1
|
Ciaraldi TP, Boeder SC, Mudaliar SR, Giovannetti ER, Henry RR, Pettus JH. Astaxanthin, a natural antioxidant, lowers cholesterol and markers of cardiovascular risk in individuals with prediabetes and dyslipidaemia. Diabetes Obes Metab 2023; 25:1985-1994. [PMID: 36999233 PMCID: PMC10740106 DOI: 10.1111/dom.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
AIM To determine the effects of astaxanthin treatment on lipids, cardiovascular disease (CVD) markers, glucose tolerance, insulin action and inflammation in individuals with prediabetes and dyslipidaemia. MATERIALS AND METHODS Adult participants with dyslipidaemia and prediabetes (n = 34) underwent baseline blood draw, an oral glucose tolerance test and a one-step hyperinsulinaemic-euglycaemic clamp. They were then randomized (n = 22 treated, 12 placebo) to receive astaxanthin 12 mg daily or placebo for 24 weeks. Baseline studies were repeated after 12 and 24 weeks of therapy. RESULTS After 24 weeks, astaxanthin treatment significantly decreased low-density lipoprotein (-0.33 ± 0.11 mM) and total cholesterol (-0.30 ± 0.14 mM) (both P < .05). Astaxanthin also reduced levels of the CVD risk markers fibrinogen (-473 ± 210 ng/mL), L-selectin (-0.08 ± 0.03 ng/mL) and fetuin-A (-10.3 ± 3.6 ng/mL) (all P < .05). While the effects of astaxanthin treatment did not reach statistical significance, there were trends toward improvements in the primary outcome measure, insulin-stimulated, whole-body glucose disposal (+0.52 ± 0.37 mg/m2 /min, P = .078), as well as fasting [insulin] (-5.6 ± 8.4 pM, P = .097) and HOMA2-IR (-0.31 ± 0.16, P = .060), suggesting improved insulin action. No consistent significant differences from baseline were observed for any of these outcomes in the placebo group. Astaxanthin was safe and well tolerated with no clinically significant adverse events. CONCLUSIONS Although the primary endpoint did not meet the prespecified significance level, these data suggest that astaxanthin is a safe over-the-counter supplement that improves lipid profiles and markers of CVD risk in individuals with prediabetes and dyslipidaemia.
Collapse
Affiliation(s)
- Theodore P. Ciaraldi
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
- Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Schafer C. Boeder
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
| | - Sunder R. Mudaliar
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
- Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Erin R. Giovannetti
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
| | - Robert R. Henry
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
- Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Jeremy H. Pettus
- Department of Medicine, Division of Endocrinology & Metabolism, University of California, San Diego, La Jolla, CA
| |
Collapse
|
2
|
Al-Rawaf HA, Alghadir AH, Gabr SA. Expression of Circulating MicroRNAs and Myokines and Interactions with Serum Osteopontin in Type 2 Diabetic Patients with Moderate and Poor Glycemic Control: A Biochemical and Molecular Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7453000. [PMID: 34917685 PMCID: PMC8670937 DOI: 10.1155/2021/7453000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cellular miRNAs are expressed in tissue fluids with sufficient amounts and were identified as potential molecular targets for studying the physiological mechanisms and correlations with many human diseases particularly diabetes. However, molecular-based changes among older adults with diabetes mellitus (DM) are rarely fully elucidated. AIM This study is aimed at identifying circulating miRNAs, which hold the potential to serve as biomarkers for the immune-inflammatory changes in older T2D patients with moderate and poor glycemic control status. In addition, the association of both myokines and osteopontin (OPN) levels with circulating miRNAs was identified. METHODS A total of 80 subjects aged 20-80 years were invited during the period of October 2017-May 2018 to participate in this descriptive cross-sectional study. All subjects were diagnosed with T2D for more than 5 years. Subjects were grouped based on glycemic control (HbA1c values) into two groups: moderate glycemic control (>7-8% HbA1c, no = 30) and poor glycemic control (>8% HbA1c, no = 50), respectively. Diabetic control parameters, fasting blood sugar (FS), HbA1c, fasting insulin (IF), insulin resistance (IR), HOMA-IR, inflammatory cytokines (IL-6, IL-8, IL-18, IL-23, TNF-α, and CRP), osteopontin, and myokines (adropin and irisin) were estimated by colorimetric and immune ELISA assays, respectively. In addition, real-time RT-PCR analysis was performed to evaluate the expression of circulating miRNAs, miR-146a and miR-144, in the serum of all diabetic subjects. RESULTS In this study, T2D patients with poor glycemic control showed a significant increase in the serum levels of IL-6, IL-8, IL-18, IL-23, TNF-α, CRP, and OPN and a reduction in the levels of myokines, adropin and irisin, compared to patients with moderate glycemic control. The results obtained are significantly correlated with the severity of diabetes measured by HbA1c, FS, IF, and HOMA-IR. In addition, baseline expression of miR-146a is significantly reduced and miR-144 is significantly increased in T2D patients with poor glycemic control compared to those with moderate glycemic control. In all diabetic groups, the expression of miR-146a and miR-144 is significantly correlated with diabetic controls, inflammatory cytokines, myokines, and serum levels of OPN. Respective of gender, women with T2D showed more significant change in the expressed miRNAs, inflammatory cytokines, OPN, and serum myokine markers compared to men. ROC analysis identified AUC cutoff values of miR-146a, miR-144, adropin, irisin, and OPN expression levels with considerable specificity and sensitivity which recommends the potential use of adropin, irisin, and OPN as diagnostic biomarkers for diabetes with varying glycemic control status. CONCLUSION In this study, molecular expression of certain microRNA species, such as miR-146a and miR-144, was identified and significantly associated with parameters of disease severity, HbA1c, inflammatory cytokines, myokines, and serum osteopontin in T2D patients with moderate and poor glycemic control. The AUC cutoff values of circulating miRNAs, miR-146a and miR-144; myokines, adropin and irisin; and serum OPN were significantly identified by ROC analysis which additionally recommends the potential use of these biomarkers, miR-146a, miR-144, adropin, irisin, and OPN, as diagnostic biomarkers with considerable specificity and sensitivity for diabetes in patients with varying glycemic control status.
