1
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
2
|
Baltogianni M, Dermitzaki N, Kosmeri C, Serbis A, Balomenou F, Giapros V. Reintroduction of Legacy Antibiotics in Neonatal Sepsis: The Special Role of Fosfomycin and Colistin. Antibiotics (Basel) 2024; 13:333. [PMID: 38667009 PMCID: PMC11047481 DOI: 10.3390/antibiotics13040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Neonatal sepsis is a leading cause of morbidity and mortality in neonates, particularly in low- and middle-income countries. The emergence of antimicrobial resistance is a rapidly growing global problem. A significant proportion of the pathogens that commonly cause neonatal sepsis are resistant to multiple antibiotics. Therefore, for the empirical treatment of neonatal sepsis, the repurposing of older antibiotics that are effective against multidrug-resistant pathogens is being investigated. This review aims to provide an overview of current research and experience using the repurposed antibiotics colistin and fosfomycin for the empirical treatment of neonatal sepsis. Based on current knowledge, colistin and fosfomycin may be potentially helpful for the empirical treatment of sepsis in neonates due to their efficacy against a wide range of pathogens and acceptable safety profile.
Collapse
Affiliation(s)
- Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| | - Niki Dermitzaki
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| | - Chrysoula Kosmeri
- Department of Paediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (C.K.); (A.S.)
| | - Anastasios Serbis
- Department of Paediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (C.K.); (A.S.)
| | - Foteini Balomenou
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (M.B.); (N.D.); (F.B.)
| |
Collapse
|
3
|
Rubens RS, Arruda IDSA, Almeida RM, Nóbrega YKDM, Carneiro MDS, Dalmolin TV. Challenges in the Detection of Polymyxin Resistance: From Today to the Future. Microorganisms 2024; 12:101. [PMID: 38257928 PMCID: PMC10818861 DOI: 10.3390/microorganisms12010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Antimicrobial resistance is known to be one of the greatest global threats to human health, and is one of the main causes of death worldwide. In this scenario, polymyxins are last-resort antibiotics to treat infections caused by multidrug-resistant bacteria. Currently, the reference test to evaluate the susceptibility of isolates to polymyxins is the broth microdilution method; however, this technique has numerous complications and challenges for use in laboratory routines. Several phenotypic methods have been reported as being promising for implementation in routine diagnostics, including the BMD commercial test, rapid polymyxin NP test, polymyxin elution test, culture medium with polymyxins, and the Polymyxin Drop Test, which require materials for use in routines and must be easy to perform. Furthermore, Sensititre®, molecular tests, MALDI-TOF MS, and Raman spectroscopy present reliable results, but the equipment is not found in most microbiology laboratories. In this context, this review discusses the main laboratory methodologies that allow the detection of resistance to polymyxins, elucidating the challenges and perspectives.
Collapse
Affiliation(s)
- Rebeca Siqueira Rubens
- Laboratório de Microbiologia e Imunologia Clínica (LabMIC), Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (R.S.R.); (I.d.S.A.A.); (R.M.A.); (Y.K.d.M.N.)
| | - Isabel de Souza Andrade Arruda
- Laboratório de Microbiologia e Imunologia Clínica (LabMIC), Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (R.S.R.); (I.d.S.A.A.); (R.M.A.); (Y.K.d.M.N.)
| | - Rosane Mansan Almeida
- Laboratório de Microbiologia e Imunologia Clínica (LabMIC), Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (R.S.R.); (I.d.S.A.A.); (R.M.A.); (Y.K.d.M.N.)
| | - Yanna Karla de Medeiros Nóbrega
- Laboratório de Microbiologia e Imunologia Clínica (LabMIC), Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (R.S.R.); (I.d.S.A.A.); (R.M.A.); (Y.K.d.M.N.)
| | | | - Tanise Vendruscolo Dalmolin
- Laboratório de Microbiologia e Imunologia Clínica (LabMIC), Departamento de Farmácia, Faculdade de Ciências da Saúde, Universidade de Brasília (UnB), Brasília 70910-900, DF, Brazil; (R.S.R.); (I.d.S.A.A.); (R.M.A.); (Y.K.d.M.N.)
| |
Collapse
|
4
|
Kaya F, Tuğcugil E. Hyperpigmentation on head and neck caused by polymyxin B: A rare case. Niger J Clin Pract 2023; 26:1393-1395. [PMID: 37794556 DOI: 10.4103/njcp.njcp_185_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Polymyxin B was widely used to treat drug-resistant gram-negative bacteria and showed a better antibacterial effect. However, it is associated with some side effects. It should be remembered that polymyxin B may cause hyperpigmentation, albeit rare. This is a case report of a 68-year-old male patient who developed hyperpigmentation following treatment of a chest infection with polymyxin B. He was a known patient with chronic kidney diasease and chronic obstructive pulmonary disease followed up in the intensive care unit due to acute exacerbation of COPD. Later, polymyxin B treatment was started due to the development of pneumonia caused by the multidrug-resistant Acinetobacter baumannii. On the second day of polymyxin B treatment, hyperpigmentation developed in the face and neck region. The fact that the patient had chronic kidney disease possibly facilitated the development of skin hyperpigmentation due to the cumulative effect of polymyxin B. Hyperpigmentation which a rare side effect of polymyxin B may occur in those with underlying kidney disease.
