphylococcus aureus (MRSA), which is associated with immense mortality and economic burden worldwide, is not covered by the recommended initial antibiotic therapy for cancer patients with BSI. This systemic review was performed to estimate the global methicillin-resistant Staphylococcus aureus (MRSA) prevalence among bacteremia in patients with malignancy, and further study the predictors and mortality of cancer patients with MRSA bacteremia. METHODS The PubMed and EMBASE databases were searched for studies published from Jan. 2000 to Mar. 2020 that provided primary data on the prevalence, predictors, or mortality of MRSA bacteremia in cancer patients. A random-effects model meta-analysis was performed to estimate the pooled prevalence of MRSA with 95% confidence intervals (95% CIs). RESULTS The pooled prevalence of MRSA was 3% (95% CI 2-5%) among all bloodstream infections (BSIs) and 44% (95% CI 32-57%) among S. aureus bacteremia in cancer patients. Based on geographical stratification, the pooled prevalence was 5% in Africa (95% CI 1-14%), 1% in Americas (95% CI 1-2%), 2% in Europe (95% CI 1-4%), 4% in Western Pacific (95% CI 2-7%), 8% in South-east Asia (95% CI 4-14%) and 0% in Eastern Mediterranean (95% CI 0-3%). No significant temporal change in MRSA rates was detected in this analysis (R2 = 0.06; P = 0.24). Predictors for MRSA BSIs among cancer patients were identified by comparison with their methicillin-susceptible counterparts, and they were mainly related to healthcare-associated infections and immunosuppression. Finally, the 60-day mortality in adult cancer patients with MRSA BSIs was reported to be 12%, and the 6-month overall mortality was 43.2%, with community-onset infection, secondary BSI, and vancomycin MIC≥2 g/mL being the risk factors for mortality. CONCLUSIONS Although the prevalence of MRSA BSIs among cancer patients is relatively low, it did not decline over time as MRSA BSIs in the general hospital population and the high mortality rate was related to MRSA BSIs in patients with malignancy.
Collapse
Affiliation(s)
- Zhouqi Li
- Department of Medical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hemu Zhuang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guannan Wang
- Department of Integrative Oncology, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Hui Wang
- Department of Medical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Dong
- Department of Medical Oncology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Dutta K, Karmakar A, Jana D, Ballav S, Shityakov S, Panda AK, Ghosh C. Benzyl isocyanate isolated from the leaves of Psidium guajava inhibits Staphylococcus aureus biofilm formation. BIOFOULING 2020; 36:1000-1017. [PMID: 33172298 DOI: 10.1080/08927014.2020.1842877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 09/03/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Benzyl isocyanate (BIC), from methanol extract of Psidium guajava leaves, exhibited substantial anti-biofilm activities against Staphylococcus aureus, the common bacterial pathogen in nosocomial infections. Major components of the extract included eugenol, BIC, phenyl-2-methoxy-4-(1-propenyl)-acetate and 2,5-pyrrolidinedione,1-penta-3-4-dienyl, analyzed by GC-MS and HPLC studies. BIC exhibited substantial anti-biofilm activitiy against S. aureus, established by assaying biofilm formation, biofilm metabolic activity, bacterial adherence to hydrocarbons, exopolysaccharide formation, and optical and scanning electron microscopic studies. BIC significantly downregulated the important biofilm markers of S. aureus, viz., icaAD, sarA and agr, observed by quantitative real time polymerase chain reaction analysis. Molecular docking studies revealed thermodynamically favorable interaction of BIC with IcaA, SarA and Agr, having Gibbs energy values of -8.45, -9.09 and -10.29 kcal mol-1, respectively. BIC after binding to IcaR, the repressor of IcaA, influences its binding to target DNA site (Eshape, -157.27 kcal mol-1). The results are considered to demonstrate anti-biofilm potential of BIC against bacterial infections.
Collapse
Affiliation(s)
- Kunal Dutta
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Amit Karmakar
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Debarati Jana
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Saroj Ballav
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| | - Sergey Shityakov
- Department of Anaesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Amiya Kumar Panda
- Department of Chemistry, Vidyasagar University, Midnapore, West Bengal, India
| | - Chandradipa Ghosh
- Department of Human Physiology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
20
|
Leite EL, Gautron A, Deplanche M, Nicolas A, Ossemond J, Nguyen MT, do Carmo FLR, Gilot D, Azevedo V, Goetz F, Le Loir Y, Otto M, Berkova N. Involvement of caspase-1 in inflammasomes activation and bacterial clearance in S. aureus-infected osteoblast-like MG-63 cells. Cell Microbiol 2020; 22:e13204. [PMID: 32176433 PMCID: PMC10988652 DOI: 10.1111/cmi.13204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 03/05/2020] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus, a versatile Gram-positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase-1 that proteolytically matures and promotes the secretion of mature IL-1β and IL-18. The role of inflammasomes and caspase-1 in the secretion of mature IL-1β and in the defence of S. aureus-infected osteoblasts has not yet been fully investigated. We show here that S. aureus-infected osteoblast-like MG-63 but not caspase-1 knock-out CASP1 -/- MG-63 cells, which were generated using CRISPR-Cas9 technology, activate the inflammasome as monitored by the release of mature IL-1β. The effect was strain-dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes-related IL-1β production. Furthermore, we found that the lack of caspase-1 in CASP1 -/- MG-63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 -/- MG-63 compared to wild-type cells. Our results demonstrate that osteoblast-like MG-63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase-1 in bacterial clearance.