Collapse
Affiliation(s)
- Hadeel A. Al-Rawaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Ahmad H. Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| | - Sami A. Gabr
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433, Saudi Arabia
| |
Collapse
|
3
|
Li J, Bu S, Zhou H, Bi S, Xu Y. Identifying potential therapeutic targets of Tang-Yi-Ping for the treatment of impaired glucose tolerance: a tandem mass tag-labeled quantitative proteomic analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1532. [PMID: 34790738 PMCID: PMC8576661 DOI: 10.21037/atm-21-4257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/09/2021] [Indexed: 11/06/2022]
Abstract
Background This study uses the tandem mass tag (TMT)-labeled quantitative proteomic analysis to identify potential therapeutic protein targets of a Chinese prescription called Tang-Yi-Ping (TYP) for the treatment of impaired glucose tolerance (IGT) in rats. Methods A total of 31 specific-pathogen free (SPF) male Wistar rats were used in our study. Ten were randomly selected as a control group, while 21 received a high-sugar and high-fat diet combined with an intraperitoneal injection of streptozotocin to establish IGT subjects. After eliminating 2 rats without successful modeling, 19 were randomly divided into a TYP group (n=9) and IGT model group (n=10). The TYP group was given a TYP decoction of 6.36 mg/kg−1/d−1. After 8 weeks of intervention, blood glucose-related indicators were measured, and cell morphology was observed by hematoxylin and eosin (HE) staining. TMT-labeled proteomic analysis was applied to detect the differentially expressed proteins (DEPs) in the pancreases of the three groups. The intersection of the DEPs in both the TYP group and IGT model group underwent Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses to identify the related biological functions and signal transduction pathways. Finally, western blot (WB) was used to verify the TMT proteomics results. Results TYP can effectively reduce blood glucose and improve islet morphology in IGT rats. We identified a total of 16 potential therapeutic protein targets of TYP, 4 of which were upregulated, while 12 were downregulated, including Rbp4, Fam3b, Flot2, etc. [fold change (FC) >1.1, P<0.05]. The significant signal transduction pathways included arginine and proline metabolism, glyceride metabolism, glycerophospholipid metabolism, mTOR, Wnt, and insulin signaling pathways. Conclusions For anti-IGT therapy, we found TYP regulates 16 protein targets, multiple biological functions, and multiple signal transduction pathways. This study thus makes a significant contribution to identifying new potential therapeutic targets for treating IGT.
Collapse
Affiliation(s)
- Jie Li
- College of the Second Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Endocrinology Medicine, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuai Bu
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Honglei Zhou
- College of pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siling Bi
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunsheng Xu
- Department of Endocrinology Medicine, the Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Liu SN, Liu Q, Lei L, Sun SJ, Li CN, Huan Y, Hou SC, Shen ZF. The Chinese patent medicine, Jin-tang-ning, ameliorates hyperglycemia through improving β cell function in pre-diabetic KKAy mice. Chin J Nat Med 2021; 18:827-836. [PMID: 33308603 DOI: 10.1016/s1875-5364(20)60023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 12/24/2022]
Abstract
Jin-tang-ning (JTN), a Chinese patent medicine, mainly comprised of Bombyx moriL., has been proved to show α-glucosidase inhibitory efficacy and clinically effective for the treatment of type 2 diabetes (T2DM). Recently, we have reported that JTN could ameliorate postprandial hyperglycemia and improved β cell function in monosodium glutamate (MSG)-induced obese mice, suggesting that JTN might play a potential role in preventing the conversion of impaired glucose tolerance (IGT) to T2DM. In this study, we evaluated the effect of JTN on the progression of T2DM in the pre-diabetic KKAy mice. During the 10 weeks of treatment, blood biochemical analysis and oral glucose tolerance tests were performed to evaluate glucose and lipid profiles. The β cell function was quantified using hyperglycemic clamp at the end of the study. JTN-treated groups exhibited slowly raised fasting and postprandial blood glucose levels, and also ameliorated lipid profile. JTN improved glucose intolerance after 8 weeks of treatment. Meanwhile, JTN restored glucose-stimulated first-phase of insulin secretion and induced higher maximum insulin levels in the hyperglycemic clamp. Thus, to investigate the underlying mechanisms of JTN in protecting β cell function, the morphologic changes of the pancreatic islets were observed by optical microscope and immunofluorescence of hormones (insulin and glucagon). Pancreatic protein expression levels of key factors involving in insulin secretion-related pathway and ER stress were also detected by Western blot. Pre-diabetic KKAy mice exhibited a compensatory augment in β cell mass and abnormal α cell distribution. Long-term treatment of JTN recovered islet morphology accompanied by reducing α cell area in KKAy mice. JTN upregulated expression levels of glucokinase (GCK), pyruvate carboxylase (PCB) and pancreas duodenum homeobox-1 (PDX-1), while down-regulating C/EBP homologous protein (Chop) expression in pancreas of the hyperglycemic clamp, which indicated the improvement of mitochondrial metabolism and relief of endoplasmic reticulum (ER) stress of β cells after JTN treatment. These results will provide a new insight into exploring a novel strategy of JTN for protecting β cell function and preventing the onset of pre-diabetes to T2DM.