Collapse
Affiliation(s)
- F Kaya
- Department of Anesthesiology and Critical Care, Ahi Evren Thoracic and Cardiovascular Surgery Training and Research Hospital, Health Sciences University Trabzon, Trabzon, Turkey
| | - E Tuğcugil
- Department of Anesthesiology and Critical Care, Karadeniz Technical University, Faculty of Medicine, Trabzon, Turkey
| |
Collapse
|
5
|
Colistin-Induced Neurotoxicity in a Multidrug-Resistant UTI Patient with Cervical Cancer: A Case Report. Nephrourol Mon 2022. [DOI: 10.5812/numonthly-127122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: There has been a rise in the reappearance of multidrug-resistant Gram-negative bacteria in recent years. Using polymyxins, such as colistin, as a last-line treatment for these infections has led to renewed interest in the toxic effects of this drug. Case Presentation: In this case report, we present neurological signs and symptoms developed in a patient with a history of cervical cancer four to five hours after receiving colistin for treating a urinary tract infection caused by MDR Pseudomonas aeruginosa with a colony count of > 100,000/L. These signs and symptoms included lower limb hemiparesis, facial paresthesia, decreased deep tendon reflexes, and tinnitus, which were resolved on their own 24 hours after discontinuation of the drug. Antibiotic therapy was continued with pipractate and ciprofloxacin instead. The patient got discharged in stable condition after negative urine culture results.
Collapse
|
6
|
Wagenlehner F, Lucenteforte E, Pea F, Soriano A, Tavoschi L, Steele VR, Henriksen AS, Longshaw C, Manissero D, Pecini R, Pogue JM. Systematic review on estimated rates of nephrotoxicity and neurotoxicity in patients treated with polymyxins. Clin Microbiol Infect 2021; 27:S1198-743X(20)30764-3. [PMID: 33359542 DOI: 10.1016/j.cmi.2020.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nephrotoxicity and neurotoxicity are commonly associated with polymyxin treatment; however, the emergence of multidrug-resistant Gram-negative bacteria with limited therapeutic options has resulted in increased use of polymyxins. OBJECTIVES To determine the rates of nephrotoxicity and neurotoxicity during polymyxin treatment and whether any factors influence these. DATA SOURCES Medline, Embase and Cochrane Library databases were searched on 2 January 2020. STUDY ELIGIBILITY CRITERIA Studies reporting nephrotoxicity and/or neurotoxicity rates in patients with infections treated with polymyxins were included. Reviews, meta-analyses and reports not in English were excluded. PARTICIPANTS Patients hospitalized with infections treated with systemic or inhaled polymyxins were included. For comparative analyses, patients treated with non-polymyxin-based regimens were also included. METHODS Meta-analyses were performed using a random-effects model; subgroup meta-analyses were conducted where data permitted using a mixed-effects model. RESULTS In total, 237 reports of randomized controlled trials, cohort and case-control studies were eligible for inclusion; most were single-arm observational studies. Nephrotoxic events in 35,569 patients receiving polymyxins were analysed. Overall nephrotoxicity rate was 0.282 (95% confidence interval (CI) 0.259-0.307). When excluding studies where >50% of patients received inhaled-only polymyxin treatment or nephrotoxicity assessment was by methods other than internationally recognized criteria (RIFLE, KDIGO or AKIN), the nephrotoxicity rate was 0.391 (95% CI 0.364-0.419). The odds of nephrotoxicity were greater with polymyxin therapies compared to non-polymyxin-based regimens (odds ratio 2.23 (95% CI 1.58-3.15); p < 0.001). Meta-analyses showed a significant effect of polymyxin type, dose, patient age, number of concomitant nephrotoxins and use of diuretics, glycopeptides or vasopressors on the rate of nephrotoxicity. Polymyxin therapies were not associated with a significantly different rate of neurotoxicity than non-polymyxin-based regimens (p 0.051). The overall rate of neurotoxicity during polymyxin therapy was 0.030 (95% CI 0.020-0.043). CONCLUSIONS Polymyxins are associated with a higher risk of nephrotoxicity than non-polymyxin-based regimens.
Collapse
Affiliation(s)
- Florian Wagenlehner
- Clinic for Urology, Pediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pea
- Department of Medicine, University of Udine and Institute of Clinical Pharmacology, SM Misericordia University Hospital, ASUIUD, Udine, Italy
| | - Alex Soriano
- Infectious Diseases Department, Hospital Clínic of Barcelona, University of Barcelona IDIBAPS, Barcelona, Spain
| | - Lara Tavoschi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | | | - Davide Manissero
- University College of London, Institute for Global Health, London, UK
| | | | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Abstract
RATIONALE Polymyxin B has been used to treat extensively drug-resistant gram-negative bacteria and shown a better antibacterial effect in the clinic at present. Meanwhile, polymyxin B is associated with several adverse effects. However, there is a lack of awareness that polymyxin B can cause rhabdomyolysis. In this study, we firstly report a case of polymyxin B-induced rhabdomyolysis during antiinfection therapy. PATIENT CONCERNS A 70-year-old woman suffering from rheumatic heart disease underwent aortic and mitral valve replacement at our institute. Subsequently, she developed bacteremia and pneumonia caused by extensively drug resistance-acinetobacter baumannii. Polymyxin B was administered for 5 days. During treatment, the patient complained of muscle pain and limb weakness, and her serum creatine phosphokinase and myoglobin levels rose. DIAGNOSIS The clinical symptoms and laboratory examination confirmed rhabdomyolysis, and polymyxin B-induced rhabdomyolysis was considered. INTERVENTION We ceased polymyxin B treatment and monitored the patient daily. OUTCOMES Serum creatine phosphokinase levels returned to normal, myoglobin levels decreased, and muscle pain was significantly alleviated after cessation of polymyxin B. We identified this as a case of polymyxin B-induced rhabdomyolysis. LESSONS Here, we report the first reported case of rhabdomyolysis induced by polymyxin B administration. The awareness of rare adverse reaction helps ensure the clinical safety of polymyxin B treatment.
