1
|
Chhonker SK, Rawat D, Koiri RK. Repurposing PDE5 inhibitor tadalafil and sildenafil as anticancer agent against hepatocellular carcinoma via targeting key events of glucose metabolism and multidrug resistance. J Biochem Mol Toxicol 2022; 36:e23100. [PMID: 35608386 DOI: 10.1002/jbt.23100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most common and lethal cancers worldwide and is caused due to contamination of diets with aflatoxin B1 and chronic viral hepatitis. Recent reports suggest that phosphodiesterase-5 inhibitor (PDE5i) exhibits anticancer properties against several forms of cancer but till now has not been evaluated against HCC. We aimed to evaluate the anticancer property of phosphodiesterase-5 inhibitors (PDE5i) tadalafil and sildenafil against aflatoxin B1 HCC. Rats of HCC group were fed with 5% alcohol via drinking water for 3 weeks, followed by administration of AFB1 (1 mg/kg/bw, i.p.) at an interval of two subsequent days. PDE5i (tadalafil and sildenafil, 10 mg/kg bw) was administered along with drinking water after 6 weeks of treatment with AFB1 for 2 weeks. In the present investigation, in HCC elevation in the level of SGOT, SGPT, ALP, and urea vis-à-vis activity of key glycolytic enzyme LDH and mRNA expression of c-myc, Akt, LDH-A, and PFKFB3 was noted. Similarly, the level of multidrug resistance protein (MDR) and breast cancer resistance protein (BCRP/ABCG2) was elevated along with increased expression of angiogenesis marker (HIF-1α, VEGF, and TGF-β1) in HCC. Post-treatment with PDE5 inhibitor (tadalafil and sildenafil) downregulated and brought back the above parameters towards normal and out of two PDE5i (tadalafil and sildenafil), sildenafil effect was more potent as compared to tadalafil. Our findings demonstrate for the first time that PDE5 inhibitors tadalafil and sildenafil are able to prohibit the development and progression of aflatoxin B1 induced HCC.
Collapse
Affiliation(s)
- Saurabh Kumar Chhonker
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Divya Rawat
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Raj Kumar Koiri
- Biochemistry Laboratory, Department of Zoology, School of Biological Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| |
Collapse
|
2
|
Catalano S, Panza S, Augimeri G, Giordano C, Malivindi R, Gelsomino L, Marsico S, Giordano F, Győrffy B, Bonofiglio D, Andò S, Barone I. Phosphodiesterase 5 (PDE5) Is Highly Expressed in Cancer-Associated Fibroblasts and Enhances Breast Tumor Progression. Cancers (Basel) 2019; 11:cancers11111740. [PMID: 31698786 PMCID: PMC6895904 DOI: 10.3390/cancers11111740] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The overexpression of phosphodiesterase (PDE) 5 is frequently found in various human cancers, such as those of the breast. However, PDE5’s role in the tumor microenvironment is still unknown. As PDE5 represents a high-value therapeutic target, we investigated whether the expression and function of PDE5 in breast cancer-associated fibroblasts (CAFs) may be clinically relevant to malignant progression. PDE5 expression was increased in human breast cancer stroma compared with normal stroma and was correlated to a shorter overall survival. Treatment of CAFs, isolated from breast tumor biopsies, with selective PDE5 inhibitors inhibited their proliferation, motility, and invasiveness, and negatively controlled tumor–stroma interactions in both ‘in vitro’ and ‘in vivo’ models. PDE5 stable overexpression transformed immortalized mouse embryonic fibroblasts (MEFs) towards an activated fibroblast phenotype, impacting their intrinsic characteristics and paracrine effects on breast cancer cell growth and migration through an enhanced production of the C-X-C motif chemokine 16 (CXCL16). On the other hand, CAF exposure to PDE5 inhibitors was associated with reduced CXCL16 expression and secretion. Importantly, CXCL16 levels in breast cancer stroma showed a strong correlation with PDE5 levels and poor patient outcomes. In conclusion, PDE5 is overexpressed in breast cancer stroma, enhances the tumor-stimulatory activities of fibroblasts, and impacts clinical outcomes; thus, we propose this enzyme as an attractive candidate for prognosis and a potential target for treatments in breast cancer patients.
Collapse
Affiliation(s)
- Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
| | - Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
- Centro Sanitario, University of Calabria, 87036 Rende (CS), Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Semmelweis University 2nd Dept. of Pediatrics, 1094 Budapest, Hungary;
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
- Centro Sanitario, University of Calabria, 87036 Rende (CS), Italy
- Correspondence: (S.A.); (I.B.); Tel.: +39-0984-496201 (S.A.); +39-0984-496216 (I.B.); Fax: +39-0984-496203 (S.A. & I.B.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (S.C.); (S.P.); (G.A.); (C.G.); (R.M.); (L.G.); (S.M.); (F.G.); (D.B.)