Collapse
Affiliation(s)
- Shuai-Nan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Quan Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lei Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Su-Juan Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cai-Na Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shao-Cong Hou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhu-Fang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
5
|
Nunes S, Vieira P, Gomes P, Viana SD, Reis F. Blueberry as an Attractive Functional Fruit to Prevent (Pre)Diabetes Progression. Antioxidants (Basel) 2021; 10:1162. [PMID: 34439410 PMCID: PMC8389043 DOI: 10.3390/antiox10081162] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Prediabetes, a subclinical impairment between euglycemia and hyperglycemia, is a risk factor for the development of type 2 diabetes mellitus (T2DM) and associated micro- and macrovascular complications. Lifestyle therapy, the first-line treatment of prediabetes, includes physical exercise and dietary regimens enriched in phytochemicals with health-related properties. Blueberries (Vaccinium spp.), given their pleasant taste and great abundance in beneficial phytochemicals, have gained public interest all over the world. Along with a high antioxidant activity, this functional fruit is also well-recognized due to its hypoglycemic and insulin-sensitizing effects and has been recommended for overt T2DM management. Yet blueberries target several other pathophysiological traits, namely gut microbiota dysbiosis and hepatic dysmetabolism, that ensue when prediabetes begins and for which pharmacological interventions tend to be delayed. In this work, we revisited preclinical data from in vitro assays, animal models and human studies, aiming to disclose the potential mechanisms by which blueberries may be a fruitful source of phytochemicals able to prevent (pre)diabetes progression. Collectively, future efforts should focus on longer-term studies with standardized interventions and readouts, particularly in humans, that will hopefully bring more robust evidence and concrete guidance for blueberries' effective use in prediabetes.
Collapse
Affiliation(s)
- Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (P.V.); (P.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (P.V.); (P.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Pedro Gomes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (P.V.); (P.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, University of Porto, 4200-450 Porto, Portugal
| | - Sofia Domingues Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (P.V.); (P.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Pharmacy/Biomedical Laboratory Sciences, Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, 3046-854 Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (P.V.); (P.G.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| |
Collapse
|
6
|
DI Giuseppe G, Ciccarelli G, Cefalo CM, Cinti F, Moffa S, Improta F, Capece U, Pontecorvi A, Giaccari A, Mezza T. Prediabetes: how pathophysiology drives potential intervention on a subclinical disease with feared clinical consequences. Minerva Endocrinol (Torino) 2021; 46:272-292. [PMID: 34218657 DOI: 10.23736/s2724-6507.21.03405-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder whose rising incidence suggests the epidemic proportions of the disease. Impaired Fasting Glucose (IFG) and Impaired Glucose Tolerance (IGT) - alone or combined - represent two intermediate metabolic condition between Normal Glucose Tolerance (NGT) and overt T2DM. Several studies have demonstrated that insulin resistance and beta-cell impairment can be identified even in normoglycemic prediabetic individuals. Worsening of these two conditions may lead to progression of IGT and/or IFG status to overt diabetes. Starting from these assumptions, it seems logical to suppose that interventions aimed at improving metabolic conditions, even in prediabetes, could represent an effective target to halt transition from IGT/IFG to manifest T2DM. Starting from pathophysiological knowledge, in this review we evaluate two possible interventions (lifestyle modifications and pharmacological agents) eligible as prediabetes therapy since they have been demonstrated to improve insulin resistance and beta-cell impairment. Detecting high-risk people and treating them could represent an effective strategy to slow down progression to overt diabetes, normalize glucose tolerance, and even prevent micro- and macrovascular complications.
Collapse
Affiliation(s)
- Gianfranco DI Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara M Cefalo
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Simona Moffa
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Improta
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Teresa Mezza
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy - .,Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
7
|
Drzewoski J, Hanefeld M. The Current and Potential Therapeutic Use of Metformin-The Good Old Drug. Pharmaceuticals (Basel) 2021; 14:122. [PMID: 33562458 PMCID: PMC7915435 DOI: 10.3390/ph14020122] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Metformin, one of the oldest oral antidiabetic agents and still recommended by almost all current guidelines as the first-line treatment for type 2 diabetes mellitus (T2DM), has become the medication with steadily increasing potential therapeutic indications. A broad spectrum of experimental and clinical studies showed that metformin has a pleiotropic activity and favorable effect in different pathological conditions, including prediabetes, type 1 diabetes mellitus (T1DM) and gestational diabetes mellitus (GDM). Moreover, there are numerous studies, meta-analyses and population studies indicating that metformin is safe and well tolerated and may be associated with cardioprotective and nephroprotective effect. Recently, it has also been reported in some studies, but not all, that metformin, besides improvement of glucose homeostasis, may possibly reduce the risk of cancer development, inhibit the incidence of neurodegenerative disease and prolong the lifespan. This paper presents some arguments supporting the initiation of metformin in patients with newly diagnosed T2DM, especially those without cardiovascular risk factors or without established cardiovascular disease or advanced kidney insufficiency at the time of new guidelines favoring new drugs with pleotropic effects complimentary to glucose control. Moreover, it focuses on the potential beneficial effects of metformin in patients with T2DM and coexisting chronic diseases.