Collapse
Affiliation(s)
- Ming Ni
- Department of Clinical Pharmacy, Henan Provincial People's Hospital
- Department of Clinical Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou
| | - Xiangdong Meng
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai
| | - Limin Wang
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai
| | - Yanan Zhao
- Department of Clinical Pharmacy, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Min Yu
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai
| | - Sheng Shi
- Department of Cardiovascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai
| |
Collapse
|
8
|
Chen J, Yang Y, Xiang K, Li D, Liu H. Combined Rifampin and Sulbactam Therapy for Multidrug-Resistant Acinetobacter Baumannii Ventilator-Associated Pneumonia in Pediatric Patients. JOURNAL OF ANESTHESIA AND PERIOPERATIVE MEDICINE 2018; 5:176-185. [PMID: 31819924 PMCID: PMC6901084 DOI: 10.24015/japm.2018.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: With essentially no drug available to control the infection caused by the extensively drug-resistant Acinetobacter
baumannii (XDR-Ab) in infants and young children, this study explored the clinical outcomes of pediatric patients with
drug-resistant XDR-Ab who were treated with rifampicin in combination with sulbactam sodium. Methods: The data for clinical outcomes, microbiological responses, and side effects were collected and evaluated for 12
critically ill infants and young children diagnosed with ventilator-associated pneumonia caused by XDR-Ab following surgical
treatment for congenital heart disease in a pediatric cardiac intensive care unit. This study was approved by local
institutional review board (IRB). Results: Two patients died from the complex underlining diseases. The other 10 patients were weaned off the mechanical
ventilation successfully within 4–15 days after the start of treatment with rifampicin combined with sulbactam sodium
and discharged home. Three cases experienced adverse side effects, including severe rash and elevated aminotransferase
level. Conclusion: The combination of rifampicin and sulbactam sodium appeared to be an effective and safe therapy for severe
ventilator-associated pneumonia caused by XDR-Ab in infants and young children. Side effects such as skin rashes and elevated
aminotransferase levels can be reversed once rifampicin is discontinued in time. (Funded by the Department of Cardiovascular
Surgery, The Second Xiangya Hospital, Central South University, Changsha, China; the Departments of Anesthesiology and
Pain Medicine of University of California Davis Health; and the National Institutes of Health.)
Collapse
Affiliation(s)
- Jinlan Chen
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xiang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - David Li
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
9
|
Zimmermann L, Das I, Désiré J, Sautrey G, Barros R. S. V, El Khoury M, Mingeot-Leclercq MP, Décout JL. New Broad-Spectrum Antibacterial Amphiphilic Aminoglycosides Active against Resistant Bacteria: From Neamine Derivatives to Smaller Neosamine Analogues. J Med Chem 2016; 59:9350-9369. [DOI: 10.1021/acs.jmedchem.6b00818] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Louis Zimmermann
- Département
de Pharmacochimie Moléculaire, ICMG FR 2607, University Grenoble Alpes/CNRS, UMR 5063, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Indrajit Das
- Département
de Pharmacochimie Moléculaire, ICMG FR 2607, University Grenoble Alpes/CNRS, UMR 5063, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Jérôme Désiré
- Département
de Pharmacochimie Moléculaire, ICMG FR 2607, University Grenoble Alpes/CNRS, UMR 5063, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Guillaume Sautrey
- Unité
de Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research
Institute, Université Catholique de Louvain, Avenue E.
Mounier 73, B1.73.05, B-1200 Brussels, Belgium
| | - Vinicius Barros R. S.
- Département
de Pharmacochimie Moléculaire, ICMG FR 2607, University Grenoble Alpes/CNRS, UMR 5063, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Micheline El Khoury
- Unité
de Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research
Institute, Université Catholique de Louvain, Avenue E.
Mounier 73, B1.73.05, B-1200 Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Unité
de Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research
Institute, Université Catholique de Louvain, Avenue E.
Mounier 73, B1.73.05, B-1200 Brussels, Belgium
| | - Jean-Luc Décout
- Département
de Pharmacochimie Moléculaire, ICMG FR 2607, University Grenoble Alpes/CNRS, UMR 5063, 470 Rue de la Chimie, BP 53, F-38041 Grenoble, France
| |
Collapse
|
10
|
Colistin combination therapy improves microbiologic cure in critically ill patients with multi-drug resistant gram-negative pneumonia. Eur J Clin Microbiol Infect Dis 2016; 35:1433-9. [PMID: 27230510 DOI: 10.1007/s10096-016-2681-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Currently, in vitro synergy with colistin has not translated into improved clinical outcomes. This study aimed to compare colistin combination therapy to colistin monotherapy in critically ill patients with multi-drug resistant gram-negative (MDR-GN) pneumonia. This was a retrospective analysis of critically ill adult patients receiving intravenous colistin for MDR-GN pneumonia comparing colistin combination therapy to colistin monotherapy with a primary endpoint of clinical cure. Combination therapy was defined by administration of another antibiotic to which the MDR-GN pathogen was reported as susceptible or intermediate. Ninety patients were included for evaluation (41 combination therapy and 49 monotherapy). Baseline characteristics were similar between groups. No difference in clinical cure was observed between combination therapy and monotherapy in univariate analysis, nor when adjusted for APACHE II score and time to appropriate antibiotic therapy (57.1 vs. 63.4 %, adjusted OR 1.15, p = 0.78). Microbiological cure was significantly higher for combination therapy (87 vs. 35.5 %, p < 0.001). Colistin combination therapy was associated with a significant improvement in microbiological cure, without improvement in clinical cure. Based on the in vitro synergy and improvement in microbiological clearance, colistin combination therapy should be prescribed for MDR-GN pneumonia. Further research is warranted to determine if in vitro synergy with colistin translates into improved clinical outcomes.
