1
|
Hekimoglu ER, Esrefoglu M, Cimen FBK, Pasin Ö, Dedeakayogullari H. Therapeutic Potential of Stromal Vascular Fraction in Enhancing Wound Healing: A Preclinical Study. Aesthetic Plast Surg 2024:10.1007/s00266-024-04554-5. [PMID: 39681692 DOI: 10.1007/s00266-024-04554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND Adipose tissue provides an abundant source of stromal vascular fraction (SVF) cells for immediate administration. It can also give rise to many multipotent adipose-derived stromal cells. SVF is the population of cells obtained from mechanical or enzymatic digestion of lipoaspirate with no necessity for cell culture or expansion. Recently, the heterogeneous cell population found in the SVF gained wide-ranging translational significance in regenerative medicine. METHODS Forty-eight male rats were randomly divided into two main groups, including the control and SVF groups. Each group was further divided into four groups as follows: 0th-, 3rd-, 7th-, and 10th-day groups. A skin excision of 1 × 1 cm covering the epidermis and dermis was performed on the back skin. Just after the wound was created, a subepidermal injection of SVF was applied. SVF was obtained from human adipose tissue using Lipocube SVFTM. On the 0th (1 h after the injections), 3rd, 7th, and 10th days, rats were killed, and skin excisions from the wound areas tissues were performed. Histopathological, biochemical, and western blotting analyses were performed on tissues. RESULTS Our data showed that SVF obtained from a healthy woman improved wound healing in healthy rats. SVF has promoted wound healing mainly because of its antioxidant, antiapoptotic, and fibroblast/myofibroblast stimulating effects. SVF stimulated collagen production and contraction of the wound lips, supporting the closure. CONCLUSIONS Our study provides additional data about the efficacy and pathophysiological and molecular mechanisms of the action of SVF on wound healing in healthy subjects. Our study is an experimental animal study. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
Affiliation(s)
- Emine Rumeysa Hekimoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey.
| | - Mukaddes Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Fatma Bedia Karakaya Cimen
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakıf University, Fatih, Istanbul, Turkey
| | - Özge Pasin
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Huri Dedeakayogullari
- Department of Medical Biochemistry, Faculty of Medicine, Istinye University, Istanbul, Turkey
| |
Collapse
|
2
|
Witono NT, Fauzi A, Bangun K. Autologous fat grafting auxiliary methods in craniofacial deformities: A systematic review and network meta-analysis. J Plast Reconstr Aesthet Surg 2024; 99:377-391. [PMID: 39426253 DOI: 10.1016/j.bjps.2024.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND To increase autologous fat grafting (AFG) volume retention, current advancements focus on adding an auxiliary method to the process. This review aimed to address which auxiliary methods prove to be the best in terms of volume retention outcome. METHODS A comprehensive literature search was performed in five medical databases, including PubMed, Proquest, Scopus, CENTRAL, and ScienceDirect, until March 2024, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines. RESULTS Twenty-six studies were included in this review, and seven studies were included in the network meta-analysis. Reported auxiliary methods include stromal vascular fractions (SVFs) [12.20, 95% confidence intervals (CI) 0.04 to 24.35], adipose tissue-derived stem cells (ADSCs) (24.20, 95% CI 4.14 to 44.26), and platelet-rich plasma (PRP) [24.10, 95% CI -2.68 to 50.88]. When compared with the standard AFG approach, SVFs (p = 0.049) and ADSCs (p = 0.018) were more successful in retaining volume. However, PRP (p = 0.077) was not as effective. The comparison between auxiliary approaches, ADSCs vs PRP (p = 0.994), ADSCs vs SVFs (p = 0.271), and PRP vs SVF (p = 0.383), did not show any significant differences. Subgroup analysis revealed that the use of volumetric measuring methods has a substantial impact on the reported volume retention (p < 0.0001). CONCLUSION Enhanced volume retention can be attained with the utilization of SVF and ADSCs auxiliary methods in comparison to AFG, with or without PRP. Given the insignificant differences between SVF and ADSC, along with the greater complexity of the ADSC process, we recommend for the preferable use of SVF.
Collapse
Affiliation(s)
- Nathanael Tendean Witono
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia.
| | - Ahmad Fauzi
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Kristaninta Bangun
- Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia; Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
3
|
Haririan Y, Asefnejad A. Biopolymer hydrogels and synergistic blends for tailored wound healing. Int J Biol Macromol 2024; 279:135519. [PMID: 39260639 DOI: 10.1016/j.ijbiomac.2024.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Biopolymers have a transformative role in wound repair due to their biocompatibility, ability to stimulate collagen production, and controlled drug and growth factor delivery. This article delves into the biological parameters critical to wound healing emphasizing how combinations of hydrogels with reparative properties can be strategically designed to create matrices that stimulate targeted cellular responses at the wound site to facilitate tissue repair and recovery. Beyond a detailed examination of various biopolymer types and their functionalities in wound dressings acknowledging that the optimal choice depends on the specific wound type and application, this evaluation provides concepts for developing synergistic biopolymer blends to create next-generation dressings with enhanced efficiencies. Furthermore, the incorporation of therapeutic agents such as medications and wound healing accelerators into dressings to enhance their efficacy is examined. These agents often possess desirable properties such as antibacterial activity, antioxidant effects, and the ability to promote collagen synthesis and tissue regeneration. Finally, recent advancements in conductive hydrogels are explored, highlighting their capabilities in treatment and real-time wound monitoring. This comprehensive resource emphasizes the importance of optimizing ingredient efficiency besides assisting researchers in selecting suitable materials for personalized wound dressings, ultimately leading to more sophisticated and effective wound management strategies.
Collapse
Affiliation(s)
- Yasamin Haririan
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Yang Z, Yang M, Rui S, Hao W, Wu X, Guo L, Armstrong DG, Yang C, Deng W. Exosome-based cell therapy for diabetic foot ulcers: Present and prospect. Heliyon 2024; 10:e39251. [PMID: 39498056 PMCID: PMC11532254 DOI: 10.1016/j.heliyon.2024.e39251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/17/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Diabetic foot ulcers (DFUs) represent a serious complication of diabetes with high incidence, requiring intensive treatment, prolonged hospitalization, and high costs. It poses a severe threat to the patient's life, resulting in substantial burdens on patient and healthcare system. However, the therapy of DFUs remains challenging. Therefore, exploring cell-free therapies for DFUs is both critical and urgent. Exosomes, as crucial mediators of intercellular communication, have been demonstrated potentially effective in anti-inflammation, angiogenesis, cell proliferation and migration, and collagen deposition. These functions have been proven beneficial in all stages of diabetic wound healing. This review aims to summarize the role and mechanisms of exosomes from diverse cellular sources in diabetic wound healing research. In addition, we elaborate on the challenges for clinical application, discuss the advantages of membrane vesicles as exosome mimics in wound healing, and present the therapeutic potential of exosomes and their mimetic vesicles for future clinical applications.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Mengling Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Shunli Rui
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Wei Hao
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Xiaohua Wu
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Lian Guo
- Department of Endocrinology, School of Medicine, Chongqing University Three Gorges Central Hospital, Chongqing, 404000, China
| | - David G. Armstrong
- Department of Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Cheng Yang
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| | - Wuquan Deng
- Department of Endocrinology and Metabolism, School of Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, 400014, China
| |
Collapse
|
5
|
Gandolfi S, Sanouj A, Chaput B, Coste A, Sallerin B, Varin A. The role of adipose tissue-derived stromal cells, macrophages and bioscaffolds in cutaneous wound repair. Biol Direct 2024; 19:85. [PMID: 39343924 PMCID: PMC11439310 DOI: 10.1186/s13062-024-00534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Skin healing is a complex and dynamic physiological process that follows mechanical alteration of the skin barrier. Under normal conditions, this complex process can be divided into at least three continuous and overlapping phases: an inflammatory reaction, a proliferative phase that leads to tissue reconstruction and a phase of tissue remodeling. Macrophages critically contribute to the physiological cascade for tissue repair. In fact, as the inflammatory phase progresses, macrophage gene expression gradually shifts from pro-inflammatory M1-like to pro-resolutive M2-like characteristics, which is critical for entry into the repair phase. A dysregulation in this macrophage' shift phenotype leads to the persistence of the inflammatory phase. Mesenchymal stromal cells and specifically the MSC-derived from adipose tissue (ADSCs) are more and more use to treat inflammatory diseases and several studies have demonstrated that ADSCs promote the wound healing thanks to their neoangiogenic, immunomodulant and regenerative properties. In several studies, ADSCs and macrophages have been injected directly into the wound bed, but the delivery of exogenous cells directly to the wound raise the problem of cell engraftment and preservation of pro-resolutive phenotype and viability of the cells. Complementary approaches have therefore been explored, such as the use of biomaterials enriched with therapeutic cell to improve cell survival and function. This review will present a background of the current scaffold models, using adipose derived stromal-cells and macrophage as therapeutic cells for wound healing, through a discussion on the potential impact for future applications in skin regeneration. According to the PRISMA statement, we resumed data from investigations reporting the use ADSCs and bioscaffolds and data from macrophages behavior with functional biomaterials in wound healing models. In the era of tissue engineering, functional biomaterials, that can maintain cell delivery and cellular viability, have had a profound impact on the development of dressings for the treatment of chronic wounds. Promising results have been showed in pre-clinical reports using ADSCs- and macrophages-based scaffolds to accelerate and to improve the quality of the cutaneous healing.