- Correspondence: (S.A.); (I.B.); Tel.: +39-0984-496201 (S.A.); +39-0984-496216 (I.B.); Fax: +39-0984-496203 (S.A. & I.B.)
| |
Collapse
|
3
|
Barone I, Giordano C, Bonofiglio D, Andò S, Catalano S. Phosphodiesterase type 5 and cancers: progress and challenges. Oncotarget 2017; 8:99179-99202. [PMID: 29228762 PMCID: PMC5716802 DOI: 10.18632/oncotarget.21837] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/23/2017] [Indexed: 01/05/2023] Open
Abstract
Cancers are an extraordinarily heterogeneous collection of diseases with distinct genetic profiles and biological features that directly influence response patterns to various treatment strategies as well as clinical outcomes. Nevertheless, our growing understanding of cancer cell biology and tumor progression is gradually leading towards rational, tailored medical treatments designed to destroy cancer cells by exploiting the unique cellular pathways that distinguish them from normal healthy counterparts. Recently, inhibition of the activity of phosphodiesterase type 5 (PDE5) is emerging as a promising approach to restore normal intracellular cyclic guanosine monophosphate (cGMP) signalling, and thereby resulting into the activation of various downstream molecules to inhibit proliferation, motility and invasion of certain cancer cells. In this review, we present an overview of the experimental and clinical evidences highlighting the role of PDE5 in the pathogenesis and prevention of various malignancies. Current data are still not sufficient to draw conclusive statements for cancer patient management, but could provide further rational for testing PDE5-targeting drugs as anticancer agents in clinical settings.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Cinzia Giordano
- Centro Sanitario, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
4
|
Catalano S, Campana A, Giordano C, Győrffy B, Tarallo R, Rinaldi A, Bruno G, Ferraro A, Romeo F, Lanzino M, Naro F, Bonofiglio D, Andò S, Barone I. Expression and Function of Phosphodiesterase Type 5 in Human Breast Cancer Cell Lines and Tissues: Implications for Targeted Therapy. Clin Cancer Res 2015; 22:2271-82. [PMID: 26667489 DOI: 10.1158/1078-0432.ccr-15-1900] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/07/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE By catalyzing cGMP hydrolysis, phosphodiesterase (PDE) 5 is a critical regulator of its concentration and effects in different (patho)physiologic processes, including cancers. As PDE5 is a known druggable target, we investigated the clinical significance of its expression in breast cancer and the underlying mechanisms by which it may contribute to tumor progression. EXPERIMENTAL DESIGN PDE5 expression was evaluated in seven breast cancer cell lines by RT-PCR and immunoblotting. To examine the impact of PDE5 on cancer phenotype, MCF-7 cells expressing lower levels of the enzyme were engineered to stably overexpress PDE5. Proliferation was evaluated by MTT assays, motility and invasion by wound-healing/transmigration/invasion assays, transcriptome-profiling by RNA-sequencing, and Rho GTPase signaling activation by GST-pulldown assays and immunoblotting. Clinical relevance was investigated by IHC on tissues and retrospective studies from METABRIC cohort. RESULTS PDE5 is differentially expressed in each molecular subtype of both breast cancer cell lines and tissues, with higher levels representing a startling feature of HER2-positive and triple-negative breast cancers. A positive correlation was established between elevated PDE5 levels and cancers of high histologic grade. Higher PDE5 expression correlated with shorter patient survival in retrospective analyses. On molecular level, stable PDE5 overexpression in Luminal-A-like MCF-7 cells resulted in enhanced motility and invasion through Rho GTPase signaling activation. Treatment of PDE5-stable clones with selective ROCK or PDE5 inhibitors completely restored the less motile and weak invasive behavior of control vector cells. CONCLUSIONS PDE5 expression enhances breast cancer cell invasive potential, highlighting this enzyme as a novel prognostic candidate and an attractive target for future therapy in breast cancers. Clin Cancer Res; 22(9); 2271-82. ©2015 AACR.
Collapse
Affiliation(s)
- Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Antonella Campana
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | | | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Antonio Rinaldi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi (SA), Italy
| | - Aurora Ferraro
- Division of Anatomic Pathology, Annunziata Hospital, Cosenza (CS), Italy
| | - Francesco Romeo
- Division of Anatomic Pathology, Annunziata Hospital, Cosenza (CS), Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Sapienza University, Rome, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy. Centro Sanitario, University of Calabria, Rende (CS), Italy.
