1
|
Zhou JJ, Wang YM, Lee VWS, Zhang GY, Medbury H, Williams H, Wang Y, Tan TK, Harris DCH, Alexander SI, Durkan AM. DEC205-DC targeted DNA vaccine against CX3CR1 protects against atherogenesis in mice. PLoS One 2018; 13:e0195657. [PMID: 29641559 PMCID: PMC5895033 DOI: 10.1371/journal.pone.0195657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/27/2018] [Indexed: 11/18/2022] Open
Abstract
Studies disrupting the chemokine pathway CX3CL1 (fractalkine)/ CX3CR1 have shown decreased atherosclerosis in animal models but the techniques used to interrupt the pathway have not been easily translatable into human trials. DNA vaccination potentially overcomes the translational difficulties. We evaluated the effect of a DNA vaccine, targeted to CX3CR1, on atherosclerosis in a murine model and examined possible mechanisms of action. DNA vaccination against CX3CR1, enhanced by dendritic cell targeting using DEC-205 single chain variable region fragment (scFv), was performed in 8 week old ApoE-/- mice, fed a normal chow diet. High levels of anti-CX3CR1 antibodies were induced in vaccinated mice. There were no apparent adverse reactions to the vaccine. Arterial vessels of 34 week old mice were examined histologically for atherosclerotic plaque size, macrophage infiltration, smooth muscle cell infiltration and lipid deposition. Vaccinated mice had significantly reduced atherosclerotic plaque in the brachiocephalic artery. There was less macrophage infiltration but no significant change to the macrophage phenotype in the plaques. There was less lipid deposition in the lesions, but there was no effect on smooth muscle cell migration. Targeted DNA vaccination to CX3CR1 was well tolerated, induced a strong immune response and resulted in attenuated atherosclerotic lesions with reduced macrophage infiltration. DNA vaccination against chemokine pathways potentially offers a potential therapeutic option for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jimmy Jianheng Zhou
- Centre for Kidney Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Yuan Min Wang
- Centre for Kidney Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Vincent W. S. Lee
- University of Sydney, Sydney, NSW, Australia
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Geoff Yu Zhang
- Centre for Kidney Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
| | - Heather Medbury
- Vascular Biology Research Centre, Surgery, University of Sydney, Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Helen Williams
- Vascular Biology Research Centre, Surgery, University of Sydney, Westmead Hospital, University of Sydney, Westmead, NSW, Australia
| | - Ya Wang
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Thian Kui Tan
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - David C. H. Harris
- University of Sydney, Sydney, NSW, Australia
- Centre for Transplantation and Renal Research, University of Sydney at Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Stephen I. Alexander
- Centre for Kidney Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
| | - Anne M. Durkan
- Centre for Kidney Research, Children’s Hospital at Westmead, Westmead, NSW, Australia
- University of Sydney, Sydney, NSW, Australia
- * E-mail:
| |
Collapse
|
2
|
Tabll A, El-Shenawy R, Abd YE. Progress in Vaccine Development for HCV Infection. UPDATE ON HEPATITIS C 2017. [DOI: 10.5772/intechopen.70649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
3
|
Large scale production of a mammalian cell derived quadrivalent hepatitis C virus like particle vaccine. J Virol Methods 2016; 236:87-92. [PMID: 27373602 DOI: 10.1016/j.jviromet.2016.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022]
Abstract
A method for the large-scale production of a quadrivalent mammalian cell derived hepatitis C virus-like particles (HCV VLPs) is described. The HCV core E1 and E2 coding sequences of genotype 1a, 1b, 2a or 3a were co-expressed in Huh7 cell factories using a recombinant adenoviral expression system. The structural proteins self-assembled into VLPs that were purified from Huh7 cell lysates by iodixanol ultracentrifugation and Stirred cell ultrafiltration. Electron microscopy, revealed VLPs of the different genotypes that are morphologically similar. Our results show that it is possible to produce large quantities of individual HCV genotype VLPs with relative ease thus making this approach an alternative for the manufacture of a quadrivalent mammalian cell derived HCV VLP vaccine.
