1
|
Sharma A, Feng L, Muresanu DF, Tian ZR, Lafuente JV, Buzoianu AD, Nozari A, Wiklund L, Sharma HS. Spinal cord injury induced exacerbation of Alzheimer's disease like pathophysiology is reduced by topical application of nanowired cerebrolysin with monoclonal antibodies to amyloid beta peptide, p-tau and tumor necrosis factor alpha. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:3-35. [PMID: 37833015 DOI: 10.1016/bs.irn.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Hallmark of Alzheimer's disease include amyloid beta peptide and phosphorylated tau deposition in brain that could be aggravated following traumatic of concussive head injury. However, amyloid beta peptide or p-tau in spinal cord following injury is not well known. In this investigation we measured amyloid beta peptide and p-tau together with tumor necrosis factor-alpha (TNF-α) in spinal cord and brain following 48 h after spinal cord injury in relation to the blood-spinal cord and blood-brain barrier, edema formation, blood flow changes and cell injury in perifocal regions of the spinal cord and brain areas. A focal spinal cord injury was inflicted over the right dorsal horn of the T10-11 segment (4 mm long and 2 mm deep) and amyloid beta peptide and p-tau was measured in perifocal rostral (T9) and caudal (T12) spinal cord segments as well as in the brain areas. Our observations showed a significant increase in amyloid beta peptide in the T9 and T12 segments as well as in remote areas of brain and spinal cord after 24 and 48 h injury. This is associated with breakdown of the blood-spinal cord (BSCB) and brain barriers (BBB), edema formation, reduction in blood flow and cell injury. After 48 h of spinal cord injury elevation of amyloid beta peptide, phosphorylated tau (p-tau) and tumor necrosis factor-alpha (TNF-α) was seen in T9 and T12 segments of spinal cord in cerebral cortex, hippocampus and brain stem regions associated with microglial activation as seen by upregulation of Iba1 and CD86. Repeated nanowired delivery of cerebrolysin topically over the traumatized segment repeatedly together with monoclonal antibodies (mAb) to amyloid beta peptide (AβP), p-tau and TNF-α significantly attenuated amyloid beta peptide, p-tau deposition and reduces Iba1, CD68 and TNF-α levels in the brain and spinal cord along with blockade of BBB and BSCB, reduction in blood flow, edema formation and cell injury. These observations are the first to show that spinal cord injury induces Alzheimer's disease like symptoms in the CNS, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, P.R. China
| | - Dafin F Muresanu
- Dept. Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; ''RoNeuro'' Institute for Neurological Research and Diagnostic, Mircea Eliade Street, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ala Nozari
- Department of Anesthesiology, Boston University, Albany str, Boston MA, USA
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Dept. of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; LaNCE, Dept. Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| |
Collapse
|
2
|
Sharma A, Muresanu DF, Tian ZR, Nozari A, Lafuente JV, Buzoianu AD, Sjöquist PO, Feng L, Wiklund L, Sharma HS. Co-Administration of Nanowired Monoclonal Antibodies to Inducible Nitric Oxide Synthase and Tumor Necrosis Factor Alpha Together with Antioxidant H-290/51 Reduces SiO 2 Nanoparticles-Induced Exacerbation of Pathophysiology of Spinal Cord Trauma. ADVANCES IN NEUROBIOLOGY 2023; 32:195-229. [PMID: 37480462 DOI: 10.1007/978-3-031-32997-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel are often exposed to silica dust during combat operations across the globe. Exposure to silica dust in US military or service personnel could cause Desert Strom Pneumonitis also referred to as Al Eskan disease causing several organs damage and precipitate autoimmune dysfunction. However, the effects of microfine particles of sand inhalation-induced brain damage on the pathophysiology of traumatic brain or spinal cord injury are not explored. Previously intoxication of silica nanoparticles (50-60 nm size) is shown to exacerbates spinal cord injury induces blood-spinal cord barrier breakdown, edema formation and cellular changes. However, the mechanism of silica nanoparticles-induced cord pathology is still not well known. Spinal cord injury is well known to alter serotonin (5-hydroxytryptamine) metabolism and induce oxidative stress including upregulation of nitric oxide synthase and tumor necrosis factor alpha. This suggests that these agents are involved in the pathophysiology of spinal cord injury. In this review, we examined the effects of combined nanowired delivery of monoclonal antibodies to neuronal nitric oxide synthase (nNOS) together with tumor necrosis factor alpha (TNF-α) antibodies and a potent antioxidant H-290/51 to induce neuroprotection in spinal cord injury associated with silica nanoparticles intoxication. Our results for the first time show that co-administration of nanowired delivery of antibodies to nNOS and TNF-α with H-290/51 significantly attenuated silica nanoparticles-induced exacerbation of spinal cord pathology, not reported earlier.