Collapse
Affiliation(s)
- Józef Drzewoski
- Central Teaching Hospital of Medical University of Lodz, 92-213 Lodz, Poland
| | - Markolf Hanefeld
- Medical Clinic III, Department of Medicine Technical University Dresden, 01307 Dresden, Germany;
| |
Collapse
|
8
|
Yari Z, Naser-Nakhaee Z, Karimi‐Shahrbabak E, Cheraghpour M, Hedayati M, Mohaghegh SM, Ommi S, Hekmatdoost A. Combination therapy of flaxseed and hesperidin enhances the effectiveness of lifestyle modification in cardiovascular risk control in prediabetes: a randomized controlled trial. Diabetol Metab Syndr 2021; 13:3. [PMID: 33402222 PMCID: PMC7786892 DOI: 10.1186/s13098-020-00619-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Regarding the increasing prevalence of cardiometabolic abnormalities, and its association with non-communicable chronic diseases, providing preventive and therapeutic strategies is a priority. A randomized placebo-controlled study was conducted to assess the effects of combination therapy of milled brown flaxseed and hesperidin during lifestyle intervention on controlling cardiovascular risk in prediabetes. METHODS A total of forty-eight subjects were randomly assigned to receive lifestyle intervention plus combination therapy of brown flaxseed (30 g milled) and hesperidin (two 500 mg capsules) or lifestyle modification alone for 12 weeks. Changes from baseline in anthropometric measures, lipid profile and atherogenic indices, glucose homeostasis parameters, and inflammatory biomarkers was assessed as a primary end point. RESULTS Anthropometric data comparison between the two groups showed a significant reduction in weight (p = 0.048). Waist circumference reduction was about twice that of the control group (- 6.75 cm vs - 3.57 cm), but this difference was not statistically significant. Comparison of blood pressure changes throughout the study indicated a greater reduction in blood pressure in the intervention group rather than control group (- 5.66 vs. - 1.56 mmHg, P = 0.049). Improvements of lipid profile and atherogenic indices, glucose homeostasis parameters, and inflammatory biomarkers in flaxseed-hesperidin group was significantly more than the control group after 12 weeks of intervention (p < 0.05). CONCLUSION Our results indicate that co-administration of flaxseed and hesperidin as an adjunct to lifestyle modification program is more effective than lifestyle modification alone in the metabolic abnormalities remission of prediabetic patients. TRIAL REGISTRATION The trial was registered with ClinicalTrials.gov, number NCT03737422. Registered 11 November 2018. Retrospectively registered, https://clinicaltrials.gov/ct2/results?cond=&term=NCT03737422&cntry=&state=&city=&dist= .
Collapse
Affiliation(s)
- Zahra Yari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Naser-Nakhaee
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Makan Cheraghpour
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Marjan Mohaghegh
- Diabetes Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahrzad Ommi
- Department of Dietetics and Nutrition, Florida International University, Miami, FL USA
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology, Research Institute Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Daniele G, Tura A, Dardano A, Bertolotto A, Bianchi C, Giusti L, Kurumthodathu JJ, Del Prato S. Effects of treatment with metformin and/or sitagliptin on beta-cell function and insulin resistance in prediabetic women with previous gestational diabetes. Diabetes Obes Metab 2020; 22:648-657. [PMID: 31802616 DOI: 10.1111/dom.13940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022]
Abstract
AIM To investigate the effect of sitagliptin (SITA) and metformin (MET) monotherapy as well as in combination (MET+SITA) on beta-cell function and insulin sensitivity in women with recent gestational diabetes (GDM) and impaired glucose regulation (IGR: impaired fasting glucose and/or impaired glucose tolerance). MATERIAL AND METHODS Forty women were randomly assigned to receive SITA (100 mg qd), MET (850 mg bid) or MET+SITA (50 + 850 mg bid) for 16 weeks. A 75 g oral glucose tolerance test (OGTT) and +125 mg/dL hyperglycaemic clamp followed by 5 g i.v. L-arginine were performed at baseline and end of study. The primary outcome of the study was the mean change in arginine-stimulated insulin secretion rate during the hyperglycaemic clamp test from baseline to 16-week therapy. RESULTS At week 16, body mass index declined in all groups (-1.2 ± 0.2 kg/m2 ; P < 0.05). MET+SITA gave a greater increase of first phase(2-10 min) insulin secretion and arginine-stimulated response (720.3 ± 299.0 to 995.5 ± 370.3 pmol/L and 3.2 ± 0.6 to 4.8 ± 1.0 pmoL/min, respectively, both P < 0.05) compared with MET and SITA. Similarly, MET+SITA was more effective in increasing OGTT-based glucose sensitivity (55.7 ± 11.3 to 108 ± 56.2 pmol x min-1 m-2 x mM-1 ; P = 0.04) and insulin-stimulated glucose disposal (M/I: 2.2 ± 0.5 to 4.6 ± 1.3 mg/kg/min÷μIU/min/ml; P = 0.04; Matsuda index [SI]: 3.1 ± 0.4 to 5.7 ± 1.1; P = 0.03) compared with either MET or SITA. Disposition index (ISSI-2) increased with MET+SITA and SITA (both P < 0.05), while no significant change was observed in MET. Among MET+SITA women, 33% reverted to normal glucose tolerance (NGT) compared with 14% with MET and 7% with SITA (P < 0.05). CONCLUSION This study shows that MET+SITA is superior to SITA and MET monotherapy regarding beta-cell function and insulin sensitivity improvement in IGR women with previous GDM, and may offer a potential pharmacologic intervention to reduce the risk of type 2 diabetes in this high-risk population.