Collapse
|
4
|
Pavlin M, Kandušer M. New insights into the mechanisms of gene electrotransfer--experimental and theoretical analysis. Sci Rep 2015; 5:9132. [PMID: 25778848 PMCID: PMC5390920 DOI: 10.1038/srep09132] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/11/2015] [Indexed: 01/14/2023] Open
Abstract
Gene electrotransfer is a promising non-viral method of gene delivery. In our in vitro study we addressed open questions about this multistep process: how electropermeabilization is related to electrotransfer efficiency; the role of DNA electrophoresis for contact and transfer across the membrane; visualization and theoretical analysis of DNA-membrane interaction and its relation to final transfection efficiency; and the differences between plated and suspended cells. Combinations of high-voltage and low-voltage pulses were used. We obtained that electrophoresis is required for the insertion of DNA into the permeabilized membrane. The inserted DNA is slowly transferred into the cytosol, and nuclear entry is a limiting factor for optimal transfection. The quantification and theoretical analysis of the crucial parameters reveals that DNA-membrane interaction (NDNA) increases with higher DNA concentration or with the addition of electrophoretic LV pulses while transfection efficiency reaches saturation. We explain the differences between the transfection of cell suspensions and plated cells due to the more homogeneous size, shape and movement of suspended cells. Our results suggest that DNA is either translocated through the stable electropores or enters by electo-stimulated endocytosis, possibly dependent on pulse parameters. Understanding of the mechanisms enables the selection of optimal electric protocols for specific applications.
Collapse
Affiliation(s)
- Mojca Pavlin
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Maša Kandušer
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Yazdanian M, Memarnejadian A, Mahdavi M, Motevalli F, Sadat SM, Vahabpour R, Khanahmad H, Soleimanjahi H, Budkowska A, Roohvand F. Evaluation of cellular responses for a chimeric HBsAg-HCV core DNA vaccine in BALB/c mice. Adv Biomed Res 2015; 4:13. [PMID: 25625119 PMCID: PMC4300588 DOI: 10.4103/2277-9175.148296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022] Open
Abstract
Background: Fusion of Hepatitis B virus surface antigen (HBsAg) to a DNA construct might be considered as a strategy to enhance cellular and cytotoxic T-lymphocytes (CTL) responses of a Hepatitis C Virus core protein (HCVcp)-based DNA vaccine comparable to that of adjuvanted protein (subunit) immunization. Materials and Methods: pCHCORE vector harboring coding sequence of HBsAg and HCVcp (amino acids 2-120) in tandem within the pCDNA3.1 backbone was constructed. The corresponding recombinant HCVcp was also expressed and purified in Escherichia coli. Mice were immunized either by adjuvanted HCVcp (pluronic acid + protein) or by pCHCORE vector primed/protein boosted immunization regimen. The cellular immune responses (proliferation, In vivo CTL assay and IFN-γ/IL-4 ELISpot) against a strong and dominant H2-d restricted, CD8+-epitopic peptide (C39) (core 39-48; RRGPRLGVRA) of HCVcp were compared in immunized animals. Result: Proper expression of the fused protein by pCHCORE in transiently transfected HEK 293T cells and in the expected size (around 50 kDa) was confirmed by western blotting. The immunization results indicated that the pCHCORE shifted the immune responses pathway to Th1 by enhancing the IFN-γ cytokine level much higher than protein immunization while the proliferative and CTL responses were comparable (or slightly in favor of DNA immunization). Conclusion: Fusion of HBsAg to HCVcp in the context of a DNA vaccine modality could augment Th1-oriented cellular and CTL responses toward a protective epitope, comparable to that of HCVcp (subunit HCV vaccine) immunization.