Collapse
Affiliation(s)
- Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Sahib S, Sharma A, Menon PK, Muresanu DF, Castellani RJ, Nozari A, Lafuente JV, Bryukhovetskiy I, Tian ZR, Patnaik R, Buzoianu AD, Wiklund L, Sharma HS. Cerebrolysin enhances spinal cord conduction and reduces blood-spinal cord barrier breakdown, edema formation, immediate early gene expression and cord pathology after injury. PROGRESS IN BRAIN RESEARCH 2020; 258:397-438. [PMID: 33223040 DOI: 10.1016/bs.pbr.2020.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Spinal cord evoked potentials (SCEP) are good indicators of spinal cord function in health and disease. Disturbances in SCEP amplitudes and latencies during spinal cord monitoring predict spinal cord pathology following trauma. Treatment with neuroprotective agents preserves SCEP and reduces cord pathology after injury. The possibility that cerebrolysin, a balanced composition of neurotrophic factors improves spinal cord conduction, attenuates blood-spinal cord barrier (BSCB) disruption, edema formation, and cord pathology was examined in spinal cord injury (SCI). SCEP is recorded from epidural space over rat spinal cord T9 and T12 segments after peripheral nerves stimulation. SCEP consists of a small positive peak (MPP), followed by a prominent negative peak (MNP) that is stable before SCI. A longitudinal incision (2mm deep and 5mm long) into the right dorsal horn (T10 and T11 segments) resulted in an immediate long-lasting depression of the rostral MNP with an increase in the latencies. Pretreatment with either cerebrolysin (CBL 5mL/kg, i.v. 30min before) alone or TiO2 nanowired delivery of cerebrolysin (NWCBL 2.5mL/kg, i.v.) prevented the loss of MNP amplitude and even enhanced further from the pre-injury level after SCI without affecting latencies. At 5h, SCI induced edema, BSCB breakdown, and cell injuries were significantly reduced by CBL and NWCBL pretreatment. Interestingly this effect on SCEP and cord pathology was still prominent when the NWCBL was delivered 2min after SCI. Moreover, expressions of c-fos and c-jun genes that are prominent at 5h in untreated SCI are also considerably reduced by CBL and NWCBL treatment. These results are the first to show that CBL and NWCBL enhanced SCEP activity and thwarted the development of cord pathology after SCI. Furthermore, NWCBL in low doses has superior neuroprotective effects on SCEP and cord pathology, not reported earlier. The functional significance and future clinical potential of CBL and NWCBL in SCI are discussed.
Collapse
Affiliation(s)
- Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Preeti K Menon
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden; Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Igor Bryukhovetskiy
- Department of Fundamental Medicine, School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; Laboratory of Pharmacology, National Scientific Center of Marine Biology, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Moradi K, Golbakhsh M, Haghighi F, Afshari K, Nikbakhsh R, Khavandi MM, Faghani S, Badripour A, Etemadi A, Ashraf-Ganjouei A, Bagheri S, Dehpour AR. Inhibition of phosphodiesterase IV enzyme improves locomotor and sensory complications of spinal cord injury via altering microglial activity: Introduction of Roflumilast as an alternative therapy. Int Immunopharmacol 2020; 86:106743. [PMID: 32619958 DOI: 10.1016/j.intimp.2020.106743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 02/02/2023]
Abstract
Despite the great search for an effective approach to minimize secondary injury in spinal cord injury (SCI) setting, there have been limited advances. Roflumilast is a selective inhibitor of phosphodiesterase 4 with potent anti-inflammatory properties. Here, we sought to explore Roflumilast efficacy in the improvement of locomotor and sensory deficits of SCI. In an animal setting, 50 male rats were randomly assigned to five groups: an SCI group receiving Placebo, three SCI groups receiving Roflumilast at the doses of 0.25, 0.5, and 1 mg/kg prior to T9 vertebra laminectomy, and a sham-operated group. Locomotor, mechanical, and thermal activities were evaluated for 28 days. At the end of the study, spinal cord samples were taken to assess the relative ratio of microglial subtypes, including M1 and M2, histopathological changes, levels of pro-inflammatory (TNF-α and IL-1β) and anti-inflammatory (IL-10) biomarkers, and cAMP level. Repeated measure analysis revealed significant effect for time-treatment interaction on locomotion [F (24, 270) = 280.7, p < 0.001], thermal sensitivity [F (16, 180) = 4.35, p < 0.001], and mechanical sensitivity [F (16, 180) = 7.96, p < 0.001]. As expected, Roflumilast significantly increased the expression of spinal cAMP. H&E staining exhibited lesser histopathological disruptions in Roflumilast-treated rodents. We also observed a significant reduction in the M1/M2 ratio (p values < 0.001) as well as in pro-inflammatory biomarkers following the administration of Roflumilast to the injured rats. Furthermore, IL-10 level was increased in rodents receiving 1 mg/kg of the reagent. In conclusion, the increased spinal cAMP following Roflumilast therapy might attenuate neuroinflammation via altering microglial activity; therefore, it could be considered as an alternative therapeutic agent for SCI complications.
Collapse
Affiliation(s)
- Kamyar Moradi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Golbakhsh
- Department of Orthopedic Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farinaz Haghighi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khashayar Afshari
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rajan Nikbakhsh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Khavandi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Faghani
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Badripour
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Etemadi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayna Bagheri
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Sahib S, Niu F, Sharma A, Feng L, Tian ZR, Muresanu DF, Nozari A, Sharma HS. Potentiation of spinal cord conduction and neuroprotection following nanodelivery of DL-3-n-butylphthalide in titanium implanted nanomaterial in a focal spinal cord injury induced functional outcome, blood-spinal cord barrier breakdown and edema formation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:153-188. [DOI: 10.1016/bs.irn.2019.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Huang L, Hu J, Huang S, Wang B, Siaw-Debrah F, Nyanzu M, Zhang Y, Zhuge Q. Nanomaterial applications for neurological diseases and central nervous system injury. Prog Neurobiol 2017; 157:29-48. [PMID: 28743465 DOI: 10.1016/j.pneurobio.2017.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022]
Abstract
The effectiveness of noninvasive treatment for neurological disease is generally limited by the poor entry of therapeutic agents into the central nervous system (CNS). Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier thus, overcoming this problem has become one of the most significant challenges in the development of neurological therapeutics. Nanotechnology has emerged as an innovative alternative for treating neurological diseases. In fact, rapid advances in nanotechnology have provided promising solutions to this challenge. This review highlights the applications of nanomaterials in the developing neurological field and discusses the evidence for their efficacies.