Collapse
Affiliation(s)
- Elma Lima Leite
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - Arthur Gautron
- Univ Rennes, CNRS, IGDR [(Institut de génétique et développement de Rennes)]-UMR 6290, F-35000, Rennes, France
| | - Martine Deplanche
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Aurelie Nicolas
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Jordane Ossemond
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Minh Thu Nguyen
- Paul-Ehrlich-Institute, Federal Regulatory Agency for Vaccines and Biomedicines, Langen 63225, Germany
| | - Fillipe L. R. do Carmo
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - David Gilot
- Univ Rennes, CNRS, IGDR [(Institut de génétique et développement de Rennes)]-UMR 6290, F-35000, Rennes, France
| | - Vasco Azevedo
- Instituto de Ciências Biológicas - Universidade Federal de Minas Gerais, Belo Horizonte- Minas Gerais, Brazil
| | - Friedrich Goetz
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Germany
| | - Yves Le Loir
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| | - Michael Otto
- Laboratory of Human Bacterial Pathogenesis, US National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Nadia Berkova
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1253 STLO, Rennes, France; Agrocampus Ouest, Unité Mixtes de Recherche 1253 STLO, Rennes, France
| |
Collapse
|
21
|
Patil S, Dhyani V, Kaur T, Singh N. Spatiotemporal Control over Cell Proliferation and Differentiation for Tissue Engineering and Regenerative Medicine Applications Using Silk Fibroin Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:3476-3493. [DOI: 10.1021/acsabm.0c00305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Smita Patil
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vartika Dhyani
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
22
|
Chou S, Wang J, Shang L, Akhtar MU, Wang Z, Shi B, Feng X, Shan A. Short, symmetric-helical peptides have narrow-spectrum activity with low resistance potential and high selectivity. Biomater Sci 2019; 7:2394-2409. [PMID: 30919848 DOI: 10.1039/c9bm00044e] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Broad-spectrum antibiotics have, until now, been the mainstay of antibiotic therapy. However, the increasing threat of drug-resistant bacteria and the ecological imbalance of normal microbial communities have forced a reconsideration of the best strategies to treat such pathogens. Therefore, antibacterial agents with specific abilities of eliminating pathogens may provide long-term protection. Antimicrobial peptides (AMPs), which can be optimized by modifying their primary sequences, are regarded as potentially valuable in development of pathogen-specific agents. To obtain efficient narrow-spectrum AMPs, database-filtering technology, which filters the most probable amino acid composition, positive charge, sequence length and hydrophobic content of peptides against Gram-negative bacteria, was taken as the first step. Then, the filtered parameters were distributed and modified into an α-helical symmetrical structure by considering the structure-function relationship of synthesized antimicrobial peptides. Finally, short, safe and stable peptides against Escherichia coli, Salmonella pullorum and Pseudomonas aeruginosa were successfully identified. The potential peptides F1 and F4 showed low cell toxicity, low resistance potential and low salt sensitivity. CD spectroscopy of the peptides illustrated that F1 and F4 exhibited a tendency towards an α-helical structure in a membrane-mimetic environment. Indeed, fluorescence spectroscopy and electron microscopy analyses indicated that the shorter potential sequence F4 killed the bacteria by causing physical destruction of the bacterial membrane and cytosol leakage. In the mouse model test, F4 reduced the bacterial load in major organs and the cytokine (TNF-α, IL-6, and IL-1β) levels in serum significantly (P < 0.05). Collectively, this symmetric-helical distribution, dependent on database-filtering parameters, is a promising strategy for designing effective smart AMPs with high cell selectivity, and it also provides new insights into the design and optimization of pathogen-specific biomaterials.
Collapse
Affiliation(s)
- Shuli Chou
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu P, Zhang D, Shi R, Yang Z, Zhao F, Tian Y. Antimicrobial potential of endophytic fungi from Astragalus chinensis. 3 Biotech 2019; 9:405. [PMID: 31687317 DOI: 10.1007/s13205-019-1948-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022] Open
Abstract
The purpose of the present study was to discover antimicrobial endophytic fungi from Astragalus chinensis. Three fungal endophytes with antibacterial activity were isolated and determined as Chaetomium sp. HQ-1, Fusarium sp. HQ-7 and Fusarium sp. HQ-9 based on the neighbor-joining phylogenetic tree. Chaetomium sp. HQ-1 showed the best antibiotic potential and was thus selected for large-scale fermentation. Bioactivity-directed separation of ME fermentation of strain HQ-1 led to the discovery of three compounds, which were identified as differanisole A (1), 2,6-dichloro-4-propylphenol (2) and 4,5-dimethylresorcinol (3), from the HR-ESI-MS and NMR data analysis. All three compounds exhibited moderate antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, and methicillin-resistant S. aureus, with MIC values ranging from 16 to 128 μg/mL. Compounds 1 and 3 also displayed promising antifungal activity against Selerotium rolfsii with IC50 values of less than 16 and 32 μg/mL, respectively, which were comparable to that of actidione (8 μg/mL). The findings of the present study suggest that the endophytic fungi from A. chinensis have the potential to be used as bactericides and fungicides.