Collapse
Affiliation(s)
- Maryam Yazdanian
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mehdi Mahdavi
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Motevalli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Hossein Khanahmad
- BCG Research Center, Karaj Research and Production, Pasteur Institute of Iran, Karaj, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Medical School, Tarbiat Moderes University (TMU), Tehran, Iran
| | - Agata Budkowska
- Department of Virology, Unit of Hepacivirus and Innate Immunity, Pasteur Institute, 25/28 Rue du Dr. Roux, Paris 75724, France
| | - Farzin Roohvand
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
van Drunen Littel-van den Hurk S, Hannaman D. Electroporation for DNA immunization: clinical application. Expert Rev Vaccines 2014; 9:503-17. [DOI: 10.1586/erv.10.42] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Weiland O, Ahlén G, Diepolder H, Jung MC, Levander S, Fons M, Mathiesen I, Sardesai NY, Vahlne A, Frelin L, Sällberg M. Therapeutic DNA vaccination using in vivo electroporation followed by standard of care therapy in patients with genotype 1 chronic hepatitis C. Mol Ther 2013; 21:1796-805. [PMID: 23752314 PMCID: PMC3776630 DOI: 10.1038/mt.2013.119] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022] Open
Abstract
Clearance of infections caused by the hepatitis C virus (HCV) correlates with HCV-specific T cell function. We therefore evaluated therapeutic vaccination in 12 patients with chronic HCV infection. Eight patients also underwent a subsequent standard-of-care (SOC) therapy with pegylated interferon (IFN) and ribavirin. The phase I/IIa clinical trial was performed in treatment naive HCV genotype 1 patients, receiving four monthly vaccinations in the deltoid muscles with 167, 500, or 1,500 μg codon-optimized HCV nonstructural (NS) 3/4A-expressing DNA vaccine delivered by in vivo electroporation (EP). Enrollment was done with 2 weeks interval between patients for safety reasons. Treatment was safe and well tolerated. The vaccinations significantly improved IFN-γ-producing responses to HCV NS3 during the first 6 weeks of therapy. Five patients experienced 2-10 weeks 0.6-2.4 log10 reduction in serum HCV RNA. Six out of eight patients starting SOC therapy within 1-30 months after the last vaccine dose were cured. This first-in-man therapeutic HCV DNA vaccine study with the vaccine delivered by in vivo EP shows transient effects in patients with chronic HCV genotype 1 infection. The interesting result noted after SOC therapy suggests that therapeutic vaccination can be explored in a combination with SOC treatment.
Collapse
Affiliation(s)
- Ola Weiland
- Division of Infectious Diseases, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Gustaf Ahlén
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helmut Diepolder
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Maria-Christina Jung
- Department of Medicine, Ludwig-Maximilian University, Munich, Germany
- ImmuSystems, Munich, Germany
| | - Sepideh Levander
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Michael Fons
- Inovio Pharmaceuticals, Blue Bell, Pennsylvania, USA
| | | | | | - Anders Vahlne
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
- ChronTech Pharma AB, Huddinge, Sweden
| | - Lars Frelin
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Matti Sällberg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
8
|
Abstract
Introduction With 3 – 4 million new infections occurring annually, hepatitis C virus (HCV) is a major global health problem. There is increasing evidence to suggest that HCV will be highly amenable to a vaccine approach, and despite advances in treatment, a vaccine remains the most cost-effective and realistic means to significantly reduce the worldwide mortality and morbidity associated with persistent HCV infection. Areas covered In this review we discuss immune responses to HCV during natural infection, and describe how they may inform vaccine design. We introduce the current candidate vaccines for HCV and compare how these fare against the expected requirements of an effective prophylactic HCV vaccine in relation to the breadth, functionality, magnitude and phenotype of the vaccine-induced immune response. Expert opinion Although the correlates of immune protection against HCV are not completely defined, we now have vaccine technologies capable of inducing HCV-specific adaptive immune responses to an order of magnitude that are associated with protection during natural infection. The challenge next is to i) establish well-characterised cohorts of people at risk of HCV infection for vaccine efficacy testing and ii) to better understand the correlates of protection in natural history studies. If these can be achieved, a vaccine against HCV appears a realistic goal.