Collapse
Affiliation(s)
- S Gandolfi
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France.
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France.
| | - A Sanouj
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Chaput
- Department of Plastic and Reconstructive Surgery, Toulouse University Hospital, 1 Av. Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Coste
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| | - B Sallerin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
- Department of Pharmacology, Toulouse University Hospital, 1 Av Pr.Jean Poulhès, 31400, Toulouse, France
| | - A Varin
- FLAMES Team, Restore Institute, Inserm, Toulouse III Paul Sabatier University, 4Bis Av. H. Curien, 31100, Toulouse, France
| |
Collapse
|
6
|
El-Qashty R, Youssef J, Hany E. The role of erythropoietin-loaded hydrogel versus adipose derived stem cell secretome in the regeneration of tongue defects. BMC Oral Health 2024; 24:1109. [PMID: 39294639 PMCID: PMC11411902 DOI: 10.1186/s12903-024-04835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Tongue defects have several etiologies and significantly affect the quality of life. This study was conducted to compare the regenerative potential of erythropoietin (EPO)-loaded hydrogel and adipose derived stem cell (ADSC) secretome on tongue dorsum defects focusing on the role of anti-inflammatory M2 macrophage phenotype. METHODS Rats were subjected to induction of mechanical circular defects on the dorsal surface of the tongue, then divided into three groups; Group I (control): received 0.1 ml phosphate buffered saline, Group II (EPO): received 5000 U/kg EPO-hydrogel, and Group III (ADSC-Secretome): received 0.1 ml ADSC-Secretome. Treatments were injected circumferentially around wound margins after induction. Seven and fourteen days after treatment, specimens were obtained and processed for histological and immunohistochemical staining followed by the relevant histomorphometric and statistical analyses. RESULTS Seven days after treatment, groups II and III presented defects with some epithelial regeneration at the lateral margins, while the center of the defect showed granulation tissue with much inflammatory cells. The base of the defects showed some muscle fibers and new blood vessels, however group III showed more enhanced neovascularization. Fourteen days after therapeutic intervention, group II defects were completely covered with epithelium showing a thin keratin layer with regular rete pegs interdigitating with the underlying connective tissue papillae, but tongue papillae were not restored. Group III expressed much better healing with developing filiform papillae. The connective tissue showed more vascularity and well-arranged muscle bundles. Both treated groups showed a significant decrease in defect depth and significant increase in anti-inflammatory macrophages compared to the control group at both time intervals, however there was no significant difference between the two treated groups. CONCLUSION Both treatments showed promising and comparable results in the treatment of tongue defects reducing inflammation and restoring tongue histological architecture with significant upregulation of M2 macrophage.
Collapse
Affiliation(s)
- Rana El-Qashty
- Oral Biology department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
| | - Jilan Youssef
- Periodontology, Diagnosis and Oral Radiology Department, Faculty of Dentistry, Oral Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Hany
- Oral Biology department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Kotani T, Saito T, Suzuka T, Matsuda S. Adipose-derived mesenchymal stem cell therapy for connective tissue diseases and complications. Inflamm Regen 2024; 44:35. [PMID: 39026275 PMCID: PMC11264739 DOI: 10.1186/s41232-024-00348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Mesenchymal stem cells (MSCs) may be effective in treating connective tissue disease and associated organ damage, leveraging their anti-inflammatory and immunoregulatory effects. Moreover, MSCs may possess the ability to produce antiapoptotic, proliferative, growth, angiogenic, and antifibrotic factors. Among MSCs, adipose-derived MSCs (ASCs) stand out for their relative ease of harvesting and abundance. Additionally, studies have indicated that compared with bone marrow-derived MSCs, ASCs have superior immunomodulatory, proangiogenic, antiapoptotic, and antioxidative properties. However, relatively few reviews have focused on the efficacy of ASC therapy in treating connective tissue disease (CTD) and interstitial lung disease (ILD). Therefore, this review aims to evaluate evidence from preclinical studies that investigate the effectiveness of MSC therapy, specifically ASC therapy, in managing CTD and ILD. Moreover, we explore the outcomes of documented clinical trials. We also introduce an innovative approach involving the utilization of pharmacologically primed ASCs in the CTD model to address the current challenges associated with ASC therapy.
Collapse
Affiliation(s)
- Takuya Kotani
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan.
| | - Takashi Saito
- Department of Legal Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Takayasu Suzuka
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| | - Shogo Matsuda
- Department of Internal Medicine (IV), Division of Rheumatology, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
8
|
Alessandri Bonetti M, Piccolo NS, Rubin JP, Egro FM. Fat Grafting and Regenerative Medicine in Burn Care. Clin Plast Surg 2024; 51:435-443. [PMID: 38789152 DOI: 10.1016/j.cps.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Regenerative therapies such as fat grafting and Platelet Rich Plasma (PRP) have emerged as new options to tackle burn-related injuries and their long-term sequelae. Fat grafting is able to promote wound healing by regulating the inflammatory response, stimulating angiogenesis, favoring the remodeling of the extracellular matrix, and enhancing scar appearance. PRP can enhance wound healing by accelerating stages including hemostasis and re-epithelization. It can improve scar quality and complement fat grafting procedures. Their cost-effectiveness, minimal invasiveness, and promising results observed in the literature have made these tools as therapeutic candidates. The current evidence on fat grafting and PRP in acute and reconstructive burns is described and discussed in this study.