Collapse
Affiliation(s)
- Peiji Liu
- 1Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018 China
| | - Dekui Zhang
- 1Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018 China
| | - Ruirui Shi
- 1Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018 China
| | - Zhengyou Yang
- 1Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018 China
| | - Fengchun Zhao
- 1Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Taian, 271018 China
| | - Yuan Tian
- College of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, 271016 China
| |
Collapse
|
24
|
Patil S, Singh N. Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation. Colloids Surf B Biointerfaces 2019; 176:150-155. [DOI: 10.1016/j.colsurfb.2018.12.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 10/27/2022]
|
25
|
Vestergaard M, Frees D, Ingmer H. Antibiotic Resistance and the MRSA Problem. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0057-2018. [PMID: 30900543 PMCID: PMC11590431 DOI: 10.1128/microbiolspec.gpp3-0057-2018] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus is capable of becoming resistant to all classes of antibiotics clinically available and resistance can develop through de novo mutations in chromosomal genes or through acquisition of horizontally transferred resistance determinants. This review covers the most important antibiotics available for treatment of S. aureus infections and a special emphasis is dedicated to the current knowledge of the wide variety of resistance mechanisms that S. aureus employ to withstand antibiotics. Since resistance development has been inevitable for all currently available antibiotics, new therapies are continuously under development. Besides development of new small molecules affecting cell viability, alternative approaches including anti-virulence and bacteriophage therapeutics are being investigated and may become important tools to combat staphylococcal infections in the future.
Collapse
Affiliation(s)
- Martin Vestergaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
26
|
Chemmugil P, Lakshmi PTV, Annamalai A. A Multidisciplinary Study to Evaluate the Anti-quorum Sensing Ability of Phyto-compounds in Ruellia patula Jacq. Avicenna J Med Biotechnol 2019; 11:48-58. [PMID: 30800243 PMCID: PMC6359695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) causing numerous diseases in humans, have become resistant to antibiotics, hence, urging the need for alternative medicines. METHODS In this study, the Indian medicinal weed, Ruellia patula (R. patula) extracted and fractioned through column chromatography was subjected to antibacterial and anti-quorum sensing activity against S. aureus and Methicillin Resistant Staphylococcus aureus (MRSA). RESULTS The obtained results confirmed fraction F44 to have significant effect as antimicrobial and anti-biofilm agent against both the micro-organism. Therefore, few of such highly active fractions were chemical finger printed using GC-MS and the compounds identified were further docked with DNA binding (LytTR) domain of agrA, which revealed that compounds identified from fraction were interactive to the protein. CONCLUSION R. patula is promising antimicrobial and anti-biofilm agent against S. aureus and MRSA.
Collapse
Affiliation(s)
- P Chemmugil
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India
| | - PTV Lakshmi
- Centre for Bioinformatics, Pondicherry University, Pondicherry, India,Corresponding author: Lakshmi PTV, Ph.D., Centre for Bioinformatics, Pondicherry University, Pondicherry, India, Tel: +91 9486383094, E-mail:;
| | - A Annamalai
- PG and Research Department of Botany, Arignar Anna Government College, Thiruvalluvar University, Villupuram, Tamilnadu, India
| |
Collapse
|
27
|
Li J, Liu D, Tian X, Koseki S, Chen S, Ye X, Ding T. Novel antibacterial modalities against methicillin resistant Staphylococcus aureus derived from plants. Crit Rev Food Sci Nutr 2018; 59:S153-S161. [PMID: 30501508 DOI: 10.1080/10408398.2018.1541865] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a notorious bacterial pathogen that induces high mortality and morbidity. Due to the emergence of multiple resistance, antibiotic treatments are rapidly becoming ineffective for the related infections. Natural products, especially those derived from plants, have been proven to be effective agents with unique antibacterial properties through different mechanisms. This review interprets the resistance mechanisms of MRSA with the aim to conquer public health threat. Further, recent researches about plant antimicrobials that showed remarkable antibacterial activity against MRSA are recorded, including the crude plant extracts and purified plant-derived bioactive compounds. Novel anti-MRSA modalities of plant antimicrobials such as alteration in efflux pump, inhibition of pyruvate kinase, and disturbance of quorum sensing in MRSA are also summarized which may be promising alternatives to antibacterial drug development in future.
Collapse
Affiliation(s)
- Jiao Li
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Donghong Liu
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Xiaojun Tian
- c School of Biological and Health Systems Engineering , Arizona State University , Tempe , AZ , USA
| | - Shigenobu Koseki
- d Graduate School of Agricultural Science , Hokkaido University , Sapporo , Japan
| | - Shiguo Chen
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Xingqian Ye
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| | - Tian Ding
- a Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment , Zhejiang University , Hangzhou , Zhejiang , China.,b Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture , Zhejiang Key Laboratory for Agro-Food Processing , Hangzhou , Zhejiang , China
| |
Collapse
|
28
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
29
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
30
|
Sulfide Protects Staphylococcus aureus from Aminoglycoside Antibiotics but Cannot Be Regarded as a General Defense Mechanism against Antibiotics. Antimicrob Agents Chemother 2018; 62:AAC.00602-18. [PMID: 30061290 DOI: 10.1128/aac.00602-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/22/2018] [Indexed: 11/20/2022] Open
Abstract
Sulfide production has been proposed to be a universal defense mechanism against antibiotics in bacteria (K. Shatalin, E. Shatalina, A. Mironov, and E. Nudler, Science 334:986-990, 2011, doi:10.1126/science.1209855). To gain insight into the mechanism underlying sulfide protection, we systematically and comparatively addressed the interference of sulfide with antibiotic activity against Staphylococcus aureus, as a model organism. The impact of sulfide and sulfide precursors on the antibiotic susceptibility of S. aureus to the most important classes of antibiotics was analyzed using modified disk diffusion assays, killing kinetic assays, and drug uptake studies. In addition, sulfide production and the impact of exogenously added sulfide on the physiology of S. aureus were analyzed. Sulfide protection was found to be limited to aminoglycoside antibiotics, which are known to be taken up by bacterial cells in an energy-dependent process. The protective mechanism was found to rely on an inhibitory effect of sulfide on the bacterial respiratory chain, leading to reduced drug uptake. S. aureus was found to be incapable of producing substantial amounts of sulfide. We propose that bacterial sulfide production should not be regarded as a general defense mechanism against antibiotics, since (i) it is limited to aminoglycosides and (ii) production levels vary considerably among species and, as for S. aureus, may be too low for protection.