Collapse
Affiliation(s)
- Lijie Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Jiangnan Hu
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Shengwei Huang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Brian Wang
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Felix Siaw-Debrah
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Mark Nyanzu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Yu Zhang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China
| | - Qichuan Zhuge
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325000, PR China.
| |
Collapse
|
7
|
Kim M, Kim KH, Song SU, Yi TG, Yoon SH, Park SR, Choi BH. Transplantation of human bone marrow-derived clonal mesenchymal stem cells reduces fibrotic scar formation in a rat spinal cord injury model. J Tissue Eng Regen Med 2017; 12:e1034-e1045. [PMID: 28112873 DOI: 10.1002/term.2425] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/22/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022]
Abstract
This study aimed to evaluate the therapeutic effect on tissue repair and scar formation of human bone marrow-derived clonal mesenchymal stem cells (hcMSCs) homogeneously isolated by using a subfractionation culturing method, in comparison with the non-clonal MSCs (hMSCs), in a rat spinal cord injury (SCI) model. The SCI was made using a vascular clip at the T9 level. Cells were transplanted into the lesion site 3 days after injury. A functional test was performed over 4 weeks employing a BBB score. Rats were killed for histological analysis at 3 days, 1 week and 4 weeks after injury. The transplantation of hMSCs and hcMSCs significantly reduced lesion size and the fluid-filled cavity at 4 weeks in comparison with the control group injected with phosphate buffered saline (PBS) (p < 0.01). Transplantation of hcMSCs showed more axons reserved than that of hMSCs in the lesion epicentre filled with non-neuronal tissues. In addition, hMSCs and hcMSCs clearly reduced the inflammatory reaction and intraparenchymal hemorrhaging, compared with the PBS group. Interestingly, hcMSCs largely decreased Col IV expression, one of the markers of fibrotic scars. hcMSCs yielded therapeutic effects more than equal to those of hMSCs on the SCI. Both hMSCs and hcMSCs created an increase in axon regeneration and reduced scar formation around the SCI lesion. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Moonhang Kim
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| | - Kil Hwan Kim
- Veterans Medical Research Institute, VHS Medical Center, Seoul, Republic of Korea
| | - Sun U Song
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea.,SCM Lifescience Co., Ltd., Incheon, Republic of Korea
| | - Tac Ghee Yi
- Translational Research Center, Inha University College of Medicine, Incheon, Republic of Korea.,SCM Lifescience Co., Ltd., Incheon, Republic of Korea
| | - Seung Hwan Yoon
- Department of Neurosurgery, Inha University College of Medicine, Incheon, Republic of Korea
| | - So Ra Park
- Department of Physiology, Inha University College of Medicine, Incheon, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, Inha University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
8
|
Jing Y, Bai F, Chen H, Dong H. Melatonin prevents blood vessel loss and neurological impairment induced by spinal cord injury in rats. J Spinal Cord Med 2017; 40:222-229. [PMID: 27735218 PMCID: PMC5430480 DOI: 10.1080/10790268.2016.1227912] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Melatonin can be neuroprotective in models of neurological injury, but its effects on blood vessel loss and neurological impairment following spinal cord injury (SCI) are unclear. Our goal herein was to evaluate the possible protective action of melatonin on the above SCI-induced damage in rats. MATERIALS AND METHODS Sixty-three female Sprague-Dawley rats were randomly divided into three equal groups: sham, SCI and melatonin groups. Melatonin (10 mg/kg) was injected intraperitoneally and further administered twice a day at indicated time after a moderate injury at T10 in melatonin group. Blood vessel was assessed by CD31staining and FITC-LEA, the permeability of blood-spinal cord barrier (BSCB) was detected by Evan's Blue. Neuron was assessed by NeuN staining and the expression of Nissl bodies in the neurons was assessed by Nissl staining. The expressions of brain-derived neurotrophic factor (BDNF), synapsin I, or growth associated protein-43 (GAP-43) in the spinal cord and hippocampus were evaluated by Western blotting. RESULTS At 7 days post-injury, melatonin treatment rescued blood vessels, increased CD31 levels, ameliorated BSCB permeability. Additionally, melatonin significantly increased the number of neurons and the expression of Nissl bodies in neurons at the injury epicenter. Furthermore, our data showed that SCI reduced levels of the molecular substrates of neurological plasticity, including BDNF, synapsin I, or GAP-43 in the spinal cord and hippocampus. Melatonin treatment partially prevented these reductions. CONCLUSION The neuroprotective effect of melatonin was associated with melioration of the microcirculation in the spinal cord and reduction of neurological impairment in the spinal cord and brain.
Collapse
Affiliation(s)
- Yingli Jing
- China Rehabilitation Research Center, Beijing, China,Institute of Rehabilitation Science of China, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Fan Bai
- China Rehabilitation Research Center, Beijing, China,Institute of Rehabilitation Science of China, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Hui Chen
- China Rehabilitation Research Center, Beijing, China,Institute of Rehabilitation Science of China, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Hao Dong
- China Rehabilitation Research Center, Beijing, China,Institute of Rehabilitation Science of China, Beijing, China,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China,Correspondence to: Hao Dong, Number 10, Jiao men North Road, Feng tai District, Beijing 100068, China.