Collapse
Affiliation(s)
| | - Nelson S Piccolo
- Division of Plastic Surgery, Pronto Socorro Para Queimaduras, Brazil
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francesco M Egro
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Hirakawa T, Nakabayashi K, Ito N, Hata K, Imi S, Shibata M, Urushiyama D, Miyata K, Yotsumoto F, Yasunaga S, Baba T, Miyamoto S. Transwell Culture with Adipose Tissue-Derived Stem Cells and Fertilized Eggs Mimics the In Vivo Development of Fertilized Eggs to Blastocysts in the Fallopian Tube: An Animal Study. Antioxidants (Basel) 2024; 13:704. [PMID: 38929143 PMCID: PMC11200376 DOI: 10.3390/antiox13060704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Many countries, including Japan, are experiencing declining birth rates. Assisted reproductive technologies have consistently demonstrated good results in resolving infertility. Although the development of fertilized eggs into blastocysts has been recognized as a crucial step in assisted reproductive technologies, the involved mechanisms are currently unclear. Here, we established a new culture system for the in vitro development of fertilized eggs into blastocysts. In the Transwell culture system, the rate of blastocysts hatching from fertilized eggs cultured with adipose-derived stem cells (ASCs) was significantly higher than that of blastocysts cultured only with fertilized eggs. Gene ontology analysis revealed that the developed blastocysts displayed essential gene expression patterns in mature blastocysts. Additionally, when cultured with 3rd-passage ASCs, the developed blastocysts expressed the core genes for blastocyst maturation and antioxidant properties compared to those cultured only with fertilized eggs or cultured with 20th-passage ASCs. These results suggest that the Transwell culture system may imitate the in vivo tubal culture state for fertilized eggs. Exosomes derived from stem cells with stemness potential play a powerful role in the development of blastocysts from fertilized eggs. Additionally, the exosomes expressed specific microRNAs; therefore, the Transwell culture system resulted in a higher rate of pregnancy. In future, the extraction of their own extracellular vesicles from the culture medium might contribute to the development of novel assisted reproductive technologies.
Collapse
Affiliation(s)
- Toyofumi Hirakawa
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.N.); (N.I.); (K.H.)
| | - Noriko Ito
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.N.); (N.I.); (K.H.)
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan; (K.N.); (N.I.); (K.H.)
| | - Shiori Imi
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Mami Shibata
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Daichi Urushiyama
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Kohei Miyata
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Fusanori Yotsumoto
- Department of Obstetrics & Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan; (T.H.); (S.I.); (M.S.); (D.U.); (K.M.); (F.Y.)
| | - Shin’ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan;
| | - Tsukasa Baba
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Morioka 028-3694, Japan;
| | - Shingo Miyamoto
- Department of Obstetrics & Gynecology, School of Medicine, Iwate Medical University, Morioka 028-3694, Japan;
- Cybele Corporation Limited, 2-128-14 Sugukita, Kasugashi 816-0864, Japan
| |
Collapse
|
10
|
Mormone E, Cisternino A, Capone L, Caradonna E, Sbarbati A. The Model of Interstitial Cystitis for Evaluating New Molecular Strategies of Interstitial Regeneration in Humans. Int J Mol Sci 2024; 25:2326. [PMID: 38397003 PMCID: PMC10889234 DOI: 10.3390/ijms25042326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Given the recent evidence in the clinical application of regenerative medicine, mostly on integumentary systems, we focused our interests on recent bladder regeneration approaches based on mesenchymal stem cells (MSCs), platelet-rich plasma (PRP), and hyaluronic acid (HA) in the treatment of interstitial cystitis/bladder pain syndrome (IC/BPS) in humans. IC/BPS is a heterogeneous chronic disease with not-well-understood etiology, characterized by suprapubic pain related to bladder filling and urothelium dysfunction, in which the impairment of immunological processes seems to play an important role. The histopathological features of IC include ulceration of the mucosa, edema, denuded urothelium, and increased detection of mast cells and other inflammatory cells. A deeper understanding of the molecular mechanism underlying this disease is essential for the selection of the right therapeutic approach. In fact, although various therapeutic strategies exist, no efficient therapy for IC/BPS has been discovered yet. This review gives an overview of the clinical and pathological features of IC/BPS, with a particular focus on the molecular pathways involved and a special interest in the ongoing few investigational therapies in IC/BPS, which use new regenerative medicine approaches, and their synergetic combination. Good knowledge of the molecular aspects related to stem cell-, PRP-, and biomaterial-based treatments, as well as the understanding of the molecular mechanism of this pathology, will allow for the selection of the right and best use of regenerative approaches of structures involving connective tissue and epithelia, as well as in other diseases.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Intitute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Antonio Cisternino
- Santa Maria di Bari Hospital, Via Antonio de Ferraris 22, 70124 Bari, Italy;
| | - Lorenzo Capone
- Department of Urology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy;
| | | | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement Sciences, Human Anatomy and Histology Section, University of Verona, 37129 Verona, Italy;
| |
Collapse
|
11
|
Akbari F, Hadibarhaghtalab M, Parvar SY, Dehghani S, Namazi MR. Toward facial rejuvenation; A clinical trial to assess the efficacy of nano fat grafting on wrinkles. J Cosmet Dermatol 2024; 23:600-606. [PMID: 37822183 DOI: 10.1111/jocd.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION With increasing age, patients' facial volume decrease. For this reason, nano fat grafting has recently gained popularity as adjunctive treatment to facial rejuvenation procedures. However, few quantitative studies have been conducted to investigate the impact of nano fat on facial wrinkles. AIMS In the present study, authors aim to investigate the therapeutic effect of intradermal injection of nano fat on fine facial wrinkles and assess their changes over 7 months of follow-up. METHODS In this randomized trial, 15 patients with fine facial wrinkles were enrolled. The fat was harvested from the abdomen and processed into nano fat. Nano fat was injected into the facial wrinkles intradermally with a needle of 27 gauge. The patients were evaluated before and 7 months postinjection utilizing Visio face 1000D (CK electronic, manufactured in Germany); and four parameters of wrinkles (area, volume, depth, and percent area) were evaluated before and after the nano fat injection. RESULTS Our evaluation with Visio face showed that nano fat injection was significantly reduced the volume, area, depth, and percent area of wrinkles after 7 months of follow-up without serious long-lasting adverse effects. Moreover, wrinkles with higher percent area, depth and volume loss show greater improvement after the treatment. Our results also indicate that males and females equally benefit from this treatment except for the percent area parameter that was improved more significantly in male patients. CONCLUSION Our study showed that intradermal injection of nano fat significantly decreases the volume, area, depth, and percent area of fine facial wrinkles. Further quantitative studies with control groups and larger sample sizes are required.
Collapse
Affiliation(s)
- Farzaneh Akbari
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyedeh Yasamin Parvar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, Shiraz University of medical sciences, Shiraz, Iran
| | - Sara Dehghani
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namazi
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
12
|
Park JS, Kim DY, Hong HS. FGF2/HGF priming facilitates adipose-derived stem cell-mediated bone formation in osteoporotic defects. Heliyon 2024; 10:e24554. [PMID: 38304814 PMCID: PMC10831751 DOI: 10.1016/j.heliyon.2024.e24554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Aims The activity of adipose-derived stem cells (ADSCs) is susceptible to the physiological conditions of the donor. Therefore, employing ADSCs from donors of advanced age or with diseases for cell therapy necessitates a strategy to enhance therapeutic efficacy before transplantation. This study aims to investigate the impact of supplementing Fibroblast Growth Factor 2 (FGF2) and Hepatocyte Growth Factor (HGF) on ADSC-mediated osteogenesis under osteoporotic conditions and to explore the underlying mechanisms of action. Main methods Adipose-derived stem cells (ADSCs) obtained from ovariectomized (OVX) rats were cultured ex vivo. These cells were cultured in an osteogenic medium supplemented with FGF2 and HGF and subsequently autologously transplanted into osteoporotic femur defects using Hydroxyapatite-Tricalcium Phosphate. The assessment of bone formation was conducted four weeks post-transplantation. Key findings Osteoporosis detrimentally affects the viability and osteogenic differentiation potential of ADSCs, often accompanied by a deficiency in FGF2 and HGF signaling. However, priming with FGF2 and HGF facilitated the formation of immature osteoblasts from OVX ADSCs in vitro, promoting the expression of osteoblastogenic proteins, including Runx-2, osterix, and ALP, during the early phase of osteogenesis. Furthermore, FGF2/HGF priming augmented the levels of VEGF and SDF-1α in the microenvironment of OVX ADSCs under osteogenic induction. Importantly, transplantation of OVX ADSCs primed with FGF2/HGF for 6 days significantly enhanced bone formation compared to non-primed cells. The success of bone regeneration was confirmed by the expression of type-1 collagen and osteocalcin in the bone tissue of the deficient area. Significance Our findings corroborate that priming with FGF2/HGF can improve the differentiation potential of ADSCs. This could be applied in autologous stem cell therapy for skeletal disease in the geriatric population.