Collapse
|
31
|
Zhang ZS, Huang YZ, Luo J, Jin Z, Liu YH, Tang YZ. Synthesis and antibacterial activities of novel pleuromutilin derivatives bearing an aminothiophenol moiety. Chem Biol Drug Des 2018; 92:1627-1637. [PMID: 29722184 DOI: 10.1111/cbdd.13328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/18/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022]
Abstract
We synthesized a series of novel thioether pleuromutilin derivatives incorporating 2-aminothiophenol moieties into the C14 side chain via acylation reactions under mild conditions. We evaluated the in-vitro antibacterial activities of the derivatives against methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300), Staphylococcus aureus (ATCC 29213) and Escherichia coli (ATCC 25922). The majority of the synthesized derivatives possessed moderate antibacterial activities. Compound 8 was found to be the most active antibacterial derivative against MRSA. We conducted docking experiments to understand the possible mode of interactions between compounds 8, 9b, 11a and 50S ribosomal subunit. The docking results proved that there is a reasonable correlation between the binding free energy and the antibacterial activity. Compound 8 was evaluated for its in-vivo antibacterial activity and showed higher efficacy than tiamulin against MRSA in mouse infection model.
Collapse
Affiliation(s)
- Zhao-Sheng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yun-Zhen Huang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian Luo
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Ya-Hong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Nagy E, Nagy G, Power CA, Badarau A, Szijártó V. Anti-bacterial Monoclonal Antibodies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1053:119-153. [PMID: 29549638 DOI: 10.1007/978-3-319-72077-7_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The failing efficacy of antibiotics and the high mortality rate among high-risk patients calls for new treatment modalities for bacterial infections. Due to the vastly divergent pathogenesis of human pathogens, each microbe requires a tailored approach. The main modes of action of anti-bacterial antibodies are virulence factor neutralization, complement-mediated bacterial lysis and enhancement of opsonophagocytic uptake and killing (OPK). Gram-positive bacteria cannot be lysed by complement and their pathogenesis often involves secreted toxins, therefore typically toxin-neutralization and OPK activity are required to prevent and ameliorate disease. In fact, the success stories in terms of approved products, in the anti-bacterial mAb field are based on toxin neutralization (Bacillus anthracis, Clostridium difficile). In contrast, Gram-negative bacteria are vulnerable to antibody-dependent complement-mediated lysis, while their pathogenesis rarely relies on secreted exotoxins, and involves the pro-inflammatory endotoxin (lipopolysaccharide). Given the complexity of bacterial pathogenesis, antibody therapeutics are expected to be most efficient upon targeting more than one virulence factor and/or combining different modes of action. The improved understanding of bacterial pathogenesis combined with the versatility and maturity of antibody discovery technologies available today are pivotal for the design of novel anti-bacterial therapeutics. The intensified research generating promising proof-of-concept data, and the increasing number of clinical programs with anti-bacterial mAbs, indicate that the field is ready to fulfill its promise in the coming years.
Collapse
Affiliation(s)
- Eszter Nagy
- Arsanis Biosciences GmbH/Arsanis, Inc, Vienna, Austria.
| | - Gábor Nagy
- Arsanis Biosciences GmbH/Arsanis, Inc, Vienna, Austria
| | | | | | | |
Collapse
|
33
|
Hill C, Mills S, Ross RP. Phages & antibiotic resistance: are the most abundant entities on earth ready for a comeback? Future Microbiol 2018; 13:711-726. [PMID: 29792526 DOI: 10.2217/fmb-2017-0261] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Bacteriophages, which lost out to antibiotic therapy in the past, may be poised to make a comeback. Once discarded because of their narrow activity spectrum, it can now be viewed as a major advantage that these intracellular, self-replicating entities can exert their killing effect with minimal damage to the commensal microbiome. In eastern Europe, phages continue to be used both prophylactically and therapeutically to treat infections. More recently, much needed regulated clinical trials are underway with a view to restoring phage therapy as a tool for mainstream medicine, although current regulations may impede their full potential. One hundred years after their discovery, and amid an antibiotic resistance crisis, we must ask, what can be done to harness their full antibacterial potential?