| |
Collapse
|
9
|
Nanowired Delivery of Growth Hormone Attenuates Pathophysiology of Spinal Cord Injury and Enhances Insulin-Like Growth Factor-1 Concentration in the Plasma and the Spinal Cord. Mol Neurobiol 2015; 52:837-45. [PMID: 26126514 DOI: 10.1007/s12035-015-9298-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 12/14/2022]
Abstract
Previous studies from our laboratory showed that topical application of growth hormone (GH) induced neuroprotection 5 h after spinal cord injury (SCI) in a rat model. Since nanodelivery of drugs exerts superior neuroprotective effects, a possibility exists that nanodelivery of GH will induce long-term neuroprotection after a focal SCI. SCI induces GH deficiency that is coupled with insulin-like growth factor-1 (IGF-1) reduction in the plasma. Thus, an exogenous supplement of GH in SCI may enhance the IGF-1 levels in the cord and induce neuroprotection. In the present investigation, we delivered TiO2-nanowired growth hormone (NWGH) after a longitudinal incision of the right dorsal horn at the T10-11 segments in anesthetized rats and compared the results with normal GH therapy on IGF-1 and GH contents in the plasma and in the cord in relation to blood-spinal cord barrier (BSCB) disruption, edema formation, and neuronal injuries. Our results showed a progressive decline in IGF-1 and GH contents in the plasma and the T9 and T12 segments of the cord 12 and 24 h after SCI. Marked increase in the BSCB breakdown, as revealed by extravasation of Evans blue and radioiodine, was seen at these time points after SCI in association with edema and neuronal injuries. Administration of NWGH markedly enhanced the IGF-1 levels and GH contents in plasma and cord after SCI, whereas normal GH was unable to enhance IGF-1 or GH levels 12 or 24 h after SCI. Interestingly, NWGH was also able to reduce BSCB disruption, edema formation, and neuronal injuries after trauma. On the other hand, normal GH was ineffective on these parameters at all time points examined. Taken together, our results are the first to demonstrate that NWGH is quite effective in enhancing IGF-1 and GH levels in the cord and plasma that may be crucial in reducing pathophysiology of SCI.
Collapse
|
10
|
Sharma HS, Muresanu DF, Lafuente JV, Sjöquist PO, Patnaik R, Sharma A. Nanoparticles Exacerbate Both Ubiquitin and Heat Shock Protein Expressions in Spinal Cord Injury: Neuroprotective Effects of the Proteasome Inhibitor Carfilzomib and the Antioxidant Compound H-290/51. Mol Neurobiol 2015; 52:882-98. [DOI: 10.1007/s12035-015-9297-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 12/22/2022]
|
11
|
Hayakawa K, Uchida S, Ogata T, Tanaka S, Kataoka K, Itaka K. Intrathecal injection of a therapeutic gene-containing polyplex to treat spinal cord injury. J Control Release 2014; 197:1-9. [PMID: 25449800 DOI: 10.1016/j.jconrel.2014.10.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/20/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Spinal cord injury (SCI) is a serious clinical problem that suddenly deprives patients of neurologic function and drastically diminishes their quality of life. Gene introduction has the potential to be effective for various pathological states of SCI because various proteins can be produced just by modifying nucleic acid sequences. In addition, the sustainable protein expression allows to maintain its concentration at an effective level at the target site in the spinal cord. Here we propose an approach using a polyplex system composed of plasmid DNA (pDNA) and a cationic polymer, poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} [PAsp(DET)], that has high capacity to promote endosome escape and the long-term safety by self-catalytically degrading within a few days. We applied brain-derived neurotrophic factor (BDNF)-expressing pDNA for SCI treatment by intrathecal injection of PAsp(DET)/pDNA polyplex. A single administration of polyplex for experimental SCI provided sufficient therapeutic effects including prevention of neural cell death and enhancement of motor function recovery. This lasted for a few weeks after SCI, demonstrating the capability of this system to express BDNF in a safe and responsible manner for treatment of various pathological states in SCI.
Collapse
Affiliation(s)
- Kentaro Hayakawa
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for the Persons with Disabilities, Saitama, Japan; Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Uchida
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for the Persons with Disabilities, Saitama, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazunori Kataoka
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Keiji Itaka
- Sensory and Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Sharma HS, Menon P, Lafuente JV, Muresanu DF, Tian ZR, Patnaik R, Sharma A. Development ofin vivodrug-induced neurotoxicity models. Expert Opin Drug Metab Toxicol 2014; 10:1637-61. [DOI: 10.1517/17425255.2014.970168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Behavioral and Histopathological Study of Changes in Spinal Cord Injured Rats Supplemented with Spirulina platensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:871657. [PMID: 25152764 PMCID: PMC4135169 DOI: 10.1155/2014/871657] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/02/2014] [Indexed: 11/25/2022]
Abstract
Spinal cord injury (SCI) is a devastating disease that leads to permanent disability and causes great suffering. The resulting neurological dysfunction and paralysis is proportional to the severity of the trauma itself. Spirulina is widely used as a nutritional supplement due to its high protein and antioxidant content. In the present study, the protective effect of the Spirulina treatment on locomotor function and morphological damage after SCI was investigated. Seventy Sprague-Dawley (SD) rats were divided into three groups: Sham (laminectomy alone), Control (laminectomy with SCI), and Experimental (laminectomy with SCI +180 mg/kg per day Spirulina platensis). A laminectomy was performed at T12 and an Inox No.2 modified forceps was used to perform a partial crush injury on the spinal cord. The rats were then perfused at 3, 7, 14, 21, and 28 days after injury for morphological investigations. The injured rat spinal cord indicated a presence of hemorrhage, cavity, and necrosis. Pretreatment with Spirulina significantly improved the locomotor function and showed a significant reduction on the histological changes. The experimental results observed in this study suggest that treatment with Spirulina platensis possesses potential benefits in improving hind limb locomotor function and reducing morphological damage to the spinal cord.