Collapse
Affiliation(s)
- Giuseppe Daniele
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Tura
- Metabolic Unit, CNR Institute of Neuroscience, Padova, Italy
| | - Angela Dardano
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Bertolotto
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Bianchi
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Giusti
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Jancy Joseph Kurumthodathu
- Section of Metabolic Diseases and Diabetes, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | |
Collapse
|
10
|
DeFronzo RA, Inzucchi S, Abdul-Ghani M, Nissen SE. Pioglitazone: The forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab Vasc Dis Res 2019; 16:133-143. [PMID: 30706731 DOI: 10.1177/1479164118825376] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes individuals are at high risk for macrovascular complications: myocardial infarction, stroke and cardiovascular mortality. Recent cardiovascular outcome trials have demonstrated that agents in two antidiabetic classes (SGLT2 inhibitors and GLP-1 receptor agonists) reduce major adverse cardiovascular events. However, there is strong evidence that an older and now generically available medication, the thiazolidinedione, pioglitazone, can retard the atherosclerotic process (PERISCOPE and Chicago) and reduce cardiovascular events in large randomized prospective cardiovascular outcome trials (IRIS and PROactive). Pioglitazone is a potent insulin sensitizer, preserves beta-cell function, causes durable reduction in HbA1c, corrects multiple components of metabolic syndrome and improves nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Adverse effects (weight gain, fluid retention, fractures) must be considered, but are diminished with lower doses and are arguably outweighed by these multiple benefits. With healthcare expenses attributable to diabetes increasing rapidly, this cost-effective drug requires reconsideration in the therapeutic armamentarium for the disease.
Collapse
Affiliation(s)
- Ralph A DeFronzo
- 1 Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Silvio Inzucchi
- 2 Endocrine Division, Yale School of Medicine, New Haven, CT, USA
| | - Muhammad Abdul-Ghani
- 1 Division of Diabetes, Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | | |
Collapse
|
11
|
Feinberg T, Wieland LS, Miller LE, Munir K, Pollin TI, Shuldiner AR, Amoils S, Gallagher L, Bahr-Robertson M, D'Adamo CR. Polyherbal dietary supplementation for prediabetic adults: study protocol for a randomized controlled trial. Trials 2019; 20:24. [PMID: 30616613 PMCID: PMC6323847 DOI: 10.1186/s13063-018-3032-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/01/2018] [Indexed: 12/15/2022] Open
Abstract
Background Prediabetes describes a state of hyperglycemia outside of normal limits that does not meet the criteria for diabetes diagnosis, is generally symptomless, and affects an estimated 38% of adults in the United States. Prediabetes typically precedes the diagnosis of type 2 diabetes, which accounts for increased morbidity and mortality. Although the use of dietary and herbal supplements is popular worldwide, and a variety of single herbal medicines have been examined for glycemic management, the potential of increasingly common polyherbal formulations to return glycemic parameters to normal ranges among adults with prediabetes remains largely unexplored. The purpose of this study is to evaluate the efficacy of a commercially available, polyherbal dietary supplement on glycemic and lipid parameters in prediabetic individuals. Methods In this multi-site, double-blinded, randomized controlled clinical trial, 40 participants with prediabetes will be randomized to either a daily oral polyherbal dietary supplement (GlucoSupreme™ Herbal; Designs for Health®, Suffield, CT, USA; containing cinnamon bark (Cinnamomum cassia), banaba leaf (Lagerstroemia speciosa standardized to 1% corosolic acid), kudzu root (Pueraria lobata standardized to 40% isoflavones), fenugreek seed (Trigonella foenum-graceum standardized to 60% saponins), gymnema leaf (Gymnema sylvestre standardized to 25% gymnemic acid), American ginseng root (Panax quinquefolius standardized to 5% ginsenosides), and berberine HCl derived from bark (Berberis aristata)) or placebo for 12 weeks. Short-, medium-, and comparatively long-term markers of glycemic control (blood glucose and fasting insulin, fructosamine, and glycated hemoglobin/A1c, respectively), and other glycemic parameters (GlycoMark, β-cell function, and insulin sensitivity/resistance) will be obtained. Lipid profile (total cholesterol, LDL, HDL, and triglycerides), inflammation (hs-CRP), progression to type 2 diabetes mellitus, as well as safety indices (ALT, AST) will be obtained. An intention-to-treat analysis will be used to assess changes in study outcomes. Discussion Treatment options for adults with prediabetes are currently limited. This study aims to evaluate the safety and efficacy of a commercially available dietary supplement in the popular, but as yet insufficiently studied, category of polyherbal formulas for the management of glycemic parameters and other biomarkers associated with prediabetes. Trial registration ClinicalTrials.gov, ID: NCT03388762. Retrospectively registered on 4 January 2018. Electronic supplementary material The online version of this article (10.1186/s13063-018-3032-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Termeh Feinberg
- University of Maryland School of Medicine Center for Integrative Medicine, Baltimore, MD, USA. .,Yale University School of Medicine Center for Medical Informatics, New Haven, CT, USA.