Collapse
|
11
|
Smani Y, Pachón-Ibáñez ME, Pachón J. New molecules and adjuvants in the treatment of infections by Acinetobacter baumannii. Expert Opin Pharmacother 2016; 17:1207-14. [PMID: 27067283 DOI: 10.1080/14656566.2016.1176144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION The current problems of the treatment of infections by Acinetobacter baumannii are linked with the increase of multidrug- and extensive-drug resistance and the lack of development of new antimicrobial drugs for Gram-negative bacilli. For these reasons, new alternatives for the treatment and control of severe infections by A. baumannii are necessary. Several studies have reported the effect of adjuvants to restore the efficacy of existing antimicrobial agents. AREAS COVERED In the present review, the authors describe the main results in the development of adjuvant drugs as well as new data on antimicrobial peptides, in monotherapy or in combination therapy with existing antimicrobial agents, which have shown promising preclinical results in vitro and in vivo. EXPERT OPINION The preclinical evaluation of adjuvants and antimicrobial peptides, in monotherapy or in combination therapy, for A. baumannii infections has shown promising results. However, caution is needed and further extensive in vivo studies and clinical trials have to be performed to confirm the potential use of these adjuvants as true therapeutic alternatives.
Collapse
Affiliation(s)
- Younes Smani
- a Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| | - María Eugenia Pachón-Ibáñez
- a Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| | - Jerónimo Pachón
- a Clinical Unit of Infectious Diseases, Microbiology, and Preventive Medicine , Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville , Seville , Spain
| |
Collapse
|
12
|
Ramesh S, Govender T, Kruger HG, Albericio F, de la Torre BG. An improved and efficient strategy for the total synthesis of a colistin-like peptide. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.03.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Voget M, Lorenz D, Lieber-Tenorio E, Hauck R, Meyer M, Cieslicki M. Is transmission electron microscopy (TEM) a promising approach for qualitative and quantitative investigations of polymyxin B and miconazole interactions with cellular and subcellular structures of Staphylococcus pseudintermedius, Escherichia coli, Pseudomonas aeruginosa and Malassezia pachydermatis? Vet Microbiol 2015; 181:261-70. [PMID: 26527257 DOI: 10.1016/j.vetmic.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 11/30/2022]
Abstract
Antimicrobial therapy using a combination of polymyxin B and miconazole is effective against the main bacterial pathogens associated with otitis externa in dogs, and a synergistic effect of both drugs has been shown previously. The objective of the present investigation was to visualize ultrastructural changes after exposure of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pseudintermedius and Malassezia pachydermatis to polymyxin B and miconazole by transmission electron microscopic (TEM). For this, cultures of E. coli, P. aeruginosa, S. pseudintermedius and M. pachydermatis were exposed to polymyxin B and miconazole, alone or in combination for 24 h. Ultrastructural changes were observed most frequently in the cell envelope of the four microorganisms. Exposure to polymyxin B seemed to cause more damage than miconazole within the range of concentrations applied. Treatment resulted in changes of the cell size: in E. coli, cell size increased significantly after treatment with either compound alone; in P. aeruginosa, cell size decreased significantly after treatment with polymyxin B and with miconazole; exposure of S. pseudintermedius to miconazole caused a decrease in cell size; in M. pachydermatis, cell size increased significantly after treatment with polymyxin B.; in E.coli, S. pseudintermedius and M. pachydermatis, cell size changed highly significant, in P. aeruginosa significantly after exposure to the combination of both compounds. In conclusion, by using a different approach than previous investigations, this study confirmed a clear combinatory effect of polymyxin B and miconazole against the tested microorganisms involved in canine otitis externa. It is the first time that visualization technologies were applied to compare the effect of single drugs to their combinatory effects on cellular and subcellular entities of selected bacterial and yeast species.
Collapse
Affiliation(s)
| | - Dorothea Lorenz
- Leibnitz Institut für molekulare Pharmakologie, Berlin, Germany
| | | | - Ruediger Hauck
- Freie Universität Berlin, Fachbereich Veterinärmedizin, Germany
| | | | | |
Collapse
|
14
|
Abstract
The revival of polymyxin antibiotics with the advent of multidrug resistant gram-negative bacteria in the recent decade has led to renewed interest in toxicity of this indispensable drug. We report a postoperative case of burst abdomen where colistin was started in view of Pseudomonas organism sensitive to colistin. Subsequently, the patient went into respiratory depression and encephalopathy after starting the treatment. She recovered promptly after stopping the drug.