Collapse
|
14
|
The role of IL-17 promotes spinal cord neuroinflammation via activation of the transcription factor STAT3 after spinal cord injury in the rat. Mediators Inflamm 2014; 2014:786947. [PMID: 24914249 PMCID: PMC4021861 DOI: 10.1155/2014/786947] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 11/17/2022] Open
Abstract
Study Design. In this study, we investigated the role of IL-17 via activation of STAT3 in the pathophysiology of SCI. Objective. The purpose of the experiments is to study the expression of IL-17 and related cytokines via STAT3 signaling pathways, which is caused by the acute inflammatory response following SCI in different periods via establishing an acute SCI model in rat. Methods. Basso, Beattie, and Bresnahan hind limb locomotor rating scale was used to assess the rat hind limb motor function. Immunohistochemistry was used to determine the expression levels of IL-17 and p-STAT3 in spinal cord tissues. Western blotting analysis was used to determine the protein expression of p-STAT3 in spinal cord tissue. RT-PCR was used to analyze the mRNA expression of IL-17 and IL-23p19 in the spleen tissue. ELISA was used to determine the peripheral blood serum levels of IL-6, IL-21, and IL-23. Results. Compared to the sham-operated group, the expression levels of IL-17, p-STAT3, IL-6, IL-21, and IL-23 were significantly increased and peaked at 24 h after SCI. The increased levels of cytokines were correlated with the SCI disease stages. Conclusion. IL-17 may play an important role in promoting spinal cord neuroinflammation after SCI via activation of STAT3.
Collapse
|
15
|
Fang B, Wang H, Sun XJ, Li XQ, Ai CY, Tan WF, White PF, Ma H. Intrathecal transplantation of bone marrow stromal cells attenuates blood-spinal cord barrier disruption induced by spinal cord ischemia-reperfusion injury in rabbits. J Vasc Surg 2013; 58:1043-52. [PMID: 23478501 DOI: 10.1016/j.jvs.2012.11.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/05/2012] [Accepted: 11/17/2012] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Intrathecal administration of bone marrow stromal cells has been found to produce beneficial effects on ischemia-reperfusion injury to the spinal cord. The blood-spinal cord barrier is critical to maintain spinal cord homeostasis and neurologic function. However, the effects of bone marrow stromal cells on the blood-spinal cord barrier after spinal cord ischemia-reperfusion injury are not well understood. This study investigated the effects and possible mechanisms of bone marrow stromal cells on blood-spinal cord barrier disruption induced by spinal cord ischemia-reperfusion injury. METHODS This was a prospective animal study conducted at the Central Laboratory of the First Affiliated Hospital, China Medical University. The study used 81 Japanese white rabbits (weight, 1.8-2.6 kg). Spinal cord ischemia-reperfusion injury was induced in rabbits by infrarenal aortic occlusion for 30 minutes. Two days before the injury was induced, bone marrow stromal cells (1 × 10(8) in 0.2-mL phosphate-buffered saline) were transplanted by intrathecal injection. Hind-limb motor function was assessed using Tarlov criteria, and motor neurons in the ventral gray matter were counted by histologic examination. The permeability of the blood-spinal cord barrier was examined using Evans blue (EB) and lanthanum nitrate as vascular tracers. The expression and localization of tight junction protein occludin were assessed by Western blot, real-time polymerase chain reaction, and immunofluorescence analysis. Matrix metalloproteinase-9 (MMP-9) and tumor necrosis factor-α (TNF-α) expression were also measured. RESULTS Intrathecal transplantation of bone marrow stromal cells minimized the neuromotor dysfunction and histopathologic deficits (P < .01) and attenuated EB extravasation at 4 hours (5.41 ± 0.40 vs 7.94 ± 0.36 μg/g; P < .01) and 24 hours (9.03 ± 0.44 vs 15.77 ± 0.89 μg/g; P < .01) after spinal cord ischemia-reperfusion injury. In addition, bone marrow stromal cells treatment suppressed spinal cord ischemia-reperfusion injury-induced decreases in occludin (P < .01). Finally, bone marrow stromal cells reduced the excessive expression of MMP-9 and TNF-α (P < .01). CONCLUSIONS Pre-emptive intrathecal transplantation of bone marrow stromal cells stabilized the blood-spinal cord barrier integrity after spinal cord ischemia-reperfusion injury in a rabbit model of transient aortic occlusion. This beneficial effect was partly mediated by inhibition of MMP-9 and TNF-α and represents a potential therapeutic approach to mitigating spinal cord injury after aortic occlusion. CLINICAL RELEVANCE Clinical thoracoabdominal aorta surgery may trigger spinal cord ischemia-reperfusion injury, resulting in paraplegia as well as bladder, bowel, and sexual dysfunction. Transplantation of bone marrow stromal cells has attracted increasing attention in the field of nervous system protection, but its mechanisms have not been elucidated completely. The blood-spinal cord barrier plays a crucial role to maintain normal spinal cord function. This study suggested that intrathecal transplantation of bone marrow stromal cells stabilized blood-spinal cord barrier integrity through inhibiting the upregulation of matrix metalloproteinase-9 and tumor necrosis factor-a and ameliorated spinal cord ischemia-reperfusion injury. This may provide a novel train of thought to enhance the protective effects of bone marrow stromal cells on spinal cord injury.
Collapse
Affiliation(s)
- Bo Fang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Varma AK, Das A, Wallace G, Barry J, Vertegel AA, Ray SK, Banik NL. Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem Res 2013; 38:895-905. [PMID: 23462880 DOI: 10.1007/s11064-013-0991-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 12/12/2022]
Abstract
The incidence of acute and chronic spinal cord injury (SCI) in the United States is more than 10,000 per year, resulting in 720 cases per million persons enduring permanent disability each year. The economic impact of SCI is estimated to be more than 4 billion dollars annually. Preclinical studies, case reports, and small clinical trials suggest that early treatment may improve neurological recovery. To date, no proven therapeutic modality exists that has demonstrated a positive effect on neurological outcome. Emerging data from recent preclinical and clinical studies offer hope for this devastating condition. This review gives an overview of current basic research and clinical studies for the treatment of SCI.