| | - L Susan Wieland
- University of Maryland School of Medicine Center for Integrative Medicine, Baltimore, MD, USA
| | | | - Kashif Munir
- University of Maryland School of Medicine Center for Diabetes and Endocrinology, Baltimore, MD, USA
| | - Toni I Pollin
- University of Maryland School of Medicine Department of Medicine, Baltimore, MD, USA
| | - Alan R Shuldiner
- University of Maryland School of Medicine Department of Medicine, Baltimore, MD, USA
| | - Steve Amoils
- Alliance Integrative Medicine, Cincinatti, OH, USA
| | | | - Mary Bahr-Robertson
- University of Maryland School of Medicine Center for Integrative Medicine, Baltimore, MD, USA
| | - Christopher R D'Adamo
- University of Maryland School of Medicine Center for Integrative Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Kassaian N, Feizi A, Aminorroaya A, Jafari P, Ebrahimi MT, Amini M. The effects of probiotics and synbiotic supplementation on glucose and insulin metabolism in adults with prediabetes: a double-blind randomized clinical trial. Acta Diabetol 2018; 55:1019-1028. [PMID: 29931423 DOI: 10.1007/s00592-018-1175-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
AIMS Probiotics and/or prebiotics could be a promising approach to improve metabolic disorders by favorably modifying the gut microbial composition. OBJECTIVES To assess the effects of probiotics and synbiotic on glycemic indices in prediabetic individuals who are at risk of type 2 diabetes and its complications. METHODS In a double-blind, randomized, placebo-controlled parallel-group clinical trial, 120 prediabetic adults participated and were randomly allocated to receive either probiotics or synbiotic or placebo supplements for 24 weeks. Anthropometric measurements, food record, physical activity and glycemic biomarkers including glycated hemoglobin (HbA1C), fasting plasma glucose (FPG), fasting insulin levels (FIL), homoeostasis model assessment for insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), and β-cell function (HOMA-B) were assessed at baseline and repeated at 12 and 24 weeks and compared within and between three groups using repeated measure ANOVA. RESULTS Compared with the placebo, synbiotic supplementation resulted in a higher significant reduction in FPG (- 6.5 ± 1.6 vs. - 0.82 ± 1.7 mg/dL, P = 0.01), FIL (- 2.6 ± 0.9 vs. - 0.8 ± 0.8 µIU/mL, P = 0.028), and HOMA-IR (- 0.86 ± 0.3 vs. - 0.16 ± 0.25, P = 0.007), and a significant elevation in the QUICKI (+ 0.01 ± 0.003 vs. + 0.003 ± 0.002, P = 0.006). In addition, significant decreases in HbA1C was seen following the supplementation of probiotics and synbiotic compared with the placebo (- 0.12 ± 0.06 and - 0.14 ± 0.05 vs. +0.07 ± 0.06%, P = 0.005 and 0.008, respectively). HOMA-B was not found to be different between or within the three groups. CONCLUSION Glycemic improvement by probiotics and particularly synbiotic supplements in prediabetic individuals has been supported by current study. However, further studies are required for optimal recommendations in this important area of patient treatment. TRIAL REGISTRATION Iranian Registry of Clinical Trials: IRCT201511032321N2, Date registered February 27, 2016.
Collapse
Affiliation(s)
- Nazila Kassaian
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Sedighe Tahere Research Complex, Khoram St., Isfahan, Iran
| | - Awat Feizi
- Isfahan Endocrine and Metabolism Research Center and Department of Biostatistics and Epidemiology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ashraf Aminorroaya
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Sedighe Tahere Research Complex, Khoram St., Isfahan, Iran
| | - Parvaneh Jafari
- Microbiology Department, Science Faculty, Islamic Azad University (IAU), Arak Branch, Arak, Iran
| | - Maryam Tajabadi Ebrahimi
- Microbiology Department, Science Faculty, Islamic Azad University (IAU), Tehran Central Branch, Tehran, Iran
| | - Masoud Amini
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Sedighe Tahere Research Complex, Khoram St., Isfahan, Iran.
| |
Collapse
|
13
|
Samocha-Bonet D, Debs S, Greenfield JR. Prevention and Treatment of Type 2 Diabetes: A Pathophysiological-Based Approach. Trends Endocrinol Metab 2018; 29:370-379. [PMID: 29665986 DOI: 10.1016/j.tem.2018.03.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/15/2022]
Abstract
Prediabetes affects approximately 40% of American adults. Randomized trials report that a proportion of individuals with prediabetes develop diabetes despite caloric restriction, physical activity, and/or when treated with metformin, the first-line medication for patients with type 2 diabetes mellitus (T2DM). Currently, there are no valid predictors of the effectiveness of these measures in determining who will and who will not progress to the T2DM state. Few studies have examined the clinical and phenotypic predictors of better and worse glycemic response to lifestyle interventions and metformin in prediabetes and diabetes. Further studies incorporating 'omic' approaches to discover novel markers of phenotypes and treatment effectiveness may pave the way to personalizing the treatment of prediabetes and diabetes.
Collapse
Affiliation(s)
- Dorit Samocha-Bonet
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia.