Collapse
Affiliation(s)
- Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Susan Mills
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| | - Reynolds P Ross
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
34
|
Khan A, Wilson B, Gould IM. Current and future treatment options for community-associated MRSA infection. Expert Opin Pharmacother 2018; 19:457-470. [PMID: 29480032 DOI: 10.1080/14656566.2018.1442826] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Community-associated MRSA (CA-MRSA) represents a global epidemic which beautifully encapsulates the fascinating ability of bacterial organisms to adapt quickly on an evolutionary basis to the extreme selective pressure of antibiotic exposure. In stark contrast to Healthcare-associated MRSA (HA-MRSA), it has become apparent that CA-MRSA is less straight forward of a challenge in terms of controlling its transmission, and has forced clinicians to adjust empiric management of clinical syndromes such as skin and soft tissue infection (SSTI) as well as pneumonia. AREAS COVERED This review details the history and epidemiology of CA-MRSA, while covering both current and future treatment options that are and may be available to clinicians. The authors reviewed both historic and more recent literature on this ever-evolving topic. EXPERT OPINION While development of new anti-MRSA agents should be encouraged, the importance of antimicrobial stewardship in the battle to stay ahead of the curve with regards to the ongoing control of the MRSA epidemic should be emphasised.
Collapse
Affiliation(s)
- A Khan
- a Department of Medical Microbiology , Aberdeen Royal Infirmary (ARI) , Aberdeen , Scotland
| | - B Wilson
- a Department of Medical Microbiology , Aberdeen Royal Infirmary (ARI) , Aberdeen , Scotland
| | - I M Gould
- a Department of Medical Microbiology , Aberdeen Royal Infirmary (ARI) , Aberdeen , Scotland
| |
Collapse
|
35
|
Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. MICROBIOME 2018; 6:23. [PMID: 29391044 PMCID: PMC5796597 DOI: 10.1186/s40168-018-0401-z] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/10/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Growing concerns about increasing rates of antibiotic resistance call for expanded and comprehensive global monitoring. Advancing methods for monitoring of environmental media (e.g., wastewater, agricultural waste, food, and water) is especially needed for identifying potential resources of novel antibiotic resistance genes (ARGs), hot spots for gene exchange, and as pathways for the spread of ARGs and human exposure. Next-generation sequencing now enables direct access and profiling of the total metagenomic DNA pool, where ARGs are typically identified or predicted based on the "best hits" of sequence searches against existing databases. Unfortunately, this approach produces a high rate of false negatives. To address such limitations, we propose here a deep learning approach, taking into account a dissimilarity matrix created using all known categories of ARGs. Two deep learning models, DeepARG-SS and DeepARG-LS, were constructed for short read sequences and full gene length sequences, respectively. RESULTS Evaluation of the deep learning models over 30 antibiotic resistance categories demonstrates that the DeepARG models can predict ARGs with both high precision (> 0.97) and recall (> 0.90). The models displayed an advantage over the typical best hit approach, yielding consistently lower false negative rates and thus higher overall recall (> 0.9). As more data become available for under-represented ARG categories, the DeepARG models' performance can be expected to be further enhanced due to the nature of the underlying neural networks. Our newly developed ARG database, DeepARG-DB, encompasses ARGs predicted with a high degree of confidence and extensive manual inspection, greatly expanding current ARG repositories. CONCLUSIONS The deep learning models developed here offer more accurate antimicrobial resistance annotation relative to current bioinformatics practice. DeepARG does not require strict cutoffs, which enables identification of a much broader diversity of ARGs. The DeepARG models and database are available as a command line version and as a Web service at http://bench.cs.vt.edu/deeparg .
Collapse
Affiliation(s)
| | - Emily Garner
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Tech, Blacksburg, VA USA
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA USA
| |
Collapse
|
36
|
Ford CA, Cassat JE. Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis. Expert Rev Anti Infect Ther 2017; 15:851-860. [PMID: 28837368 DOI: 10.1080/14787210.2017.1372192] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Osteomyelitis, a common and debilitating invasive infection of bone, is a frequent complication following orthopedic surgery and causes pathologic destruction of skeletal tissues. Bone destruction during osteomyelitis results in necrotic tissue, which is poorly penetrated by antibiotics and can serve as a nidus for relapsing infection. Osteomyelitis therefore frequently necessitates surgical debridement procedures, which provide a unique opportunity for targeted delivery of antimicrobial and adjunctive therapies. Areas covered: Following surgical debridement, tissue voids require implanted materials to facilitate the healing process. Antibiotic-loaded, non-biodegradable implants have been the standard of care. However, a new generation of biodegradable, osteoconductive materials are being developed. Additionally, in the face of widespread antimicrobial resistance, alternative therapies to traditional antibiotic regimens are being investigated, including bone targeting compounds, antimicrobial surface modifications of orthopedic implants, and anti-virulence strategies. Expert commentary: Recent advances in biodegradable drug delivery scaffolds make this technology an attractive alternative to traditional techniques for orthopedic infection that require secondary operations for removal. Advances in novel treatment methods are expanding the arsenal of viable antimicrobial treatment strategies in the face of widespread drug resistance. Despite a need for large scale clinical investigations, these strategies offer hope for future treatment of this difficult invasive disease.