Collapse
Affiliation(s)
- Abhay K Varma
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Sharma HS, Sharma A. New therapeutic advances in CNS injury and repair. Expert Rev Neurother 2012; 12:901-905. [DOI: 10.1586/ern.12.87] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
18
|
Sharma HS, Sharma A. Rodent spinal cord injury model and application of neurotrophic factors for neuroprotection. Methods Mol Biol 2012; 846:393-415. [PMID: 22367828 DOI: 10.1007/978-1-61779-536-7_33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious clinical problem that causes lifetime disabilities to victims and inflicting huge social burden on our society. One of the main lacunae in developing potential therapeutic measures in SCI is a lack of suitable animal models that could be comparable to clinical situations. Thus, development of new animal models of SCI is highly needed to expand our knowledge on cell injury and repair process in order to reduce cord pathology, and in translating advanced therapies in patients of SCI to improve therapeutic strategies. Keeping these views in mind, a suitable animal model is developed in our laboratory that can be used to explore new therapeutic tools in SCI. The details of our methods used to induce SCI in rodents and neuroprotection achieved by use of selected neurotrophic factors are described in this chapter.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, Laboratory of Cerebrovascular and Pain Research, University Hospital, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
19
|
|
20
|
Sharma HS, Sharma A. Nanowired drug delivery for neuroprotection in central nervous system injuries: modulation by environmental temperature, intoxication of nanoparticles, and comorbidity factors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 4:184-203. [PMID: 22162425 DOI: 10.1002/wnan.172] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent developments in nanomedicine resulted in targeted drug delivery of active compounds into the central nervous system (CNS) either through encapsulated material or attached to nanowires. Nanodrug delivery by any means is supposed to enhance neuroprotection due to rapid accumulation of drugs within the target area and a slow metabolism of the compound. These two factors enhance neuroprotection than the conventions drug delivery. However, this is still uncertain whether nanodrug delivery could alter the pharmacokinetics of compounds making it more effective or just longer exposure of the compound for extended period of time is primarily responsible for enhanced effects of the drugs. Our laboratory is engaged in understanding of the nanodrug delivery using TiO(2) nanowires in CNS injuries models, for example, spinal cord injury (SCI), hyperthermia and/or intoxication of nanoparticles with or without other comorbidity factors, that is, diabetes or hypertension in rat models. Our observations suggest that nanowired drug delivery is effective under normal situation of SCI and hyperthermia as evidenced by significant reduction in the blood-brain barrier (BBB) breakdown, brain edema formation, cognitive disturbances, neuronal damages, and brain pathologies. However, when the pathophysiology of these CNS injuries is aggravated by nanoparticles intoxication or comorbidity factors, adjustment in dosage of nanodrug delivery is needed. This indicates that further research in nanomedicine is needed to explore suitable strategies in achieving greater neuroprotection in CNS injury in combination with nanoparticles intoxication or other comorbidity factors for better clinical practices.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Cerebrovascular Research Laboratory, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
21
|
Blood-CNS barrier, neurodegeneration and neuroprotection: recent therapeutic advancements and nano-drug delivery. J Neural Transm (Vienna) 2011; 118:3-6. [PMID: 21225296 DOI: 10.1007/s00702-010-0542-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Early microvascular reactions and blood-spinal cord barrier disruption are instrumental in pathophysiology of spinal cord injury and repair: novel therapeutic strategies including nanowired drug delivery to enhance neuroprotection. J Neural Transm (Vienna) 2010; 118:155-76. [PMID: 21161717 DOI: 10.1007/s00702-010-0514-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 10/15/2010] [Indexed: 01/19/2023]
Abstract
Spinal cord injury (SCI) is a devastating disease that leads to permanent disability of victims for which no suitable therapeutic intervention has been achieved so far. Thus, exploration of novel therapeutic agents and nano-drug delivery to enhance neuroprotection after SCI is the need of the hour. Previous research on SCI is largely focused to improve neurological manifestations of the disease while ignoring spinal cord pathological changes. Recent studies from our laboratory have shown that pathological recovery of SCI appears to be well correlated with the improvement of sensory motor functions. Thus, efforts should be made to reduce or minimize spinal cord cell pathology to achieve functional and cellular recovery to enhance the quality of lives of the victims. While treating spinal cord disease, recovery of both neuronal and non-neuronal cells, e.g., endothelia and glial cells are also necessary to maintain a healthy spinal cord function after trauma. This review focuses effects of novel therapeutic strategies on the role of spinal cord microvascular reactions and endothelia cell functions, i.e., blood-spinal cord barrier (BSCB) in SCI and repair mechanisms. Thus, new therapeutic approach to minimize spinal cord pathology after trauma using antibodies to various neurotransmitters and/or drug delivery to the cord directly by topical application to maintain strong localized effects on the injured cells are discussed. In addition, the use of nanowired drugs to affect remote areas of the cord after their application on the injured spinal cord in thwarting the injury process rapidly and to enhance the neuroprotective effects of the parent compounds are also described in the light of current knowledge and our own investigations. It appears that local treatment with new therapeutic agents and nanowired drugs after SCI are needed to enhance neurorepair leading to improved spinal cord cellular functions and the sensory motor performances.