Collapse
Affiliation(s)
- Leo Swadling
- University of Oxford, NDM and Jenner Institute, Peter Medawar Building, South Parks Road, Oxford, OX1 3SY, UK
| | | | | |
Collapse
|
9
|
Alvarez-Lajonchere L, Dueñas-Carrera S. Complete definition of immunological correlates of protection and clearance of hepatitis C virus infection: a relevant pending task for vaccine development. Int Rev Immunol 2012; 31:223-42. [PMID: 22587022 DOI: 10.3109/08830185.2012.680552] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) infects approximately 3% of global population. This pathogen is one of the main causes of chronic viral hepatitis, cirrhosis, and liver cancer, as well as the principal reason for liver transplant in Western countries. Therapy against HCV infection is effective in only half of treated patients. There is no vaccine available against HCV. Some vaccine candidates have reached the clinical trials but several factors, including the incomplete definition of immunological correlates of protection and treatment-related clearance have slowed down vaccine development. Precisely, the present review discusses the state of the art in the establishment of parameters related with immunity against HCV. Validity and limitations of the information accumulated from chimpanzees and other animal models, analysis of studies in humans infected with HCV, and relevance of aspects like type, strength, duration, and specificity of immune response related to successful outcome are evaluated in detail. Moreover, the immune responses induced in some clinical trials with vaccine candidates resemble the theoretical immunological correlates, raising questions about the validity of those correlates. When all facts are taken together, complete definition of immunological correlates for protection or treatment-related clearance is an urgent priority. A limited or wrong criterion with respect to this relevant matter might cause incorrect vaccine design and selection of immunization strategies or erroneous clinical evaluation.
Collapse
|
10
|
Khawaja G, Buronfosse T, Jamard C, Abdul F, Guerret S, Zoulim F, Luxembourg A, Hannaman D, Evans CF, Hartmann D, Cova L. In vivo electroporation improves therapeutic potency of a DNA vaccine targeting hepadnaviral proteins. Virology 2012; 433:192-202. [PMID: 22921316 DOI: 10.1016/j.virol.2012.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022]
Abstract
This preclinical study investigated the therapeutic efficacy of electroporation (EP)-based delivery of plasmid DNA (pDNA) encoding viral proteins (envelope, core) and IFN-γ in the duck model of chronic hepatitis B virus (DHBV) infection. Importantly, only DNA EP-therapy resulted in a significant decrease in mean viremia titers and in intrahepatic covalently closed circular DNA (cccDNA) levels in chronic DHBV-carrier animals, compared with standard needle pDNA injection (SI). In addition, DNA EP-therapy stimulated in all virus-carriers a humoral response to DHBV preS protein, recognizing a broader range of major antigenic regions, including neutralizing epitopes, compared with SI. DNA EP-therapy led also to significant higher intrahepatic IFN-γ RNA levels in DHBV-carriers compared to other groups, in the absence of adverse effects. We provide the first evidence on DNA EP-therapy benefit in terms of hepadnaviral infection clearance and break of immune tolerance in virus-carriers, supporting its clinical application for chronic hepatitis B.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Chronic Disease
- DNA, Circular/genetics
- DNA, Circular/immunology
- Disease Models, Animal
- Ducks
- Electroporation
- Epitopes
- Hepadnaviridae Infections/immunology
- Hepadnaviridae Infections/prevention & control
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/immunology
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Animal/virology
- Immune Tolerance
- Immunity, Humoral
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Plasmids
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viremia/immunology
- Viremia/prevention & control
- Viremia/veterinary
- Viremia/virology
Collapse
|
11
|
Gonzalez-Aseguinolaza G, Prieto J. Gene therapy of liver diseases: a 2011 perspective. Clin Res Hepatol Gastroenterol 2011; 35:699-708. [PMID: 21778133 DOI: 10.1016/j.clinre.2011.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/20/2011] [Indexed: 02/04/2023]
Abstract
Liver diseases including inherited metabolic disorders, chronic viral hepatitis, liver cirrhosis and primary and metastatic liver cancer constitute a formidable health problem because of their high prevalence and the important limitations of current therapies. Gene therapy, a procedure based on the transfer of therapeutic genes to tissues, has been used since the 1990s as a new approach to treating a number of incurable conditions. After a period of lights and shades recent success in treating several devastating diseases like inherited immune deficiency disorders, beta-thalassemia, or inherited blindness appear to herald a new era where gene therapy can be listed among standard therapy options for a wide variety of human conditions. In this review, we provide information illustrating the potentiality of gene therapy in the management of liver diseases lacking other effective therapies.