Collapse
Affiliation(s)
- Caleb A Ford
- a Department of Biomedical Engineering , Vanderbilt University School of Engineering, Vanderbilt University School of Medicine , Nashville , TN , USA
| | - James E Cassat
- b Departments of Pediatrics, Pathology, Microbiology, and Immunology, and Biomedical Engineering , Vanderbilt University Medical Center , Nashville , TN , USA
| |
Collapse
|
37
|
Kurata A, Sugiura M, Kokoda K, Tsujimoto H, Numata T, Kato C, Nakasone K, Kishimoto N. Taxonomy of actinomycetes in the deep-sea Calyptogena communities and characterization of the antibacterial compound produced by Actinomadura sp. DS-MS-114. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1342563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Atsushi Kurata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara City, Japan
| | - Miwa Sugiura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara City, Japan
| | - Kento Kokoda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara City, Japan
| | - Hiroaki Tsujimoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara City, Japan
| | - Tetsuya Numata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara City, Japan
| | - Chiaki Kato
- Department of Marine Biodiversity Research, Japan Agency For Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Kaoru Nakasone
- Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Higashi-Hiroshima City, Japan
| | - Noriaki Kishimoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara City, Japan
| |
Collapse
|
38
|
Zanni R, Galvez-Llompart M, Machuca J, Garcia-Domenech R, Recacha E, Pascual A, Rodriguez-Martinez JM, Galvez J. Molecular topology: A new strategy for antimicrobial resistance control. Eur J Med Chem 2017; 137:233-246. [PMID: 28595068 DOI: 10.1016/j.ejmech.2017.05.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 01/15/2023]
Abstract
The control of antimicrobial resistance (AMR) seems to have come to an impasse. The use and abuse of antibacterial drugs has had major consequences on the genetic mutability of both pathogenic and nonpathogenic microorganisms, leading to the development of new highly resistant strains. Because of the complexity of this situation, an in silico strategy based on QSAR molecular topology was devised to identify synthetic molecules as antimicrobial agents not susceptible to one or several mechanisms of resistance such as: biofilms formation (BF), ionophore (IA) activity, epimerase (EI) activity or SOS system (RecA inhibition). After selecting a group of 19 compounds, five of them showed significant antimicrobial activity against several strains of Staphylococcus (2 S. aureus, including 1 methicillin resistant, and 1 S. epidermidis), with MIC values between 16 and 32 mg/L. Among the compounds active on RecA, one showed a marked activity in decreasing RecA gene expression in Escherichia coli.
Collapse
Affiliation(s)
- Riccardo Zanni
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain.
| | - Maria Galvez-Llompart
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| | - Jesus Machuca
- Department of Microbiology, University of Seville, Seville, Spain
| | - Ramon Garcia-Domenech
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| | - Esther Recacha
- Department of Microbiology, University of Seville, Seville, Spain
| | - Alvaro Pascual
- Department of Microbiology, University of Seville, Seville, Spain
| | | | - Jorge Galvez
- Department of Physical Chemistry, University of Valencia, Avenida V.A. Estelles s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
39
|
Assis LM, Nedeljković M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 2017; 31:1-14. [PMID: 28867240 DOI: 10.1016/j.drup.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a major cause of bacterial infection in humans, and has been notoriously able to acquire resistance to a variety of antibiotics. An example is methicillin-resistant S. aureus (MRSA), which despite having been initially associated with clinical settings, now is one of the key causative agents of community-acquired infections. Antibiotic resistance in S. aureus involves mechanisms ranging from drug efflux to increased expression or mutation of target proteins, and this has required innovative approaches to develop novel treatment methodologies. This review provides an overview of the major mechanisms of antibiotic resistance developed by S. aureus, and describes the emerging alternatives being sought to circumvent infection and proliferation, including new generations of classic antibiotics, synergistic approaches, antibodies, and targeting of virulence factors.
Collapse
Affiliation(s)
- L Mayrink Assis
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | - M Nedeljković
- Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France
| | - A Dessen
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil; Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France.
| |
Collapse
|
40
|
Zhang Y, Zhang J, Chen W, Angsantikul P, Spiekermann KA, Fang RH, Gao W, Zhang L. Erythrocyte membrane-coated nanogel for combinatorial antivirulence and responsive antimicrobial delivery against Staphylococcus aureus infection. J Control Release 2017; 263:185-191. [PMID: 28087406 DOI: 10.1016/j.jconrel.2017.01.016] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/29/2016] [Accepted: 01/08/2017] [Indexed: 12/30/2022]
Abstract
We reported an erythrocyte membrane-coated nanogel (RBC-nanogel) system with combinatorial antivirulence and responsive antibiotic delivery for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection. RBC membrane was coated onto the nanogel via a membrane vesicle templated in situ gelation process, whereas the redox-responsiveness was achieved by using a disulfide bond-based crosslinker. We demonstrated that the RBC-nanogels effectively neutralized MRSA-associated toxins in extracellular environment and the toxin neutralization in turn promoted bacterial uptake by macrophages. In intracellular reducing environment, the RBC-nanogels showed an accelerated drug release profile, which resulted in more effective bacterial inhibition. When added to the macrophages infected with intracellular MRSA bacteria, the RBC-nanogels significantly inhibited bacterial growth compared to free antibiotics and non-responsive nanogel counterparts. These results indicate the great potential of the RBC-nanogel system as a new and effective antimicrobial agent against MRSA infection.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jianhua Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wansong Chen
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Pavimol Angsantikul
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin A Spiekermann
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
41
|
Jiang Z, Hong WD, Cui X, Gao H, Wu P, Chen Y, Shen D, Yang Y, Zhang B, Taylor MJ, Ward SA, O'Neill PM, Zhao S, Zhang K. Synthesis and structure–activity relationship of N4-benzylamine-N2-isopropyl-quinazoline-2,4-diamines derivatives as potential antibacterial agents. RSC Adv 2017. [DOI: 10.1039/c7ra10352b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper investigated the SAR of the N4-benzylamine-N2-isopropyl-quinazoline-2,4-diamines derivatives with heterocyclic scaffold which showed good activities against S. aureus, E. coli, MRSA, S. epidermidis and S. typhimurium.