Collapse
Affiliation(s)
- Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Do Young Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, South Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, South Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, 02447, South Korea
| |
Collapse
|
13
|
Pourhashemi E, Amini A, Ahmadi H, Ahrabi B, Mostafavinia A, Omidi H, Asadi R, Hajihosseintehrani M, Rahmannia M, Fridoni M, Chien S, Bayat M. Photobiomodulation and conditioned medium of adipose-derived stem cells for enhancing wound healing in rats with diabetes: an investigation on the proliferation phase. Lasers Med Sci 2024; 39:46. [PMID: 38270723 DOI: 10.1007/s10103-024-03974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
This investigation tried to evaluate the combined and solo effects of photobiomodulation (PBM) and conditioned medium derived from human adipose tissue-derived stem cells (h-ASC-CM) on the inflammatory and proliferative phases of an ischemic infected delayed healing wound model (IIDHWM) in rats with type I diabetes mellitus (TIDM). The present investigation consisted of four groups: group 1 served as the control, group 2 treated with h-ASC-CM, group 3 underwent PBM treatment, and group 4 received a combination of h-ASC-CM and PBM. Clinical and laboratory assessments were conducted on days 4 and 8. All treatment groups exhibited significantly higher wound strength than the group 1 (p = 0.000). Groups 4 and 3 demonstrated significantly greater wound strength than group 2 (p = 0.000). Additionally, all therapeutic groups showed reduced methicillin -resistant Staphylococcus aureus (MRSA) in comparison with group 1 (p = 0.000). While inflammatory reactions, including neutrophil and macrophage counts, were significantly lower in all therapeutic groups rather than group 1 on days 4 and 8 (p < 0.01), groups 4 and 3 exhibited superior results compared to group 2 (p < 0.01). Furthermore, proliferative activities, including fibroblast and new vessel counts, as well as the measurement of new epidermal and dermal layers, were significantly increased in all treatment groups on 4 and 8 days after the surgery (p < 0.001). At the same times, groups 4 and 3 displayed significantly higher proliferative activities compared to group 2 (p < 0.001). The treatment groups exhibited significantly higher mast cell counts and degranulation phenotypes in comparison with the group 1 on day 4 (p < 0.05). The treatment groups showed significantly lower mast cell counts and degranulation phenotypes than group 1 on day 8 (p < 0.05).The combined and individual application of h-ASC-CM and PBM remarkably could accelerate the proliferation phase of wound healing in the IIDHWM for TIDM in rats, as indicated by improved MRSA control, wound strength, and stereological evaluation. Furthermore, the combination of h-ASC-CM and PBM demonstrated better outcomes compared to the individual application of either h-ASC-CM or PBM alone.
Collapse
Affiliation(s)
- Erfan Pourhashemi
- School of Medicine, Shahroud University of Medical Sciences, Shahrud, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Ahrabi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Omidi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Robabeh Asadi
- Department of Paramedicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Hajihosseintehrani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rahmannia
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadjavad Fridoni
- Department of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| | - Mohammad Bayat
- Department of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA.
| |
Collapse
|
14
|
Asadi R, Mostafavinia A, Amini A, Ahmadi H, Ahrabi B, Omidi H, Pourhashemi E, Hajihosseintehrani M, Rezaei F, Mohsenifar Z, Chien S, Bayat M. Acceleration of a delayed healing wound repair model in diabetic rats by additive impacts of photobiomodulation plus conditioned medium of adipose-derived stem cells. J Diabetes Metab Disord 2023; 22:1551-1560. [PMID: 37975122 PMCID: PMC10638220 DOI: 10.1007/s40200-023-01285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/17/2023] [Indexed: 11/19/2023]
Abstract
Purpose This study aimed to investigate the effects of photobiomodulation (PBM) and conditioned medium (CM) derived from human adipose-derived stem cells (h-ASCs), both individually and in combination, on the maturation stage of an ischemic infected delayed healing wound model (IIDHWM) in type I diabetic (TIDM) rats. Methods The study involved the extraction of h-ASCs from donated fat, assessment of their immunophenotypic markers, cell culture, and extraction and concentration of CM from cultured 1 × 10^6 h-ASCs. TIDM was induced in 24 male adult rats, divided into four groups: control, CM group, PBM group (80 Hz, 0.2 J/cm2, 890 nm), and rats receiving both CM and PBM. Clinical and laboratory evaluations were conducted on days 4, 8, and 16, and euthanasia was performed using CO2 on day 16. Tensiometrical and stereological examinations were carried out using two wound samples from each rat. Results Across all evaluated factors, including wound closure ratio, microbiological, tensiometrical, and stereological parameters, similar patterns were observed. The outcomes of CM + PBM, PBM, and CM treatments were significantly superior in all evaluated parameters compared to the control group (p = 0.000 for all). Both PBM and CM + PBM treatments showed better tensiometrical and stereological results than CM alone (almost all, p = 0.000), and CM + PBM outperformed PBM alone in almost all aspects (p = 0.000). Microbiologically, both CM + PBM and PBM exhibited fewer colony-forming units (CFU) than CM alone (both, p = 0.000). Conclusion PBM, CM, and CM + PBM interventions substantially enhanced the maturation stage of the wound healing process in IIDHWM of TIDM rats by mitigating the inflammatory response and reducing CFU count. Moreover, these treatments promoted new tissue formation in the wound bed and improved wound strength. Notably, the combined effects of CM + PBM surpassed the individual effects of CM and PBM. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01285-3.
Collapse
Affiliation(s)
- Robabeh Asadi
- Department of Paramedicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Ahrabi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Omidi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | - Zhaleh Mohsenifar
- Department of Pathology, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville, and Noveratech LLC of Louisville, Louisville, USA
| |
Collapse
|
15
|
Downer M, Berry CE, Parker JB, Kameni L, Griffin M. Current Biomaterials for Wound Healing. Bioengineering (Basel) 2023; 10:1378. [PMID: 38135969 PMCID: PMC10741152 DOI: 10.3390/bioengineering10121378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Wound healing is the body's process of injury recovery. Skin healing is divided into four distinct overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Cell-to-cell interactions mediated by both cytokines and chemokines are imperative for the transition between these phases. Patients can face difficulties in the healing process due to the wound being too large, decreased vascularization, infection, or additional burdens of a systemic illness. The field of tissue engineering has been investigating biomaterials as an alternative for skin regeneration. Biomaterials used for wound healing may be natural, synthetic, or a combination of both. Once a specific biomaterial is selected, it acts as a scaffold for skin regeneration. When the scaffold is applied to a wound, it allows for the upregulation of distinct molecular signaling pathways important for skin repair. Although tissue engineering has made great progress, more research is needed in order to support the use of biomaterials for wound healing for clinical translation.