| | - Sophie Debs
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jerry R Greenfield
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2010, Australia; Department of Endocrinology and Diabetes Services, St Vincent's Hospital, Sydney, NSW 2010, Australia
| |
Collapse
|
14
|
Daniele G, Winnier D, Mari A, Bruder J, Fourcaudot M, Pengou Z, Hansis-Diarte A, Jenkinson C, Tripathy D, Folli F. The potential role of the osteopontin-osteocalcin-osteoprotegerin triad in the pathogenesis of prediabetes in humans. Acta Diabetol 2018; 55:139-148. [PMID: 29151224 PMCID: PMC5816090 DOI: 10.1007/s00592-017-1065-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/15/2017] [Indexed: 01/10/2023]
Abstract
AIMS To examine the relationship between hormones involved in bone remodeling and glucose metabolism alterations in prediabetes. METHODS Individuals (n = 43) with NGT (BMI = 31.1 ± 1.1 kg/m2) and individuals (n = 79) with impaired glucose regulation (IGR) (BMI = 31.9 ± 1.2 kg/m2) including subjects with IFG, IGT, and IFG-IGT underwent OGTT and DXA. Osteopontin (OPN), osteocalcin (OCN), osteoprotegerin (OPG), and PTH levels were measured at fasting. Beta-cell function was calculated using C-peptide deconvolution. Dynamic indexes of insulin sensitivity were calculated from OGTT. A subgroup underwent to a euglycemic hyperinsulinemic clamp with 3-3H-glucose to estimate the endogenous glucose production (EGP) and insulin-mediated body glucose disposal (TGD/SSPI). RESULTS OPN was higher in IGR compared to NGT (5.3 ± 0.5 vs. 3.3 ± 0.2 μg/mL; p = 0.008) and in isolated IGT compared to IFG and IFG-IGT (6.3 ± 0.5 vs. 4.5 ± 0.3 and 5.4 ± 0.5 μg/mL; p = 0.02). OCN was similar in IFG and NGT but lower in IGT and IFG-IGT compared to NGT (7.2 ± 0.3 and 5.4 ± 0.2 vs. 8.3 ± 0.3 ng/mL; p < 0.01). OPN was positively correlated with HbA1c, fasting and 2 h plasma glucose and PTH. OCN was negatively correlated with body fat, 2 h plasma glucose, insulin and positively correlated with Stumvoll index. OPG correlated with TGD/SSPI (r = - 0.29; p < 0.05), EGP, and hepatic insulin resistance index in IGR (r = 0.51, r = 0.43; p < 0.01). There was no correlation between PTH and insulin sensitivity or Beta-cell function parameters. CONCLUSIONS In prediabetes, hormones known to be involved in bone remodeling may affect glucose metabolism before overt T2DM occurs with tissue-specific mechanisms.
Collapse
Affiliation(s)
- Giuseppe Daniele
- Department of Medicine, Division of Diabetes, University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Deidre Winnier
- Department of Medicine, Division of Diabetes, University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Andrea Mari
- Institute of Neuroscience, National Research Council, Padua, Italy
| | - Jan Bruder
- Department of Medicine, Endocrine division, University of Texas, Health Science Center, San Antonio, TX, USA
| | - Marcel Fourcaudot
- Department of Medicine, Division of Diabetes, University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Zuo Pengou
- Department of Medicine, Division of Diabetes, University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Andrea Hansis-Diarte
- Department of Medicine, Division of Diabetes, University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Christopher Jenkinson
- Department of Medicine, Division of Diabetes, University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Devjit Tripathy
- Department of Medicine, Division of Diabetes, University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Franco Folli
- Department of Medicine, Division of Diabetes, University of Texas, Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Universita' degli Studi di Milano, School of Medicine, Dipartimento di Scienze Della Salute, Milan, Italy.
- Department of Medicine, Azienda Socio-Sanitaria Santi Paolo e Carlo, Via A. Di Rudini, 8, 20100, Milan, Italy.
| |
Collapse
|
15
|
Yammine L, Kosten TR, Cinciripini PM, Green CE, Meininger JC, Minnix JA, Newton TF. Exenatide once weekly for smoking cessation: study protocol for a randomized clinical trial. Medicine (Baltimore) 2018; 97:e9567. [PMID: 29480848 PMCID: PMC5943874 DOI: 10.1097/md.0000000000009567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cigarette smoking is the greatest preventable cause of morbidity and premature mortality in the United States. Approved pharmacological treatments for smoking cessation are marginally effective, underscoring the need for improved pharmacotherapies. A novel approach might use glucagon-like peptide-1 (GLP-1) agonists, which reduce alcohol and drug use in preclinical studies. GLP-1 is produced in the intestinal L-cells and in the hindbrain. The peptide maintains glucose homeostasis and reduces food intake. Several GLP-1 agonists are used clinically to treat type 2 diabetes and obesity, but none have been tested in humans to reduce smoking. AIMS We will examine whether extended-release exenatide reduces smoking, craving, and withdrawal symptoms, as well as cue-induced craving for cigarettes. METHODS We will enroll prediabetic and/or overweight treatment seeking smokers (n = 90) into a double-blind, placebo-controlled, randomized clinical trial. Participants will be randomized in a 1:1 ratio to receive exenatide or placebo. All participants will receive transdermal nicotine replacement therapy (NRT) and behavioral counseling. Abstinence from smoking (verified via expired CO level of ≤5 ppm), craving (Questionnaire of Smoking Urges score), and withdrawal symptoms (Wisconsin Scale of Withdrawal Symptoms score) will be assessed weekly during 6 weeks of treatment and at 1 and 4 weeks posttreatment. Cue-induced craving for cigarettes will be assessed at baseline and at 3 weeks of treatment following virtual reality exposure. EXPECTED OUTCOMES We hypothesize that exenatide will increase the number of participants able to achieve complete smoking abstinence above that achieved via standard NRT and that exenatide will reduce craving and withdrawal symptoms, as well as cue-induced craving for cigarettes.