Collapse
|
42
|
Abstract
Staphylococcus aureus, although generally identified as a commensal, is also a common cause of human bacterial infections, including of the skin and other soft tissues, bones, bloodstream, and respiratory tract. The history of S. aureus treatment is marked by the development of resistance to each new class of antistaphylococcal antimicrobial drugs, including the penicillins, sulfonamides, tetracyclines, glycopeptides, and others, complicating therapy. S. aureus isolates identified in the 1960s were sometimes resistant to methicillin, a ß-lactam antimicrobial active initially against a majority S. aureus strains. These MRSA isolates, resistant to nearly all ß-lactam antimicrobials, were first largely confined to the health care environment and the patients who attended it. However, in the mid-1990s, new strains, known as community-associated (CA-) MRSA strains, emerged. CA-MRSA organisms, compared with health care-associated (HA-) MRSA strain types, are more often susceptible to multiple classes of non ß-lactam antimicrobials. While infections caused by methicillin-susceptible S. aureus (MSSA) strains are usually treated with drugs in the ß-lactam class, such as cephalosporins, oxacillin or nafcillin, MRSA infections are treated with drugs in other antimicrobial classes. The glycopeptide drug vancomycin, and in some countries teicoplanin, is the most common drug used to treat severe MRSA infections. There are now other classes of antimicrobials available to treat staphylococcal infections, including several that have been approved after 2009. The antimicrobial management of invasive and noninvasive S. aureus infections in the ambulatory and in-patient settings is the topic of this review. Also discussed are common adverse effects of antistaphylococcal antimicrobial agents, advantages of one agent over another for specific clinical syndromes, and the use of adjunctive therapies such as surgery and intravenous immunoglobulin. We have detailed considerations in the therapy of noninvasive and invasive S. aureus infections. This is followed by sections on specific clinical infectious syndromes including skin and soft tissue infections, bacteremia, endocarditis and intravascular infections, pneumonia, osteomyelitis and vertebral discitis, epidural abscess, septic arthritis, pyomyositis, mastitis, necrotizing fasciitis, orbital infections, endophthalmitis, parotitis, staphylococcal toxinoses, urogenital infections, and central nervous system infections.
Collapse
|
43
|
Pharmacological aptitude and profiling of active constituent from Otostegia limbata-Comprehensive review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61156-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Wenzel M, Prochnow P, Mowbray C, Vuong C, Höxtermann S, Stepanek JJ, Albada HB, Hall J, Metzler-Nolte N, Bandow JE. Towards Profiles of Resistance Development and Toxicity for the Small Cationic Hexapeptide RWRWRW-NH2. Front Cell Dev Biol 2016; 4:86. [PMID: 27617260 PMCID: PMC4999427 DOI: 10.3389/fcell.2016.00086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/05/2016] [Indexed: 01/12/2023] Open
Abstract
RWRWRW-NH2 (MP196) is an amphipathic hexapeptide that targets the bacterial cytoplasmic membrane and inhibits cellular respiration and cell wall synthesis. In previous studies it showed promising activity against Gram-positive bacteria and no significant cytotoxicity or hemolysis. MP196 is therefore used as lead structure for developing more potent antibiotic derivatives. Here we present a more comprehensive study on the parent peptide MP196 with regard to clinically relevant parameters. We found that MP196 acts rapidly bactericidal killing 97% of initial CFU within 10 min at two times MIC. We were unable to detect resistance in standard 24 and 48 h resistance frequency assays. However, MP196 was effective against some but not all MRSA and VISA strains. Serum binding of MP196 was intermediate and we confirmed its low toxicity against mammalian cell lines. MP196 did neither induce NFκB activation nor cause an increase in IL8 levels at 250 μg/mL, and no IgE-dependent activation of basophil granulocytes was detected at 500 μg/mL. Yet, MP196 demonstrated acute toxicity in mice upon injection into the blood stream. Phase contrast microscopy of mouse blood treated with MP196 revealed a shrinking of erythrocytes at 250 μg/mL and severe morphological changes and lysis of erythrocytes at 500 μg/mL. These data suggest that MP196 derivatization directed at further lowering hemolysis could be instrumental in overcoming acute toxicity. The assessment of hemolysis is a critical step in the evaluation of the clinical potential of promising antimicrobial peptides and should be accompanied by microscopy-based morphological analysis of blood cells.
Collapse
Affiliation(s)
- Michaela Wenzel
- Applied Microbiology, Ruhr University Bochum Bochum, Germany
| | - Pascal Prochnow
- Applied Microbiology, Ruhr University Bochum Bochum, Germany
| | - Catherine Mowbray
- Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Cuong Vuong
- AiCuris Anti-infective Cures GmbH Wuppertal, Germany
| | - Stefan Höxtermann
- Clinic for Dermatology and Allergology, St. Josef Hospital Bochum, Germany
| | | | - H Bauke Albada
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum Bochum, Germany
| | - Judith Hall
- Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Nils Metzler-Nolte
- Chair of Inorganic Chemistry I - Bioinorganic Chemistry, Ruhr University Bochum Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Ruhr University Bochum Bochum, Germany
| |
Collapse
|
45
|
Mohamed MF, Abdelkhalek A, Seleem MN. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep 2016; 6:29707. [PMID: 27405275 PMCID: PMC4942614 DOI: 10.1038/srep29707] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/21/2016] [Indexed: 02/07/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections present a serious challenge because of the emergence of resistance to numerous conventional antibiotics. Due to their unique mode of action, antimicrobial peptides are novel alternatives to traditional antibiotics for tackling the issue of bacterial multidrug resistance. Herein, we investigated the antibacterial activity of two short novel peptides (WR12, a 12 residue peptide composed exclusively of arginine and tryptophan, and D-IK8, an eight residue β-sheet peptide) against multidrug resistant staphylococci. In vitro, both peptides exhibited good antibacterial activity against MRSA, vancomycin-resistant S. aureus, linezolid-resistant S. aureus, and methicillin-resistant S. epidermidis. WR12 and D-IK8 were able to eradicate persisters, MRSA in stationary growth phase, and showed significant clearance of intracellular MRSA in comparison to both vancomycin and linezolid. In vivo, topical WR12 and D-IK8 significantly reduced both the bacterial load and the levels of the pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in MRSA-infected skin lesions. Moreover, both peptides disrupted established in vitro biofilms of S. aureus and S. epidermidis significantly more so than traditional antimicrobials tested. Taken together, these results support the potential of WR12 and D-IK8 to be used as a topical antimicrobial agent for the treatment of staphylococcal skin infections.