Collapse
Affiliation(s)
- Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Jennifer B. Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lionel Kameni
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
- Hagey Laboratory for Pediatric Regenerative Medicine, 257 Campus Drive, MC 5148, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Sohrabi K, Ahmadi H, Amini A, Ahrabi B, Mostafavinia A, Omidi H, Mirzaei M, Fadaei Fathabady F, Fridoni M, Rahmannia M, Chien S, Bayat M. Promising improvement in infected Wound Healing in Type two Diabetic rats by Combined effects of conditioned medium of human adipose-derived stem cells plus Photobiomodulation. Lab Anim Res 2023; 39:29. [PMID: 37964303 PMCID: PMC10648630 DOI: 10.1186/s42826-023-00178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND We aimed to examine the accompanying and solo impacts of conditioned medium of human adipose-derived stem cells (h-ASC-COM) and photobiomodulation (PBM) on the maturation stage of an ischemic infected delayed-healing wound model (IIDHWM) of rats with type 2 diabetes (TIIDM). RESULTS Outcomes of the wound closure ratio (WCR) results, tensiometrical microbiological, and stereological assessment followed almost identical patterns. While the outcomes of h-ASC-COM + PBM, PBM only, and h-ASC-COM only regimes were significantly better for all evaluated methods than those of group 1(all, p < 0.001), PBM alone and h-ASC-COM + PBM therapy achieved superior results than h-ASC-COM only (ranged from p = 0.05 to p < 0.001). In terms of tensiometrical and stereological examinations, the results of h-ASC-COM + PBM experienced better results than the PBM only (all, p < 0.001). CONCLUSIONS h-ASC-COM + PBM, PBM, and h-ASC-COM cures expressively accelerated the maturation stage in the wound healing process of IIDHWM with MRSA in TIIDM rats by diminishing the inflammatory reaction, and the microbial flora of MRSA; and increasing wound strength, WCR, number of fibroblasts, and new blood vessels. While the h-ASC-COM + PBM and PBM were more suitable than the effect of h-ASC-COM, the results of h-ASC-COM + PBM were superior to PBM only.
Collapse
Affiliation(s)
- Kaysan Sohrabi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Ahrabi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience, School of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Omidi
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mansooreh Mirzaei
- Department of Anatomy, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Fadaei Fathabady
- Department of Biology and Anatomical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadjavad Fridoni
- Department of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Maryam Rahmannia
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sufan Chien
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA
| | - Mohammad Bayat
- Price Institute of Surgical Research, University of Louisville and Noveratech LLC, Louisville, KY, USA.
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Finocchio L, Zeppieri M, Gabai A, Spadea L, Salati C. Recent Advances of Adipose-Tissue-Derived Mesenchymal Stem Cell-Based Therapy for Retinal Diseases. J Clin Med 2023; 12:7015. [PMID: 38002628 PMCID: PMC10672618 DOI: 10.3390/jcm12227015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With the rapid development of stem cell research in modern times, stem cell-based therapy has opened a new era of tissue regeneration, becoming one of the most promising strategies for currently untreatable retinal diseases. Among the various sources of stem cells, adipose tissue-derived mesenchymal stem cells (ADSCs) have emerged as a promising therapeutic modality due to their characteristics and multiple functions, which include immunoregulation, anti-apoptosis of neurons, cytokine and growth factor secretion, and antioxidative activities. Studies have shown that ADSCs can facilitate the replacement of dying cells, promote tissue remodeling and regeneration, and support the survival and growth of retinal cells. Recent studies in this field have provided numerous experiments using different preclinical models. The aim of our review is to provide an overview of the therapeutic strategies, modern-day clinical trials, experimental models, and potential clinical use of this fascinating class of cells in addressing retinal disorders and diseases.
Collapse
Affiliation(s)
- Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, La Sapienza University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| |
Collapse
|
18
|
Yalçın MB, Bora ES, Erdoğan MA, Çakır A, Erbaş O. The Effect of Adipose-Derived Mesenchymal Stem Cells on Peripheral Nerve Damage in a Rodent Model. J Clin Med 2023; 12:6411. [PMID: 37835055 PMCID: PMC10573691 DOI: 10.3390/jcm12196411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Peripheral nerve damage is a significant clinical problem with limited therapeutic options. Adipose-derived mesenchymal stem cells (ADSCs) have emerged as a promising therapeutic approach due to their regenerative potential. However, the underlying mechanisms by which ADSCs promote peripheral nerve regeneration remain unclear. In this study, we investigated the role of syndecan-1 and heat shock protein 70 (HSP-70) in mediating the regenerative effects of ADSCs on peripheral nerves. ADSCs were characterized and isolated from the adipose tissue of rats. In vitro experiments were conducted to evaluate the ability of ADSCs to secrete syndecan-1 and HSP-70 in response to stress conditions. To evaluate the therapeutic potential of ADSCs, rats with sciatic nerve injuries were treated with ADSCs and assessed for functional recovery, nerve regeneration, and changes in syndecan-1 and HSP-70 levels. Regeneration was evaluated with Electromyography (EMG) histology. The results showed that ADSCs could secrete syndecan-1 and HSP-70 in response to stress conditions. Furthermore, ADSC treatment significantly improved functional recovery and nerve regeneration and increased syndecan-1 and HSP-70 levels in the injured nerve. On the other hand, ADSCs make improvements histologically through the influence of Nerve growth factor (NGF), Malondialdehyde (MDA), and EMG.
Collapse
Affiliation(s)
- Mehmet Burak Yalçın
- Department of Orthopedics and Traumatology, Bahcelievler Memorial Hospital, Istanbul 34180, Turkey;
| | - Ejder Saylav Bora
- Department of Emergency Medicine, Izmir Atatürk Research and Training Hospital, Izmir 35360, Turkey
| | - Mümin Alper Erdoğan
- Department of Physiology, Faculty of Medicine, Izmir Kâtip Çelebi University, Izmir 35620, Turkey;
| | - Adem Çakır
- Department of Emergency Medicine, Çanakkale Mehmet Akif Ersoy State Hospital, Çanakkale 17100, Turkey;
| | - Oytun Erbaş
- Department of Physiology, Demiroğlu Bilim University, Istanbul 34394, Turkey;
| |
Collapse
|
19
|
Hao M, Wang D, Duan M, Kan S, Li S, Wu H, Xiang J, Liu W. Functional drug-delivery hydrogels for oral and maxillofacial wound healing. Front Bioeng Biotechnol 2023; 11:1241660. [PMID: 37600316 PMCID: PMC10434880 DOI: 10.3389/fbioe.2023.1241660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
The repair process for oral and maxillofacial injuries involves hemostasis, inflammation, proliferation, and remodeling. Injury repair involves a variety of cells, including platelets, immune cells, fibroblasts, and various cytokines. Rapid and adequate healing of oral and maxillofacial trauma is a major concern to patients. Functional drug-delivery hydrogels play an active role in promoting wound healing and have shown unique advantages in wound dressings. Functional hydrogels promote wound healing through their adhesive, anti-inflammatory, antioxidant, antibacterial, hemostatic, angiogenic, and re-epithelialization-promoting properties, effectively sealing wounds and reducing inflammation. In addition, functional hydrogels can respond to changes in temperature, light, magnetic fields, pH, and reactive oxygen species to release drugs, enabling precise treatment. Furthermore, hydrogels can deliver various cargos that promote healing, including nucleic acids, cytokines, small-molecule drugs, stem cells, exosomes, and nanomaterials. Therefore, functional drug-delivery hydrogels have a positive impact on the healing of oral and maxillofacial injuries. This review describes the oral mucosal structure and healing process and summarizes the currently available responsive hydrogels used to promote wound healing.