Collapse
Affiliation(s)
- Aruna Nigam
- Department of Obstetrics and Gynaecology, Hamdard Institute of Medical Sciences and Research, New Delhi, India
| | - Archana Kumari
- Department of Obstetrics and Gynaecology, Hamdard Institute of Medical Sciences and Research, New Delhi, India
| | - Reena Jain
- Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Swaraj Batra
- Department of Obstetrics and Gynaecology, Hamdard Institute of Medical Sciences and Research, New Delhi, India
| |
Collapse
|
15
|
Karaiskos I, Giamarellou H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin Pharmacother 2014; 15:1351-70. [PMID: 24766095 PMCID: PMC4819585 DOI: 10.1517/14656566.2014.914172] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
INTRODUCTION In the era of multidrug-resistant, extensively drug-resistant (XDR) and even pandrug-resistant Gram-negative microorganisms, the medical community is facing the threat of untreatable infections particularly those caused by carbapenemase-producing bacteria, that is, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Therefore, all the presently available antibiotics, as well as for the near future compounds, are presented and discussed. AREAS COVERED Current knowledge concerning mechanisms of action, in vitro activity and interactions, pharmacokinetic/pharmacodynamics, clinical efficacy and toxicity issues for revived and novel antimicrobial agents overcoming current resistance mechanisms, including colistin, tigecycline, fosfomycin, temocillin, carbapenems, and antibiotics still under development for the near future such as plazomicin, eravacycline and carbapenemase inhibitors is discussed. EXPERT OPINION Colistin is active in vitro and effective in vivo against XDR carbapenemase-producing microorganisms in the critically ill host, whereas tigecycline, with the exception of P. aeruginosa, has a similar spectrum of activity. The efficacy of combination therapy in bacteremias and ventilator-associated pneumonia caused by K. pneumoniae carbapenemase producers seems to be obligatory, whereas in cases of P. aeruginosa and A. baumannii its efficacy is questionable. Fosfomycin, which is active against P. aeruginosa and K. pneumoniae, although promising, shares poor experience in XDR infections. The in vivo validity of the newer potent compounds still necessitates the evaluation of Phase III clinical trials particularly in XDR infections.
Collapse
Affiliation(s)
- Ilias Karaiskos
- Hygeia General Hospital, 6th Department of Internal Medicine, Erythrou Stavrou Str & Kifisias Avenue, Marousi, Athens, 15123, Greece
| | - Helen Giamarellou
- Hygeia General Hospital, 6th Department of Internal Medicine, 4, Erythrou Stavrou Str & Kifisias Avenue, Marousi, Athens, 15123, Greece+302 106 867 946; +302 106 867 377;
| |
Collapse
|
16
|
Cox G, Koteva K, Wright GD. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria. J Antimicrob Chemother 2014; 69:1844-55. [PMID: 24627312 DOI: 10.1093/jac/dku057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. METHODS E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. RESULTS The anthracycline Antibiotic 301A(1) was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure-activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A(1) abolishes activity. CONCLUSIONS Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives.
Collapse
Affiliation(s)
- Georgina Cox
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1, Canada
| | - Kalinka Koteva
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
17
|
Zimmermann L, Bussière A, Ouberai M, Baussanne I, Jolivalt C, Mingeot-Leclercq MP, Décout JL. Tuning the Antibacterial Activity of Amphiphilic Neamine Derivatives and Comparison to Paromamine Homologues. J Med Chem 2013; 56:7691-705. [DOI: 10.1021/jm401148j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Louis Zimmermann
- Département
de Pharmacochimie Moléculaire, Université de Grenoble I/CNRS, UMR 5063, ICMG FR
2607, 470 rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Antoine Bussière
- Département
de Pharmacochimie Moléculaire, Université de Grenoble I/CNRS, UMR 5063, ICMG FR
2607, 470 rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Myriam Ouberai
- Unité de Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 73, B1.73.05, B-1200 Brussels, Belgium
| | - Isabelle Baussanne
- Département
de Pharmacochimie Moléculaire, Université de Grenoble I/CNRS, UMR 5063, ICMG FR
2607, 470 rue de la Chimie, BP 53, F-38041 Grenoble, France
| | - Claude Jolivalt
- Ecole Nationale de Chimie de Paris/CNRS, UMR
7573, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05, France
| | - Marie-Paule Mingeot-Leclercq
- Unité de Pharmacologie Cellulaire et Moléculaire, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 73, B1.73.05, B-1200 Brussels, Belgium
| | - Jean-Luc Décout
- Département
de Pharmacochimie Moléculaire, Université de Grenoble I/CNRS, UMR 5063, ICMG FR
2607, 470 rue de la Chimie, BP 53, F-38041 Grenoble, France
| |
Collapse
|
18
|
Pietschmann S, Meyer M, Voget M, Cieslicki M. The joint in vitro action of polymyxin B and miconazole against pathogens associated with canine otitis externa from three European countries. Vet Dermatol 2013; 24:439-45, e96-7. [PMID: 23721182 PMCID: PMC4240513 DOI: 10.1111/vde.12037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Canine otitis externa, an inflammation of the external ear canal, can be maintained and worsened by bacterial or fungal infections. For topical treatment, combinations of anti-inflammatory and antimicrobial ingredients are mainly used. HYPOTHESIS/OBJECTIVES This study was conducted to elucidate the in vitro activity of polymyxin B and miconazole against clinical bacterial isolates from three European countries, to investigate possible differences in sensitivity and to assess drug interactions. ANIMALS Seventeen strains of Escherichia coli, 24 strains of Pseudomonas aeruginosa, 24 strains of Proteus mirabilis and 25 strains of Staphylococcus pseudintermedius from dogs with diagnosed otitis externa had been isolated in Germany, France and Italy. METHODS Drug activities were evaluated by minimal inhibitory concentration (MIC) and minimal bactericidal concentration. The potentiation of polymyxin B plus miconazole was calculated using the fractional inhibitory concentration index (FICI). An FICI ≤0.5 defined synergy. Furthermore, geographical variations in the FICI and MIC were assessed by statistical analysis. RESULTS Bacterial susceptibilities were comparable in different European countries, because there were no significant MIC and FICI variations (P > 0.05). As a single agent, polymyxin B had bactericidal activity against most E. coli and P. aeruginosa strains and, in higher concentrations, against S. pseudintermedius strains. Miconazole was bactericidal against all Staphylococcus strains. Synergy was demonstrated against strains of E. coli and P. aeruginosa (FICI = 0.25 and 0.50, respectively), whereas overall there was no interaction against S. pseudintermedius strains (FICI = 1.25). Proteus mirabilis strains were not inhibited by each of the drugs individually or by their combination. CONCLUSIONS AND CLINICAL IMPORTANCE In vitro synergy of polymyxin B and miconazole against E. coli and P. aeruginosa isolates indicates a rationale for applying both agents in combination to treat otitis externa when infected with these types of bacteria.