Collapse
Affiliation(s)
- Mohamed F. Mohamed
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Ahmed Abdelkhalek
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed N. Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
46
|
Abstract
INTRODUCTION Ocular infections remain an important cause of blindness worldwide and represent a challenging public health concern. In this regard, microbial keratitis due to fungal, bacterial, or viral infection can result in significant vision loss secondary to corneal scarring or surface irregularity. Left untreated corneal perforation and endophthalmitis can result, leading to loss of the eye. Rigorously studied animal models of disease pathogenesis have provided novel information that suggests new modes of treatment that may be efficacious clinically and emerging clinical data is supportive of some of these discoveries. AREAS COVERED This review focuses on advances in our understanding of disease pathogenesis in animal models and clinical studies and how these relate to improved clinical treatment. We also discuss a novel approach to treatment of microbial keratitis due to infection with these bacterial pathogens using PACK-CXL and recommend increased basic and clinical studies to address and refine the efficacy of this procedure. EXPERT COMMENTARY Because resistance to antibiotics has developed over time to these bacterial pathogens, caution must be exercised in treatment. Attractive novel modes of treatment that hold new promise for further investigation include lipid based therapy, as well as use of small molecules that bind deleterious specific host responsive molecules and use of microRNA based therapies.
Collapse
|
47
|
Wang Y, Di H, Chen F, Xu Y, Xiao Q, Wang X, Wei H, Lu Y, Zhang L, Zhu J, Lan L, Li J. Discovery of Benzocycloalkane Derivatives Efficiently Blocking Bacterial Virulence for the Treatment of Methicillin-Resistant S. aureus (MRSA) Infections by Targeting Diapophytoene Desaturase (CrtN). J Med Chem 2016; 59:4831-48. [DOI: 10.1021/acs.jmedchem.6b00122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Youxin Wang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongxia Di
- State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Feifei Chen
- State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Xu
- Hubei Bio-pharmaceutical Industrial Technological Institute, Inc., Wuhan 430075, China
| | - Qiang Xiao
- Hubei Bio-pharmaceutical Industrial Technological Institute, Inc., Wuhan 430075, China
| | - Xuehai Wang
- Humanwell Healthcare (Group) Co., Ltd., Wuhan 430075, China
| | - Hanwen Wei
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanli Lu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lingling Zhang
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Zhu
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lefu Lan
- State Key Laboratory of Drug Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Li
- Shanghai
Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
48
|
Kuipers A, Stapels DAC, Weerwind LT, Ko YP, Ruyken M, Lee JC, van Kessel KPM, Rooijakkers SHM. The Staphylococcus aureus polysaccharide capsule and Efb-dependent fibrinogen shield act in concert to protect against phagocytosis. MICROBIOLOGY-SGM 2016; 162:1185-1194. [PMID: 27112346 DOI: 10.1099/mic.0.000293] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus has developed many mechanisms to escape from human immune responses. To resist phagocytic clearance, S. aureus expresses a polysaccharide capsule, which effectively masks the bacterial surface and surface-associated proteins, such as opsonins, from recognition by phagocytic cells. Additionally, secretion of the extracellular fibrinogen binding protein (Efb) potently blocks phagocytic uptake of the pathogen. Efb creates a fibrinogen shield surrounding the bacteria by simultaneously binding complement C3b and fibrinogen at the bacterial surface. By means of neutrophil phagocytosis assays with fluorescently labelled encapsulated serotype 5 (CP5) and serotype 8 (CP8) strains we compare the immune-modulating function of these shielding mechanisms. The data indicate that, in highly encapsulated S. aureus strains, the polysaccharide capsule is able to prevent phagocytic uptake at plasma concentrations <10 %, but loses its protective ability at higher concentrations of plasma. Interestingly, Efb shows a strong inhibitory effect on both capsule-negative and encapsulated strains at all tested plasma concentrations. Furthermore, the results suggest that both shielding mechanisms can exist simultaneously and collaborate to provide optimal protection against phagocytosis at a broad range of plasma concentrations. As opsonizing antibodies will be shielded from recognition by either mechanism, incorporating both capsular polysaccharides and Efb in future vaccines could be of great importance.
Collapse
Affiliation(s)
- Annemarie Kuipers
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Daphne A C Stapels
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lleroy T Weerwind
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ya-Ping Ko
- Center for Infectious and Inflammatory Disease, Institute of Bioscience and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Maartje Ruyken
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jean C Lee
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|