Collapse
Affiliation(s)
- Gloria Gonzalez-Aseguinolaza
- Division of Hepatology and Gene Therapy, Centro de Investigación Medica Aplicada and Clinica Universitaria, University of Navarra, Pamplona, Spain
| | | |
Collapse
|
12
|
Buonaguro L, Wang E, Tornesello ML, Buonaguro FM, Marincola FM. Systems biology applied to vaccine and immunotherapy development. BMC SYSTEMS BIOLOGY 2011; 5:146. [PMID: 21933421 PMCID: PMC3191374 DOI: 10.1186/1752-0509-5-146] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/20/2011] [Indexed: 02/08/2023]
Abstract
Immunotherapies, including vaccines, represent a potent tool to prevent or contain disease with high morbidity or mortality such as infections and cancer. However, despite their widespread use, we still have a limited understanding of the mechanisms underlying the induction of protective immune responses.Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of molecules; among those is a growing appreciation for the role the innate immunity (i.e. pathogen recognition receptors - PRRs) plays in determining the nature and duration (immune memory) of adaptive T and B cell immunity. The complex network of interactions between immune manipulation of the host (immunotherapy) on one side and innate and adaptive responses on the other might be fully understood only employing the global level of investigation provided by systems biology. In this framework, the advancement of high-throughput technologies, together with the extensive identification of new genes, proteins and other biomolecules in the "omics" era, facilitate large-scale biological measurements. Moreover, recent development of new computational tools enables the comprehensive and quantitative analysis of the interactions between all of the components of immunity over time. Here, we review recent progress in using systems biology to study and evaluate immunotherapy and vaccine strategies for infectious and neoplastic diseases. Multi-parametric data provide novel and often unsuspected mechanistic insights while enabling the identification of common immune signatures relevant to human investigation such as the prediction of immune responsiveness that could lead to the improvement of the design of future immunotherapy trials. Thus, the paradigm switch from "empirical" to "knowledge-based" conduct of medicine and immunotherapy in particular, leading to patient-tailored treatment.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncology, Dept of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Via Mariano Semmola 142, 80131 Napoli, Italy.
| | | | | | | | | |
Collapse
|
13
|
Halliday J, Klenerman P, Barnes E. Vaccination for hepatitis C virus: closing in on an evasive target. Expert Rev Vaccines 2011; 10:659-72. [PMID: 21604986 DOI: 10.1586/erv.11.55] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) infects more than 170 million people globally and is a leading cause of liver cirrhosis, transplantation and hepatocellular carcinoma. Current gold-standard therapy often fails, has significant side effects in many cases and is expensive. No vaccine is currently available. The fact that a significant proportion of infected people spontaneously control HCV infection in the setting of an appropriate immune response suggests that a vaccine for HCV is a realistic goal. A comparative analysis of infected people with distinct clinical outcomes has enabled the characterization of many important innate and adaptive immune processes associated with viral control. It is clear that a successful HCV vaccine will need to exploit and enhance these natural immune defense mechanisms. New HCV vaccine approaches, including peptide, recombinant protein, DNA and vector-based vaccines, have recently reached Phase I/II human clinical trials. Some of these technologies have generated robust antiviral immunity in healthy volunteers and infected patients. The challenge now is to move forward into larger at-risk or infected populations to truly test efficacy.
Collapse
Affiliation(s)
- John Halliday
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
14
|
Abstract
Vaccines represent a potent tool to prevent or contain infectious diseases with high morbidity or mortality. However, despite their widespread use, we still have a limited understanding of the mechanisms underlying the effective elicitation of protective immune responses by vaccines. Recent research suggests that this represents the cooperative action of the innate and adaptive immune systems. Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of molecules, whose list is constantly updated to fill the several empty spaces of this puzzle. The recent development of new technologies and computational tools permits the comprehensive and quantitative analysis of the interactions between all of the components of immunity over time. Here, we review the role of the innate immunity in the host response to vaccine antigens and the potential of systems biology in providing relevant and novel insights in the mechanisms of action of vaccines to improve their design and effectiveness.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncogenesis & AIDS Reference Center, Department of Experimental Oncology, Istituto Nazionale Tumori Fond Pascale, Naples, Italy.
| | | |
Collapse
|