Collapse
Affiliation(s)
- Ming Hao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Mengna Duan
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shaoning Kan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shuangji Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Han Wu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Jingcheng Xiang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weiwei Liu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
20
|
Valtetsiotis K, Valsamakis G, Charmandari E, Vlahos NF. Metabolic Mechanisms and Potential Therapeutic Targets for Prevention of Ovarian Aging: Data from Up-to-Date Experimental Studies. Int J Mol Sci 2023; 24:9828. [PMID: 37372976 DOI: 10.3390/ijms24129828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Female infertility and reproduction is an ongoing and rising healthcare issue, resulting in delaying the decision to start a family. Therefore, in this review, we examine potential novel metabolic mechanisms involved in ovarian aging according to recent data and how these mechanisms may be addressed through new potential medical treatments. We examine novel medical treatments currently available based mostly on experimental stem cell procedures as well as caloric restriction (CR), hyperbaric oxygen treatment and mitochondrial transfer. Understanding the connection between metabolic and reproductive pathways has the potential to offer a significant scientific breakthrough in preventing ovarian aging and prolonging female fertility. Overall, the field of ovarian aging is an emerging field that may expand the female fertility window and perhaps even reduce the need for artificial reproductive techniques.
Collapse
Affiliation(s)
- Konstantinos Valtetsiotis
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Georgios Valsamakis
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Evangelia Charmandari
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| | - Nikolaos F Vlahos
- Second Department of Obstetrics and Gynaecology, Aretaieion University Hospital, National and Kapodistrian University of Athens Medical School, 115 28 Athens, Greece
| |
Collapse
|
21
|
Norahan MH, Pedroza-González SC, Sánchez-Salazar MG, Álvarez MM, Trujillo de Santiago G. Structural and biological engineering of 3D hydrogels for wound healing. Bioact Mater 2023; 24:197-235. [PMID: 36606250 PMCID: PMC9803907 DOI: 10.1016/j.bioactmat.2022.11.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic wounds have become one of the most important issues for healthcare systems and are a leading cause of death worldwide. Wound dressings are necessary to facilitate wound treatment. Engineering wound dressings may substantially reduce healing time, reduce the risk of recurrent infections, and reduce the disability and costs associated. In the path of engineering of an ideal wound dressing, hydrogels have played a leading role. Hydrogels are 3D hydrophilic polymeric structures that can provide a protective barrier, mimic the native extracellular matrix (ECM), and provide a humid environment. Due to their advantages, hydrogels (with different architectural, physical, mechanical, and biological properties) have been extensively explored as wound dressing platforms. Here we describe recent studies on hydrogels for wound healing applications with a strong focus on the interplay between the fabrication method used and the architectural, mechanical, and biological performance achieved. Moreover, we review different categories of additives which can enhance wound regeneration using 3D hydrogel dressings. Hydrogel engineering for wound healing applications promises the generation of smart solutions to solve this pressing problem, enabling key functionalities such as bacterial growth inhibition, enhanced re-epithelialization, vascularization, improved recovery of the tissue functionality, and overall, accelerated and effective wound healing.
Collapse
Affiliation(s)
- Mohammad Hadi Norahan
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Sara Cristina Pedroza-González
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mónica Gabriela Sánchez-Salazar
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
- Departamento de Bioingeniería, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| | - Grissel Trujillo de Santiago
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, NL, 64849, Mexico
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León, CP, 64849, Mexico
| |
Collapse
|
22
|
Huang SJ, Huang CY, Huang YH, Cheng JH, Yu YC, Lai JC, Hung YP, Chang CC, Shiu LY. A novel therapeutic approach for endometriosis using adipose-derived stem cell-derived conditioned medium- A new hope for endometriotic patients in improving fertility. Front Endocrinol (Lausanne) 2023; 14:1158527. [PMID: 37293500 PMCID: PMC10244723 DOI: 10.3389/fendo.2023.1158527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Endometriosis is defined as the growth of endometrial glands and stromal cells in a heterotopic location with immune dysregulation. It usually leads to chronic pelvic pain and subfertility. Although various treatments are available, the recurrence rate remains high. Adipose tissue is an abundant source of multipotent mesenchymal adipose-derived stem cells (ADSCs). ADSCs display effects on not only tissue regeneration, but also immune regulation. Thus, the current study aims to test the effects of ADSCs on the growth of endometriosis. Methods ADSCs isolated from lipoaspiration-generated adipose tissue and their conditioned medium (ADSC-CM) were subjected to quality validation, including karyotyping as well as growth promotion and sterility tests for microbial contamination under Good Tissue Practice and Good Manufacturing Practice regulations. An autologous endometriosis mouse model was established by suturing endometrial tissue to peritoneal wall followed by treating with DMEM/F12 medium, ADSC-CM, ADSCs or ADSC-CM+ADSCs for 28 days. The area of endometriotic cysts and the degree of pelvic adhesion were measured. ICAM-1, VEGF and caspase 3 expression was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry. Moreover, the mice were allowed to mate and deliver. The pregnancy outcomes were recorded. The ADSC-CM was subjected to proteomics analysis with further data mining with Ingenuity Pathway Analysis (IPA). Results Both ADSC-CM and ADSCs passed quality validation. ADSC-CM reduced the area of endometriotic cysts. The inhibition by ADSC-CM was obliterated by adding ADSCs. The presence of ADSCs with or without ADSC-CM increased the peritoneal adhesion. ADSC-CM inhibited ICAM-1 and VEGF mRNA and protein expression, whereas the addition of ADSCs not only did not inhibit by itself, but also blocked the inhibition by ADSC-CM. The resorption rate was reduced by ADSC-CM. The number of live birth/dam and the survival rate of pup at 1 week-old were both increased by ADSC-CM in mice with endometriosis. IPA demonstrated that PTX3 was potentially critical for the inhibition of endometriosis by ADSC-CM due to its anti-inflammatory and antiangiogenic properties as well as its importance in implantation. Conclusion ADSC-CM inhibited endometriosis development and improved pregnancy outcomes in mice. Potential translation to clinical treatment for human endometriosis is expected.
Collapse
Affiliation(s)
- S. Joseph Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL, United States
| | - Chun-Yen Huang
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Hao Huang
- Department of Plastic Surgery, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Ya-Chun Yu
- Department of Obstetrics and Gynecology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jui-Chi Lai
- Cell Therapy Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | | | - Chi-Chang Chang
- Department of Obstetrics and Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Li-Yen Shiu
- Cell Therapy Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
23
|
Wang F, Guo K, Nan L, Wang S, Lu J, Wang Q, Ba Z, Huang Y, Wu D. Kartogenin-loaded hydrogel promotes intervertebral disc repair via protecting MSCs against reactive oxygen species microenvironment by Nrf2/TXNIP/NLRP3 axis. Free Radic Biol Med 2023; 204:128-150. [PMID: 37149010 DOI: 10.1016/j.freeradbiomed.2023.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Intervertebral disc (IVD) degeneration (IDD) and the consequent low back pain present a major medical challenge. Stem cell-based tissue engineering is promising for the treatment of IDD. However, stem cell-based treatment is severely impaired by the increased generation of reactive oxygen species (ROS) in degenerative disc, which can lead to a high level of cell dysfunction and even death. In this study, a kartogenin (KGN)@PLGA-GelMA/PRP composite hydrogel was designed and used as a carrier of ADSCs-based therapies in disc repair. Injectable composite hydrogel act as a carrier for controlled release of KGN and deliver ADSCs to the degenerative disc. The released KGN can stimulate the differentiation of ADSCs into a nucleus pulposus (NP) -like phenotype and boost antioxidant capacity of ADSCs via activating Nrf2/TXNIP/NLRP3 axis. Furthermore, the composite hydrogel combined with ADSCs attenuated the in vivo degeneration of rat IVDs, maintained IVD tissue integrity and accelerated the synthesis of NP-like extracellular matrix. Therefore, the KGN@PLGA-GelMA/PRP composite hydrogel is a promising strategy for stem cell-based therapies of IDD.