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy.
| |
Collapse
|
5
|
Defeudis G, Gianfrilli D, Di Emidio C, Pofi R, Tuccinardi D, Palermo A, Lenzi A, Pozzilli P. Erectile dysfunction and its management in patients with diabetes mellitus. Rev Endocr Metab Disord 2015; 16:10.1007/s11154-015-9321-4. [PMID: 26497842 DOI: 10.1007/s11154-015-9321-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes can be described as a syndrome of multiple closely related conditions induced by a chronic state of hyperglycaemia resulting from defective insulin secretion, insulin action or both. Chronic complications associated with diabetes (including neuropathy, vascular disease, nephropathy and retinopathy) are common, and of these, erectile dysfunction (ED) deserves special attention. ED and its correlation with cardiovascular disease require careful evaluation and appropriate treatment. PDE5 inhibitors (PDE5is) are an important tool for the treatment of ED, with new drugs coming onto the market since the late 90s. This review offers an overview of PDE5is and their use in treating ED in diabetes. We underline the differences between different types of PDE5i, focusing on available doses, duration of action, T ½, side effects and selectivity profiles in relation to patients with diabetes. We also discuss the link between diabetes and ED in presence of various associated cofactors (obesity, hypertension and its pharmacological treatments, atherosclerosis, hyperhomocysteinaemia, neuropathy, nephropathy, hypogonadism and depression). Finally a number of past and ongoing clinical trials on the use of PDE5is in patients with diabetes are presented to offer an overview of the appropriate treatment of ED in this condition.
Collapse
Affiliation(s)
- Giuseppe Defeudis
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, Rome, Italy
| | - Daniele Gianfrilli
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, Rome, Italy
| | - Chiara Di Emidio
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, Rome, Italy
| | - Riccardo Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, Rome, Italy
| | - Dario Tuccinardi
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, Rome, Italy
| | - Andrea Palermo
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, Rome, Italy
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, Viale del Policlinico 155, Rome, Italy
| | - Paolo Pozzilli
- Department of Endocrinology and Diabetes, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, Rome, Italy.
| |
Collapse
|
6
|
Barone I, Giordano C, Bonofiglio D, Catalano S, Andò S. Phosphodiesterase Type 5 as a Candidate Therapeutic Target in Cancers. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0083-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Das A, Durrant D, Salloum FN, Xi L, Kukreja RC. PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther 2014; 147:12-21. [PMID: 25444755 DOI: 10.1016/j.pharmthera.2014.10.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
The phosphodiesterase 5 (PDE5) inhibitors, including sildenafil (Viagra™), vardenafil (Levitra™), and tadalafil (Cialis™) have been developed for treatment of erectile dysfunction. Moreover, sildenafil and tadalafil are used for the management of pulmonary arterial hypertension in patients. Since our first report showing the cardioprotective effect of sildenafil in 2002, there has been tremendous growth of preclinical and clinical studies on the use of PDE5 inhibitors for cardiovascular diseases and cancer. Numerous animal studies have demonstrated that PDE5 inhibitors have powerful protective effect against myocardial ischemia/reperfusion (I/R) injury, doxorubicin cardiotoxicity, ischemic and diabetic cardiomyopathy, cardiac hypertrophy, Duchenne muscular dystrophy and the improvement of stem cell efficacy for myocardial repair. Mechanistically, PDE5 inhibitors protect the heart against I/R injury through increased expression of nitric oxide synthases, activation of protein kinase G (PKG), PKG-dependent hydrogen sulfide generation, and phosphorylation of glycogen synthase kinase-3β - a master switch immediately proximal to mitochondrial permeability transition pore and the end effector of cardioprotection. In addition, PDE5 inhibitors enhance the sensitivity of certain types of cancer to standard chemotherapeutic drugs, including doxorubicin. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular and anti-cancer benefits. Despite mixed results of these clinical trials, there is a continuing strong interest by basic scientists and clinical investigators in exploring their new clinical uses. It is our hope that future new mechanistic investigations and carefully designed clinical trials would help in reaping additional benefits of PDE5 inhibitors for cardiovascular disease and cancer in patients.