Collapse
|
19
|
Magee TV, Brown MF, Starr JT, Ackley DC, Abramite JA, Aubrecht J, Butler A, Crandon JL, Dib-Hajj F, Flanagan ME, Granskog K, Hardink JR, Huband MD, Irvine R, Kuhn M, Leach KL, Li B, Lin J, Luke DR, MacVane SH, Miller AA, McCurdy S, McKim JM, Nicolau DP, Nguyen TT, Noe MC, O’Donnell JP, Seibel SB, Shen Y, Stepan AF, Tomaras AP, Wilga PC, Zhang L, Xu J, Chen JM. Discovery of Dap-3 Polymyxin Analogues for the Treatment of Multidrug-Resistant Gram-Negative Nosocomial Infections. J Med Chem 2013; 56:5079-93. [DOI: 10.1021/jm400416u] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Thomas V. Magee
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Matthew F. Brown
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jeremy T. Starr
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David C. Ackley
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Joseph A. Abramite
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jiri Aubrecht
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Andrew Butler
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jared L. Crandon
- Center
for Anti-Infective Research
and Development, Hartford Hospital, Hartford,
Connecticut 06102, United States
| | - Fadia Dib-Hajj
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Mark E. Flanagan
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Karl Granskog
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Joel R. Hardink
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Michael D. Huband
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Rebecca Irvine
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Michael Kuhn
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Karen L. Leach
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Bryan Li
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jian Lin
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David R. Luke
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Shawn H. MacVane
- Center
for Anti-Infective Research
and Development, Hartford Hospital, Hartford,
Connecticut 06102, United States
| | - Alita A. Miller
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sandra McCurdy
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | | | - David P. Nicolau
- Center
for Anti-Infective Research
and Development, Hartford Hospital, Hartford,
Connecticut 06102, United States
| | - Thuy-Trinh Nguyen
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Mark C. Noe
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - John P. O’Donnell
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Scott B. Seibel
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Yue Shen
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Antonia F. Stepan
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Andrew P. Tomaras
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Paul C. Wilga
- CeeTox, Inc., Kalamazoo, Michigan 49008,
United States
| | - Li Zhang
- WuXi AppTech Co., Ltd., Shanghai, P.R. China
| | | | - Jinshan Michael Chen
- Pfizer Worldwide Research & Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
20
|
Colistin past and future: A bibliographic analysis. J Crit Care 2013; 28:219.e13-9. [DOI: 10.1016/j.jcrc.2012.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/03/2012] [Accepted: 04/15/2012] [Indexed: 11/22/2022]
|
21
|
Cox G, Wright GD. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int J Med Microbiol 2013; 303:287-92. [PMID: 23499305 DOI: 10.1016/j.ijmm.2013.02.009] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The intrinsic antibiotic resistome is a naturally occurring phenomenon that predates antibiotic chemotherapy and is present in all bacterial species. In addition to the intrinsic resistance mediated by the bacterial outer membrane and active efflux, studies have shown that a surprising number of additional genes and genetic loci also contribute to this phenotype. Antibiotic resistance is rife in both the clinic and the environment; novel therapeutic strategies need to be developed in order to prevent a major global clinical threat. The possibility of inhibiting elements comprising the intrinsic resistome in bacterial pathogens offers the promise for repurposing existing antibiotics against intrinsically resistant bacteria.