Collapse
Affiliation(s)
- Feng Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Kai Guo
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Liping Nan
- Center for Orthopaedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shuguang Wang
- Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Jiawei Lu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qiang Wang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhaoyu Ba
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yufeng Huang
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Desheng Wu
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
24
|
Tao Z, Liu L, Wu M, Wang Q, Wang Y, Xiong J, Xue C. Metformin promotes angiogenesis by enhancing VEGFa secretion by adipose-derived stem cells via the autophagy pathway. Regen Biomater 2023; 10:rbad043. [PMID: 37250977 PMCID: PMC10224801 DOI: 10.1093/rb/rbad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Human adipose tissue-derived stem cell (ADSC) derivatives are cell-free, with low immunogenicity and no potential tumourigenicity, making them ideal for aiding wound healing. However, variable quality has impeded their clinical application. Metformin (MET) is a 5' adenosine monophosphate-activated protein kinase activator associated with autophagic activation. In this study, we assessed the potential applicability and underlying mechanisms of MET-treated ADSC derivatives in enhancing angiogenesis. We employed various scientific techniques to evaluate the influence of MET on ADSC, assess angiogenesis and autophagy in MET-treated ADSC in vitro, and examine whether MET-treated ADSC increase angiogenesis. We found that low MET concentrations exerted no appreciable effect on ADSC proliferation. However, MET was observed to enhance the angiogenic capacity and autophagy of ADSC. MET-induced autophagy was associated with increased vascular endothelial growth factor A production and release, which contributed to promoting the therapeutic efficacy of ADSC. In vivo experiments confirmed that in contrast to untreated ADSC, MET-treated ADSC promoted angiogenesis. Our findings thus indicate that the application of MET-treated ADSC would be an effective approach to accelerate wound healing by promoting angiogenesis at wound sites.
Collapse
Affiliation(s)
| | | | | | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Yuchong Wang
- Correspondence address. E-mail: (Y.W.); (J.X.); (C.X.)
| | - Jiachao Xiong
- Correspondence address. E-mail: (Y.W.); (J.X.); (C.X.)
| | - Chunyu Xue
- Correspondence address. E-mail: (Y.W.); (J.X.); (C.X.)
| |
Collapse
|
25
|
Ra K, Park SC, Lee BC. Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant. Int J Mol Sci 2023; 24:ijms24055053. [PMID: 36902477 PMCID: PMC10002910 DOI: 10.3390/ijms24055053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The recent tendency to delay pregnancy has increased the incidence of age-related infertility, as female reproductive competence decreases with aging. Along with aging, a lowered capacity of antioxidant defense causes a loss of normal function in the ovaries and uterus due to oxidative damage. Therefore, advancements have been made in assisted reproduction to resolve infertility caused by reproductive aging and oxidative stress, following an emphasis on their use. The application of mesenchymal stem cells (MSCs) with intensive antioxidative properties has been extensively validated as a regenerative therapy, and proceeding from original cell therapy, the therapeutic effects of stem cell conditioned medium (CM) containing paracrine factors secreted during cell culture have been reported to be as effective as that of direct treatment of source cells. In this review, we summarized the current understanding of female reproductive aging and oxidative stress and present MSC-CM, which could be developed as a promising antioxidant intervention for assisted reproductive technology.
Collapse
Affiliation(s)
- Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| |
Collapse
|
26
|
Yuan X, Duan X, Enhejirigala, Li Z, Yao B, Song W, Wang Y, Kong Y, Zhu S, Zhang F, Liang L, Zhang M, Zhang C, Kong D, Zhu M, Huang S, Fu X. Reciprocal interaction between vascular niche and sweat gland promotes sweat gland regeneration. Bioact Mater 2023; 21:340-357. [PMID: 36185745 PMCID: PMC9483744 DOI: 10.1016/j.bioactmat.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
|
27
|
The LipoDerm Method for Regeneration and Reconstruction in Plastic Surgery: A Technical Experimental Ex Vivo Note. Med Sci (Basel) 2023; 11:medsci11010016. [PMID: 36810483 PMCID: PMC9944053 DOI: 10.3390/medsci11010016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The combination of adipose-derived stem cells (ASCs) and dermal scaffolds has been shown to be an approach with high potential in soft tissue reconstruction. The addition of dermal templates to skin grafts can increase graft survival through angiogenesis, improve regeneration and healing time, and enhance the overall appearance. However, it remains unknown whether the addition of nanofat-containing ASCs to this construct could effectively facilitate the creation of a multi-layer biological regenerative graft, which could possibly be used for soft tissue reconstruction in the future in a single operation. Initially, microfat was harvested using Coleman's technique, then isolated through the strict protocol using Tonnard's technique. Finally, centrifugation, emulsification, and filtration were conducted to seed the filtered nanofat-containing ASCs onto Matriderm for sterile ex vivo cellular enrichment. After seeding, a resazurin-based reagent was added, and the construct was visualized using two-photon microscopy. Within 1 h of incubation, viable ASCs were detected and attached to the top layer of the scaffold. This experimental ex vivo note opens more dimensions and horizons towards the combination of ASCs and collagen-elastin matrices (i.e., dermal scaffolds) as an effective approach in soft tissue regeneration. The proposed multi-layered structure containing nanofat and dermal template (Lipoderm) may be used, in the future, as a biological regenerative graft for wound defect reconstruction and regeneration in a single operation and can also be combined with skin grafts. Such protocols may optimize the skin graft results by creating a multi-layer soft tissue reconstruction template, leading to more optimal regeneration and aesthetic outcomes.