Collapse
Affiliation(s)
- Luba Yammine
- University of Texas Health Science Center at Houston
| | | | | | - Charles E. Green
- University of Texas Health Science Center at Houston
- University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | |
Collapse
|
16
|
Zhang L, Zhou L, Song X, Liang G, Xu Z, Wang F, Huang F, Jiang G. Involvement of exogenous 3‑deoxyglucosone in β‑cell dysfunction induces impaired glucose regulation. Mol Med Rep 2017; 16:2976-2984. [PMID: 28656301 DOI: 10.3892/mmr.2017.6856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/04/2017] [Indexed: 11/05/2022] Open
Abstract
β‑cell dysfunction is the primary cause of type 2 diabetes mellitus (T2DM). 1,2‑dicarbonyl compounds, such as 3‑deoxyglucosone (3DG) have been reported to increase the risk of T2DM. Abnormal elevation of plasma 3DG may impair β‑cell function and thereby, it is linked to T2DM. Previous findings suggest that exogenous 3DG may serve an important role in the development of pre‑diabetes. In the present study, the authors examine whether exogenous 3DG induces impaired glucose regulation in mice by decreasing β‑cell function involving of accumulation of plasma 3DG. At two weeks following administration of 3DG, fasting blood glucose (FBG) levels, oral glucose tolerance (by a glucose meter) and plasma levels of 3DG (by HPLC) and insulin (by radioimmunoassay) were measured. Glucose‑stimulated insulin secretion in cultured pancreas islets and INS‑1 cells was measured by radioimmunoassay. Western blotting was used to examine the expression of the key molecules of the insulin‑PI3K signaling pathway. 3DG treatment increased FBG and fasting blood insulin levels, reduced oral glucose tolerance in conjunction with decreased ∆Ins30‑0/∆G30‑0. In 3DG‑treated mice, an increase in the plasma 3DG level was observed, which was most likely the mechanism for decreased β‑cell function. This idea was further supported by these results that non‑cytotoxic 3DG concentration obviously decreased glucose‑stimulated insulin secretion in cultured pancreas islets and INS‑1 cells exposure to high glucose (25.5 mM). 3DG decreased the expression of GLUT2 and phosphorylation of IRS‑1, PI3K‑p85 and Akt in high glucose‑induced INS‑1 cells. To the best of the authors' knowledge, the present study is the first to demonstrate that exogenous 3DG induced normal mice to develop IGR, resulting from β‑cell dysfunction. Exogenous 3DG administration increased plasma 3DG levels, which participates in inducing β‑cell dysfunction, at least in part, through impairing IRS‑1/PI3K/GLUT2 signaling.
Collapse
Affiliation(s)
- Lurong Zhang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Liang Zhou
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Xiudao Song
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Guoqiang Liang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Zhongrui Xu
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Fei Wang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Fei Huang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| | - Guorong Jiang
- Suzhou Academy of Wumen Chinese Medicine, Suzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
17
|
Brannick B, Wynn A, Dagogo-Jack S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications. Exp Biol Med (Maywood) 2017; 241:1323-31. [PMID: 27302176 DOI: 10.1177/1535370216654227] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Prediabetes is a state characterized by impaired fasting glucose or impaired glucose tolerance. Evidence is increasingly demonstrating that prediabetes is a toxic state, in addition to being a harbinger of future development of diabetes mellitus. This minireview discusses the pathophysiology and clinical significance of prediabetes, and approach to its management, in the context of the worldwide diabetes epidemic. The pathophysiologic defects underlying prediabetes include insulin resistance, β cell dysfunction, increased lipolysis, inflammation, suboptimal incretin effect, and possibly hepatic glucose overproduction. Recent studies have revealed that the long-term complications of diabetes may manifest in some people with prediabetes; these complications include classical microvascular and macrovascular disorders, and our discussion explores the role of glycemia in their development. Finally, landmark intervention studies in prediabetes, including lifestyle modification and pharmacologic treatment, are reviewed.
Collapse
Affiliation(s)
- Ben Brannick
- Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, Tennessee, TN 38163, USA
| | - Anne Wynn
- Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, Tennessee, TN 38163, USA
| | - Samuel Dagogo-Jack
- Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, Tennessee, TN 38163, USA
| |
Collapse
|
18
|
Mobini R, Tremaroli V, Ståhlman M, Karlsson F, Levin M, Ljungberg M, Sohlin M, Bertéus Forslund H, Perkins R, Bäckhed F, Jansson PA. Metabolic effects of Lactobacillus reuteri DSM 17938 in people with type 2 diabetes: A randomized controlled trial. Diabetes Obes Metab 2017; 19:579-589. [PMID: 28009106 DOI: 10.1111/dom.12861] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022]
Abstract
AIMS To investigate the metabolic effects of 12-week oral supplementation with Lactobacillus reuteri DSM 17938 in patients with type 2 diabetes on insulin therapy. MATERIALS AND METHODS In a double-blind trial, we randomized 46 people with type 2 diabetes to placebo or a low (108 CFU/d) or high dose (1010 CFU/d) of L. reuteri DSM 17938 for 12 weeks. The primary endpoint was the effect of supplementation on glycated haemoglobin (HbA1c). Secondary endpoints were insulin sensitivity (assessed by glucose clamp), liver fat content, body composition, body fat distribution, faecal microbiota composition and serum bile acids. RESULTS Supplementation with L. reuteri DSM 17938 for 12 weeks did not affect HbA1c, liver steatosis, adiposity or microbiota composition. Participants who received the highest dose of L. reuteri exhibited increases in insulin sensitivity index (ISI) and serum levels of the secondary bile acid deoxycholic acid (DCA) compared with baseline, but these differences were not significant in the between-group analyses. Post hoc analysis showed that participants who responded with increased ISI after L. reuteri supplementation had higher microbial diversity at baseline, and increased serum levels of DCA after supplementation. In addition, increases in DCA levels correlated with improvement in insulin sensitivity in the probiotic recipients. CONCLUSIONS Intake of L. reuteri DSM 17938 for 12 weeks did not affect HbA1c in people with type 2 diabetes on insulin therapy; however, L. reuteri improved insulin sensitivity in a subset of participants and we propose that high diversity of the gut microbiota at baseline may be important.
Collapse
Affiliation(s)
- Reza Mobini
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Karlsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Max Levin
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Ljungberg
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maja Sohlin
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heléne Bertéus Forslund
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rosie Perkins
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|