Collapse
Affiliation(s)
- Georgina Cox
- DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 4K1, Canada
| | | |
Collapse
|
22
|
Dai C, Zhang D, Li J, Li J. Effect of colistin exposure on calcium homeostasis and mitochondria functions in chick cortex neurons. Toxicol Mech Methods 2013. [DOI: 10.3109/15376516.2012.754533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Vila J, Pachón J. Therapeutic options forAcinetobacter baumanniiinfections: an update. Expert Opin Pharmacother 2012; 13:2319-36. [DOI: 10.1517/14656566.2012.729820] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Ahmed NH, Baba K, Clay C, Lekalakala R, Hoosen AA. In vitro activity of tigecycline against clinical isolates of carbapenem resistant Acinetobacter baumannii complex in Pretoria, South Africa. BMC Res Notes 2012; 5:215. [PMID: 22554305 PMCID: PMC3422175 DOI: 10.1186/1756-0500-5-215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/03/2012] [Indexed: 11/21/2022] Open
Abstract
Background The presence of multi-drug resistant Acinetobacter baumannii raises a big therapeutic challenge in our hospital. Tigecycline, a new glycylcycline with expanded broad spectrum of activity against multi-drug resistant organisms was recently licensed in South Africa. Aim The aim of this study was to evaluate the in vitro activity of tigecycline against carbapenem resistant A. baumannii complex. Methods Consecutive clinical isolates of carbapenem resistant A. baumannii complex were collected between February and July 2010. Species identification and susceptibility testing was performed by Vitek-2 colorimetric compact system with Advanced Expert System (AES). Strains were tested for carbapenemase production by the modified Hodge test, according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. Results A total of 232 carbapenem resistant clinical isolates of A. baumannii complex were collected over the six months study period; 217 (93.5%) of these were modified Hodge test positive. All isolates were susceptible to colistin and 174 (78%) susceptible to amikacin whilst 20 (9%) were susceptible to ciprofloxacin. For tigecycline 169 (75.8%) were fully susceptible, 37 (16.6%) intermediately resistant and only 17 (7.6%) were fully resistant. None of the carbapenem resistant isolates were susceptible to ampicillin, amoxicillin/clavullanic acid, piperacillin/tazobactam, cefuroxime, cefuroxime axetil, cefoxitin, cefepime or nitrofurantoin. Conclusion All carbapenem resistant isolates were found to be fully susceptible to colistin; amikacin and tigecycline susceptibility was 78% and 76% respectively. Treatment options for infections due to carbapenem and multi-drug resistant A. baumannii organisms are limited and hence tigecycline and amikacin may be considered. The properties of tigecycline i.e. stability, safety, low toxicity, non cross-resistance with other antibiotics and its efficacy against multi-drug resistant A. baumannii isolates make it a good choice. However, ongoing monitoring of A. baumannii susceptibility to tigecycline is needed.
Collapse
Affiliation(s)
- Nahid H Ahmed
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof Campus, Pathology Building, 5 Bophelo Road, Private Bag X323, Code: 0007, Riviera, Pretoria 0084, South Africa.
| | | | | | | | | |
Collapse
|
25
|
|
26
|
Killer peptide: a novel paradigm of antimicrobial, antiviral and immunomodulatory auto-delivering drugs. Future Med Chem 2012; 3:1209-31. [PMID: 21806382 DOI: 10.4155/fmc.11.71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The incidence of life-threatening viral and microbial infections has dramatically increased over recent decades. Despite significant developments in anti-infective chemotherapy, many issues have increasingly narrowed the therapeutic options, making it imperative to discover new effective molecules. Among them, small peptides are arousing great interest. This review will focus in particular on a killer peptide, engineered from an anti-idiotypic recombinant antibody that mimics the activity of a wide-spectrum antimicrobial yeast killer toxin targeting β-glucan cell-wall receptors. The in vitro and in vivo antimicrobial, antiviral and immunomodulatory activities of killer peptide and its ability to spontaneously and reversibly self-assemble and slowly release its active dimeric form over time will be discussed as a novel paradigm of targeted auto-delivering drugs.
Collapse
|
27
|
Kirst HA. Recent derivatives from smaller classes of fermentation-derived antibacterials. Expert Opin Ther Pat 2011; 22:15-35. [DOI: 10.1517/13543776.2012.642370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Cho YS, Yim H, Yang HT, Hur J, Chun W, Kim JH, Lee BC, Seo DK, Kim D. Use of parenteral colistin for the treatment of multiresistant Gram-negative organisms in major burn patients in South Korea. Infection 2011; 40:27-33. [DOI: 10.1007/s15010-011-0192-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 08/15/2011] [Indexed: 11/28/2022]
|
29
|
Luque S, Grau S, Berenguer N, Horcajada JP, Sorlí L, Montero MM, Salas E. [Shedding light on the use of colistin: still gaps to be filled]. Enferm Infecc Microbiol Clin 2011; 29:287-96. [PMID: 21440335 DOI: 10.1016/j.eimc.2011.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 11/28/2022]
Abstract
Colistin (polymyxin E), an old antibiotic replaced by other less toxic antibiotics in the 1970s, has been increasingly used over the last decade due to multidrug-resistance in Gram-negative bacteria and lack of new antibiotics. However, there is a dearth of information on the pharmacokinetics (PK), pharmacodynamics (PD) and toxicodynamics (TD) of colistin and its non-active prodrug colistimethate sodium (CMS). Optimised dose regimens have not been established for different types of patients. Additionally, most PK data available in the literature were obtained from concentrations derived from potentially misleading microbiological assays. Therefore, it is urgent to conduct prospective studies to optimise CMS/colistin use in patients, in particular the critically ill. This review summarises recent key clinical studies evaluating the efficacy, toxicity and PK/PD of colistin/CMS.