Collapse
|
23
|
Sharma HS, Sharma A. New perspectives on molecular and cellular mechanisms of neuroprotection and neuroregeneration: part II. Expert Rev Neurother 2010; 10:1253-1257. [DOI: 10.1586/ern.10.78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
24
|
Sharma HS, Zimmermann-Meinzingen S, Johanson CE. Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat. Ann N Y Acad Sci 2010; 1199:125-37. [PMID: 20633118 DOI: 10.1111/j.1749-6632.2009.05329.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Traumatic brain injuries (TBIs) induce profound breakdown of the blood-brain and blood-cerebrospinal fluid barriers (BCSFB), brain pathology/edema, and sensory-motor disturbances. Because neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and glial cell-derived neurotrophic factor (GDNF), are neuroprotective in models of brain and spinal cord injuries, we hypothesized that a combination of neurotrophic factors would enhance neuroprotective efficacy. In the present investigation, we examined the effects of Cerebrolysin, a mixture of different neurotrophic factors (Ebewe Neuro Pharma, Austria) on the brain pathology and functional outcome in a rat model of TBI. TBI was produced under Equithesin (3 mL/kg, i.p.) anesthesia by making a longitudinal incision into the right parietal cerebral cortex. Untreated injured rats developed profound disruption of the blood-brain barrier (BBB) to proteins, edema/cell injury, and marked sensory-motor dysfunctions on rota-rod and grid-walking tests at 5 h TBI. Intracerebroventricular administration of Cerebrolysin (10 or 30 microL) either 5 min or 1 h after TBI significantly reduced leakage of Evans blue and radioiodine tracers across the BBB and BCSFB, and attenuated brain edema formation/neuronal damage in the cortex as well as underlying subcortical regions. Cerebrolysin-treated animals also had improved sensory-motor functions. However, administration of Cerebrolysin 2 h after TBI did not affect these parameters significantly. These observations in TBI demonstrate that early intervention with Cerebrolysin reduces BBB and BCSFB permeability changes, attenuates brain pathology and brain edema, and mitigates functional deficits. Taken together, our observations suggest that Cerebrolysin has potential therapeutic value in TBI.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Cerebrovascular Research, Institute of Surgical Sciences, Department of Anaesthesiology & Intensive Care, University Hospital, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
25
|
Sharma HS. A combination of tumor necrosis factor-alpha and neuronal nitric oxide synthase antibodies applied topically over the traumatized spinal cord enhances neuroprotection and functional recovery in the rat. Ann N Y Acad Sci 2010; 1199:175-85. [PMID: 20633123 DOI: 10.1111/j.1749-6632.2009.05327.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The possibility that neutralization of nitric oxide synthase and tumor necrosis factor alpha (TNF-alpha) in the cord using their antiserum will induce neuroprotection and improve functional outcome following spinal cord injury (SCI) was examined in a rat model. The SCI was induced in rats by a unilateral incision of the right dorsal horn at the T10-11 segments under equithesin anesthesia. TNF-alpha and/or neuronal nitric oxide synthase (nNOS) antibodies were applied over the traumatized spinal cord at 10-90 minutes after injury and functional recovery and cord pathophysiology were examined at five hours. Topical application of TNF-alpha antiserum at 10 min followed by NOS antiserum at 20 min after SCI significantly improved functional recovery and attenuated blood-spinal cord barrier (BSCB) disturbances, edema formation, and cord pathology. These neuroprotective effects were also seen when the NOS antiserum was applied 10 min after injury followed by TNF-alpha antiserum at 30 min after trauma. However, when TNF-alpha antiserum was applied 1 h after injury and NOS antiserum was given either before or after TNF-alpha antiserum, no neuroprotective effects were observed. Interestingly, neuronal injury was tightly correlated with nNOS expression in the cord in antibody treated groups. These novel observations suggest that early blockade of TNF-alpha and nNOS expression within 20-30 min after SCI is beneficial in nature. This indicates that TNF-alpha and nitric oxide play synergistic roles in the pathophysiology of SCI and combined antibodies therapy has added neuroprotective values in spinal trauma.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
26
|
Sharma HS, Sharma A. New perspectives on molecular and cellular mechanisms of neuroprotection and neuroregeneration: part I. Expert Rev Neurother 2010; 10:1039-1043. [DOI: 10.1586/ern.10.79] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
27
|
Sharma HS, Sharma A. Conference Scene: Nanoneuroprotection and nanoneurotoxicity: recent progress and future perspectives. Nanomedicine (Lond) 2010; 5:533-7. [DOI: 10.2217/nnm.10.25] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent developments in research related to nanoparticles in neuroscience necessitated the establishment of a new discipline known as ‘nanoneuroscience’. In order to understand the possible role of nanoparticles in the development of neurotoxicity or their potential use in neuroprotection, nine top experts across the world in this newly developing discipline were invited to present their cutting edge research in the 7th annual meeting of the Global College of Neuroprotection & Neuroregeneration in Stockholm, Sweden. The new developments suggest that more research is needed to understand the potential use of nanoparticles in nanomedicine. Highlights of these presentations are summarized in this article.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Cerebrovascular Research Laboratory, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, SE-75185, Uppsala, Sweden
| | - Aruna Sharma
- Cerebrovascular Research Laboratory, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, SE-75185, Uppsala, Sweden
| |
Collapse
|
28
|
Selected combination of neurotrophins potentiate neuroprotection and functional recovery following spinal cord injury in the rat. ACTA NEUROCHIRURGICA. SUPPLEMENT 2010; 106:295-300. [PMID: 19812967 DOI: 10.1007/978-3-211-98811-4_55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The possibility that a combination of neurotrophins induces long-lasting neuroprotection of the cord following spinal cord injury (SCI) was examined in a rat model. The SCI was performed by making a unilateral incision into the right dorsal horn of the T10-11 segments and the animals were allowed to survive 5 h after trauma. Different combination of neurotrophins, i.e., BDNF in combination with GDNF, NT-3, or NGF was applied topically over the traumatized spinal cord and motor dysfunction, blood-spinal cord barrier (BSCB) breakdown, edema formation, and cell injury were examined. Topical application of BDNF in combination with GDNF and NGF 30 min (but not 60 or 90 min) at high concentrations (0.5 microg each) after SCI significantly improved motor function and reduced BSCB breakdown, edema formation, and cell injury at 5 h. However, concurrent application of BDNF, IGF-1, and GDNF (but not with NT-3 or NGF) even 60 or 90 min after trauma induced a significant reduction in motor dysfunction and spinal cord pathology. These observations suggest that a combination of neurotrophins may have added therapeutic value in the treatment of SCI, not reported earlier.