Collapse
Affiliation(s)
- Anindita Das
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - David Durrant
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Fadi N Salloum
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Lei Xi
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Rakesh C Kukreja
- Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
8
|
Vignozzi L, Filippi S, Morelli A, Comeglio P, Cellai I, Sarchielli E, Maneschi E, Mancina R, Gacci M, Vannelli GB, Maggi M. Testosterone/Estradiol Ratio Regulates NO‐Induced Bladder Relaxation and Responsiveness to PDE5 Inhibitors. J Sex Med 2012; 9:3028-40. [DOI: 10.1111/j.1743-6109.2012.02946.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Kotera J, Mochida H, Inoue H, Noto T, Fujishige K, Sasaki T, Kobayashi T, Kojima K, Yee S, Yamada Y, Kikkawa K, Omori K. Avanafil, a Potent and Highly Selective Phosphodiesterase-5 Inhibitor for Erectile Dysfunction. J Urol 2012; 188:668-74. [DOI: 10.1016/j.juro.2012.03.115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Kotera
- Advanced Medical Research Laboratories, Mitsubishi Tanabe Pharma Corp., Yokohama, Japan
| | - Hideki Mochida
- Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corp., Saitama, Japan
| | - Hirotaka Inoue
- Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corp., Saitama, Japan
| | - Tsunehisa Noto
- Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corp., Saitama, Japan
| | - Kotomi Fujishige
- Advanced Medical Research Laboratories, Mitsubishi Tanabe Pharma Corp., Yokohama, Japan
| | - Takashi Sasaki
- Advanced Medical Research Laboratories, Mitsubishi Tanabe Pharma Corp., Yokohama, Japan
| | - Tamaki Kobayashi
- Advanced Medical Research Laboratories, Mitsubishi Tanabe Pharma Corp., Yokohama, Japan
| | - Koki Kojima
- Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corp., Saitama, Japan
| | | | - Yasuhiro Yamada
- DMPK Research Laboratories, Mitsubishi Tanabe Pharma Corp., Saitama, Japan
| | - Kohei Kikkawa
- DMPK Research Laboratories, Mitsubishi Tanabe Pharma Corp., Saitama, Japan
| | - Kenji Omori
- Advanced Medical Research Laboratories, Mitsubishi Tanabe Pharma Corp., Yokohama, Japan
| |
Collapse
|
10
|
Rezvanfar MA, Rahimi HR, Abdollahi M. ADMET considerations for phosphodiesterase-5 inhibitors. Expert Opin Drug Metab Toxicol 2012; 8:1231-45. [PMID: 22769968 DOI: 10.1517/17425255.2012.698610] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiling is an important aspect of all drug developments. The pharmaceutical industry must always consider ADMET properties in order to optimize drug candidates and to introduce new formulations against existing marketed drugs. Consequently, candidate drug development may be halted early in the discovery phase or during the more costly drug development process because of their poor ADMET properties. AREAS COVERED The main focus of this article is ADMET profiling, pharmacokinetic (PK) drug interactions, mechanisms and possible adverse drug reactions (ADRs) for approved phosphodiesterase-5 inhibitors (PDE5Is). The authors also look at the efficacy and non-erectogenic benefits of current PDE5Is, which are widely used by patients with erectile dysfunction (ED). The authors also discuss other unapproved PDE5Is such as aildenafil and udenafil, which are currently in use in clinical trials. EXPERT OPINION The authors believe that the enhancing effect of PDE5Is on the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway means that PDE5Is could be used to treat various conditions. An important issue in their development is 'cross-talk' between PDE5 and other PDEs and thus their specificity for other PDEs. But while it might be difficult to achieve the ideal ADMET profile, it should not necessarily prevent further development of a lead PDE5I. The risk assessment of PDE5Is, with respect to their ADMET properties, is therefore very important for predicting drug-drug interactions, possible side effects, ADRs and its future clinical applications.
Collapse
Affiliation(s)
- Mohammad Amin Rezvanfar
- Tehran University of Medical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Department of Toxicology and Pharmacology, Tehran, Iran
| | | | | |
Collapse
|
11
|
Abstract
OBJECTIVE Extensive research in the past decade has confirmed that the adult brain maintains some plasticity, including neural cell birth, migration and integration. Pre-clinical data strongly suggest that phosphodiesterase type 5 (PDE5) inhibitors promote cerebral neovascularization and neurogenesis. Animal studies of cerebral stroke suggest potential regenerative benefits following treatment with sildenafil citrate, a PDE5 inhibitor. This study reports a case in which compassionate use of sildenafil was investigated as a treatment to improve physical functioning, more than 4 decades after development of spastic quadriplegia during the 1st-2nd year of life. METHODS Sildenafil 100 mg was administered every 24 hours for 7 months. RESULTS Sildenafil treatment was associated with clinical (functional) improvement. CONCLUSIONS The activity of sildenafil on cerebral neovascularization and neurogenesis may be the mechanism for the observed functional benefits.
Collapse
Affiliation(s)
- Antonio Cocchiarella
- Clinical Rehabilitation Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|