Collapse
Affiliation(s)
- Sonia Luque
- Servicio de Farmacia, Hospital del Mar, Barcelona, España
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada
| |
Collapse
|
31
|
Hawser SP. Superior activity of colistin against Pseudomonas aeruginosa clinical isolates, including multidrug-resistant isolates, from multiple infection sources from 2007 to 2009. Int J Antimicrob Agents 2011; 37:587. [DOI: 10.1016/j.ijantimicag.2011.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
|
32
|
Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2011; 2:65. [PMID: 21747788 PMCID: PMC3128976 DOI: 10.3389/fmicb.2011.00065] [Citation(s) in RCA: 561] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/24/2011] [Indexed: 01/04/2023] Open
Abstract
Pseudomonas aeruginosa is intrinsically resistant to a variety of antimicrobials and can develop resistance during anti-pseudomonal chemotherapy both of which compromise treatment of infections caused by this organism. Resistance to multiple classes of antimicrobials (multidrug resistance) in particular is increasingly common in P. aeruginosa, with a number of reports of pan-resistant isolates treatable with a single agent, colistin. Acquired resistance in this organism is multifactorial and attributable to chromosomal mutations and the acquisition of resistance genes via horizontal gene transfer. Mutational changes impacting resistance include upregulation of multidrug efflux systems to promote antimicrobial expulsion, derepression of ampC, AmpC alterations that expand the enzyme's substrate specificity (i.e., extended-spectrum AmpC), alterations to outer membrane permeability to limit antimicrobial entry and alterations to antimicrobial targets. Acquired mechanisms contributing to resistance in P. aeruginosa include β-lactamases, notably the extended-spectrum β-lactamases and the carbapenemases that hydrolyze most β-lactams, aminoglycoside-modifying enzymes, and 16S rRNA methylases that provide high-level pan-aminoglycoside resistance. The organism's propensity to grow in vivo as antimicrobial-tolerant biofilms and the occurrence of hypermutator strains that yield antimicrobial resistant mutants at higher frequency also compromise anti-pseudomonal chemotherapy. With limited therapeutic options and increasing resistance will the untreatable P. aeruginosa infection soon be upon us?
Collapse
Affiliation(s)
- Keith Poole
- Department of Microbiology and Immunology, Queen's University Kingston, ON, Canada
| |
Collapse
|
33
|
Cirioni O, Wu G, Li L, Orlando F, Silvestri C, Ghiselli R, Shen Z, Gabrielli E, Brescini L, Lezoche G, Provinciali M, Guerrieri M, Giacometti A. S-thanatin in vitro prevents colistin resistance and improves its efficacy in an animal model of Pseudomonas aeruginosa sepsis. Peptides 2011; 32:697-701. [PMID: 21262298 DOI: 10.1016/j.peptides.2011.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 12/30/2010] [Accepted: 01/02/2011] [Indexed: 12/20/2022]
Abstract
An experimental study was performed to evaluate the interaction between s-thanatin and colistin both in vitro and in vivo, using two Pseudomonas aeruginosa strains with different patterns of susceptibilities. We evaluated whether selecting for colistin-resistant P. aeruginosa could be prevented in vitro by combining colistin with s-thanatin. The strains were serially exposed in broth to twofold stepwise increasing concentrations of colistin alone or in combination with a fixed concentration [0.25× minimum inhibitory concentration (MIC)] of s-thanatin. We also performed an in vitro synergy study. For in vivo studies, a mouse model of Pseudomonas sepsis has been used. Main outcome measures were lethality and quantitative blood cultures. Exposure to colistin alone gradually selected for Pseudomonas strains with an increased MIC. In vitro studies, s-thanatin showed a positive interaction with colistin, and was able to prevent its resistance. In vivo studies, s-thanatin combined with colistin exhibited the highest efficacy on all main outcome measurements. These results highlight the potential usefulness of this combination and provide a future therapeutic alternative in severe Pseudomonas infections.
Collapse
Affiliation(s)
- Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lim LM, Ly N, Anderson D, Yang JC, Macander L, Jarkowski A, Forrest A, Bulitta JB, Tsuji BT. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy 2011; 30:1279-91. [PMID: 21114395 DOI: 10.1592/phco.30.12.1279] [Citation(s) in RCA: 278] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Colistin is a polymyxin antibiotic that was discovered in the late 1940s for the treatment of gram-negative infections. After several years of clinical use, its popularity diminished because of reports of significant nephrotoxicity and neurotoxicity. Recently, the antibiotic has resurfaced as a last-line treatment option for multidrug-resistant organisms such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. The need for antibiotics with coverage of these gram-negative pathogens is critical because of their high morbidity and mortality, making colistin a very important treatment option. Unfortunately, however, resistance to colistin has been documented among all three of these organisms in case reports. Although the exact mechanism causing colistin resistance has not been defined, it is hypothesized that the PmrA-PmrB and PhoP-PhoQ genetic regulatory systems may play a role. Colistin dosages must be optimized, as colistin is a last-line treatment option; in addition, suboptimal doses have been linked to the development of resistance. The lack of pharmacokinetic and pharmacodynamic studies and no universal harmonization of dose units, however, have made it difficult to derive optimal dosing regimens and specific dosing guidelines for colistin. In critically ill patients who may have multiorgan failure, renal insufficiency may alter colistin pharmacokinetics. Therefore, dosage alterations in this patient population are imperative to achieve maximal efficacy and minimal toxicity. With regard to colistin toxicity, most studies show that nephrotoxicity is reversible and less frequent than once thought, and neurotoxicity is rare. Further research is needed to fully understand the impact that the two regulatory systems have on resistance, as well as the dosages of colistin needed to inhibit and overcome these developing patterns.
Collapse
Affiliation(s)
- Lauren M Lim
- Laboratory for Antimicrobial Pharmacodynamics, School of Pharmacy and Pharmaceutical Sciences Buffalo, and The New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Susceptibility of Klebsiella pneumoniae clinical isolates from 2007 to 2009 to colistin and comparator antibiotics. Int J Antimicrob Agents 2010; 36:383-4. [DOI: 10.1016/j.ijantimicag.2010.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/09/2010] [Indexed: 11/18/2022]
|
36
|
In vitro activity of tigecycline against carbapenemase-producing Acinetobacter baumannii. Int J Antimicrob Agents 2010; 36:289-90. [DOI: 10.1016/j.ijantimicag.2010.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/19/2022]
|