Collapse
|
29
|
Nanowired-drug delivery enhances neuroprotective efficacy of compounds and reduces spinal cord edema formation and improves functional outcome following spinal cord injury in the rat. ACTA NEUROCHIRURGICA. SUPPLEMENT 2010; 106:343-50. [PMID: 19812975 DOI: 10.1007/978-3-211-98811-4_63] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The possibility that drugs attached to nanowires enhance their therapeutic efficacy was examined in a rat model of spinal cord injury (SCI). Three Acure compounds AP-173, AP-713 and AP-364 were tagged with TiO(2)-based nanowires (50-60 nm) and applied over the traumatized cord either 5 or 60 min after SCI in rats produced by a longitudinal incision into the right dorsal horn of the T10-11 segments under equithesin anaesthesia. Normal compounds were used for comparison. After 5 h SCI, behavioral outcome, blood-spinal cord barrier (BSCB) permeability, edema formation and cell injury were examined. Topical application of nanowired compound AP-713 (10 microg in 20 microL) when applied either 5 or 60 min after injury markedly attenuated behavioral dysfunction at 2-3 h after SCI and reduces BSCB disruption, edema formation and cord pathology at 5 h compared to other compounds. Whereas normal compounds applied at 5 min after injury (but not after 60 min) had some significant but less beneficial effects compared to their nanowired combinations. On the other hand, nanowires alone did not influence spinal cord pathology or motor function after SCI. Taken together, our results indicate that the nanowired-drug-delivery enhances the neuroprotective efficacy of drugs in SCI and reduces functional outcome compared to normal compounds even applied at a later stage following trauma, not reported earlier.
Collapse
|
30
|
Sharma HS, Muresanu DF, Sharma A, Patnaik R, Lafuente JV. Chapter 9 - Nanoparticles influence pathophysiology of spinal cord injury and repair. PROGRESS IN BRAIN RESEARCH 2009; 180:154-80. [PMID: 20302834 DOI: 10.1016/s0079-6123(08)80009-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Spinal cord injury (SCI) is a serious clinical problem for which no suitable therapeutic strategies have been worked out so far. Recent studies suggest that the SCI and its pathophysiological responses could be altered by systemic exposure to nanoparticles. Thus, SCI when made in animals intoxicated with engineered nanoparticles from metals or silica dust worsened the outcome. On the other hand, drugs tagged with titanium (TiO(2)) nanoparticles or encapsulated in liposomes could enhance their neuroprotective efficacy following SCI. Thus, to expand our knowledge on nanoparticle-induced alterations in the spinal cord pathophysiology further research is needed. These investigations will help to develop new strategies to achieve neuroprotection in SCI, for example, using nanodrug delivery. New results from our laboratory showed that nanoparticle-induced exacerbation of cord pathology following trauma can be reduced when the suitable drugs tagged with TiO(2) nanowires were administered into the spinal cord as compared to those drugs given alone. This indicates that nanoparticles depending on the exposure and its usage could induce both neurotoxicity and neuroprotection. This review discusses the potential adverse or therapeutic utilities of nanoparticles in SCI largely based on our own investigations. In addition, possible mechanisms of nanoparticle-induced exacerbation of cord pathology or enhanced neuroprotection following nanodrug delivery is described in light of recently available data in this rapidly emerging field of nanoneurosciences.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Laboratory of Cerebrovascular and Pain Research, Department of Surgical Sciences, Anesthesiology and Intensive Care Medicine, University Hospital, Uppsala University, SE-75185 Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
31
|
Sharma HS, Sharma A. 6th Global College of Neuroprotection and Neuroregeneration, Annual Meeting. Expert Rev Neurother 2009; 9:941-947. [DOI: 10.1586/ern.09.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
32
|
Sharma HS, Muresanu D, Sharma A, Patnaik R. Cocaine-induced breakdown of the blood-brain barrier and neurotoxicity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:297-334. [PMID: 19897082 DOI: 10.1016/s0074-7742(09)88011-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Role of cocaine in influencing blood-brain barrier (BBB) function is still unknown. Available evidences suggest that cocaine administration results in acute hyperthermia and alterations in brain serotonin metabolism. Since hyperthermia is capable to induce the breakdown of the BBB either directly or through altered serotonin metabolism, a possibility exists that cocaine may induce neurotoxicity by causing BBB disruption. This hypothesis is discussed in this review largely based on our own laboratory investigations. Our observations in rats demonstrate that cocaine depending on the dose and routes of administration induces profound hyperthermia, increased plasma and brain serotonin levels leading to BBB breakdown and brain edema formation. Furthermore, cocaine was able to enhance cellular stress as seen by upregulation of heat shock protein (HSP 72 kD) expression and resulted in marked neuronal and glial cell damages at the time of the BBB dysfunction. Taken together, these observations are the first to suggest that cocaine-induced BBB disruption is instrumental in precipitating brain pathology. The possible mechanisms of cocaine-induced BBB breakdown and neurotoxicity are discussed.
Collapse
Affiliation(s)
- Hari S Sharma
- Laboratory of Cerebrovascular Research & Pain Research Laboratory, Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, University Hospital, Uppsala University, SE-75185 Uppsala, Sweden
| | | | | | | |
Collapse
|