Collapse
|
28
|
Bellei B, Migliano E, Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp Dermatol 2022; 31:1837-1852. [PMID: 35102608 DOI: 10.1111/exd.14532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Stem cell-mediated therapies in combination with biomaterial and growth factor-based approaches in regenerative medicine are rapidly evolving with increasing application beyond the dermatologic field. Adipose-derived stem cells (ADSCs) are the more frequently used adult stem cells due to their abundance and easy access. In the case of volumetric defects, adipose tissue can take the shape of defects, restoring the volume and enhancing the regeneration of receiving tissue. When regenerative purposes prevail on volume restoration, the stromal vascular fraction (SVF) rich in staminal cells, purified mesenchymal stem cells (MSCs) or their cell-free derivatives grafting are favoured. The therapeutic efficacy of acellular approaches is explained by the fact that a significant part of the natural propensity of stem cells to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines and extracellular matrix components. Therefore, the secretome's ability to modulate multiple targets simultaneously demonstrated preclinical and clinical efficacy in reversing pathological mechanisms of complex conditions such atopic dermatitis (AD), vitiligo, psoriasis, acne and Lichen sclerosus (LS), non-resolving wounds and alopecia. This review analysing both in vivo and in vitro models gives an overview of the clinical relevance of adipose tissue-derivatives such as autologous fat graft, stromal vascular fraction, purified stem cells and secretome for skin disorders application. Finally, we highlighted the major disease-specific limitations and the future perspective in this field.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
29
|
Subhan BS, Ki M, Verzella A, Shankar S, Rabbani PS. Behind the Scenes of Extracellular Vesicle Therapy for Skin Injuries and Disorders. Adv Wound Care (New Rochelle) 2022; 11:575-597. [PMID: 34806432 PMCID: PMC9419953 DOI: 10.1089/wound.2021.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/10/2021] [Indexed: 01/29/2023] Open
Abstract
Significance: Skin wounds and disorders compromise the protective functions of skin and patient quality of life. Although accessible on the surface, they are challenging to address due to paucity of effective therapies. Exogenous extracellular vesicles (EVs) and cell-free derivatives of adult multipotent stromal cells (MSCs) are developing as a treatment modality. Knowledge of origin MSCs, EV processing, and mode of action is necessary for directed use of EVs in preclinical studies and methodical translation. Recent Advances: Nanoscale to microscale EVs, although from nonskin cells, induce functional responses in cutaneous wound cellular milieu. EVs allow a shift from cell-based to cell-free/derived modalities by carrying the MSC beneficial factors but eliminating risks associated with MSC transplantation. EVs have demonstrated striking efficacy in resolution of preclinical wound models, specifically within the complexity of skin structure and wound pathology. Critical Issues: To facilitate comparison across studies, tissue sources and processing of MSCs, culture conditions, isolation and preparations of EVs, and vesicle sizes require standardization as these criteria influence EV types and contents, and potentially determine the induced biological responses. Procedural parameters for all steps preceding the actual therapeutic administration may be the key to generating EVs that demonstrate consistent efficacy through known mechanisms. We provide a comprehensive review of such parameters and the subsequent tissue, cellular and molecular impact of the derived EVs in different skin wounds/disorders. Future Directions: We will gain more complete knowledge of EV-induced effects in skin, and specificity for different wounds/conditions. The safety and efficacy of current preclinical xenogenic applications will favor translation into allogenic clinical applications of EVs as a biologic.
Collapse
Affiliation(s)
- Bibi S. Subhan
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Michelle Ki
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Alexandra Verzella
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Shruthi Shankar
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Piul S. Rabbani
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
30
|
Suzuka T, Kotani T, Saito T, Matsuda S, Sato T, Takeuchi T. Therapeutic effects of adipose-derived mesenchymal stem/stromal cells with enhanced migration ability and hepatocyte growth factor secretion by low-molecular-weight heparin treatment in bleomycin-induced mouse models of systemic sclerosis. Arthritis Res Ther 2022; 24:228. [PMID: 36207753 PMCID: PMC9540693 DOI: 10.1186/s13075-022-02915-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 09/24/2022] [Indexed: 11/29/2022] Open
Abstract
Background Adipose-derived mesenchymal stem cells (ASCs) have gained attention as a new treatment for systemic sclerosis (SSc). Low-molecular-weight heparin (LMWH) enhances cell function and stimulates the production of hepatocyte growth factor (HGF) in a variety of cells. This study investigated the effects of LMWH on the functions of mouse ASCs (mASCs), and the therapeutic effects of mASCs activated with LMWH (hep-mASCs) in mouse models of SSc. Methods The cellular functions of mASCs cultured with different concentrations of LMWH were determined. Mice were divided into four groups: bleomycin (BLM)-induced SSc (BLM-alone), BLM-induced SSc administered with mASCs (BLM-mASC), and BLM-induced SSc administered with mASCs activated with 10 or 100 μg/mL LMWH (BLM-hep-mASC); there were 9 mice per group (n = 9). Skin inflammation and fibrosis were evaluated using histological and biochemical examinations and gene expression levels. Results In vitro assays showed that migration ability and HGF production were significantly higher in hep-mASCs than in mASCs alone. The mRNA expression levels of cell migration factors were significantly upregulated in hep-mASCs compared to those in mASCs alone. The hep-mASCs accumulated in the skin tissues more than mASCs alone. The thickness of skin and hydroxyproline content in BLM-hep-mASC groups were significantly decreased, and the skin mRNA expression levels of interleukin-2, α-smooth muscle actin, transforming growth factor β1, collagen type 1 alpha 1, and tissue inhibitor of metalloproteinase 2 were significantly downregulated compared to those in the BLM-alone group. Conclusions hep-mASCs showed higher anti-inflammatory and anti-fibrotic effects than mASCs alone and may be a promising candidate for SSc treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02915-6.
Collapse
Affiliation(s)
- Takayasu Suzuka
- Division of Rheumatology, Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan
| | - Takuya Kotani
- Division of Rheumatology, Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan.
| | - Takashi Saito
- Department of Legal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan.
| | - Shogo Matsuda
- Division of Rheumatology, Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan
| | - Takako Sato
- Department of Legal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan
| | - Tohru Takeuchi
- Division of Rheumatology, Department of Internal Medicine, Osaka Medical and Pharmaceutical University, Daigaku-Machi 2-7, Takatsuki, Osaka, Japan
| |
Collapse
|
31
|
Li X, Luo S, Chen X, Li S, Hao L, Yang D. Adipose-derived stem cells attenuate acne-related inflammation via suppression of NLRP3 inflammasome. Stem Cell Res Ther 2022; 13:334. [PMID: 35871079 PMCID: PMC9308350 DOI: 10.1186/s13287-022-03007-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Acne is a chronic facial disease caused by Propionibacterium acnes, which proliferates within sebum-blocked skin follicles and increases inflammatory cytokine production. Several therapeutic drugs and products have been proposed to treat acne, yet no single treatment that ensures long-term treatment efficacy for all patients is available. Here, we explored the use of facial autologous fat transplant of adipose-derived stem cells (ADSCs) to dramatically reduce acne lesions. METHODS THP-1 cells were treated with active P. acnes for 24 h at different multiplicities of infection, and alterations in inflammatory factors were detected. To study the effect of THP-1 on inflammasome-related proteins, we first co-cultured ADSCs with THP-1 cells treated with P. acnes and evaluated the levels of these proteins in the supernatant. Further, an acne mouse model injected with ADSCs was used to assess inflammatory changes. RESULTS Propionibacterium acnes-mediated stimulation of THP-1 cells had a direct correlation with the expression of active caspase-1 and interleukin (IL)-1β in an infection-dependent manner. ADSCs significantly reduced the production of IL-1β induced by P. acnes stimulation through the reactive oxygen species (ROS)/Nod-like receptor family pyrin domain-containing 3 (NLRP3)/caspase-1 pathway. The results showed that ADSCs inhibit the skin inflammation induced by P. acnes by blocking the NLRP3 inflammasome via reducing the secretion of IL-1β in vivo. CONCLUSIONS Our findings suggest that ADSCs can alter IL-1β secretion by restricting the production of mitochondria ROS, thereby inhibiting the NLRP3/caspase-1 pathway in P. acnes-induced inflammatory responses. This study indicates that anti-acne therapy can potentially be developed by targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xiaoxi Li
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Rd, NanGang Dist, Harbin, Heilongjiang, China
| | - Sai Luo
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Rd, NanGang Dist, Harbin, Heilongjiang, China
| | - Xinyao Chen
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Rd, NanGang Dist, Harbin, Heilongjiang, China
| | - Shasha Li
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Rd, NanGang Dist, Harbin, Heilongjiang, China
| | - Lijun Hao
- The 1st Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Rd, NanGang Dist, Harbin, Heilongjiang, China.
| | - Dan Yang
- Harbin Medical University, No. 157, BaoJian Rd, NanGang Dist, Harbin, Heilongjiang, China.
| |
Collapse
|
32
|
Schmitz D, Robering JW, Weisbach V, Arkudas A, Ludolph I, Horch RE, Boos AM, Kengelbach-Weigand A. Specific features of ex-obese patients significantly influence the functional cell properties of adipose-derived stromal cells. J Cell Mol Med 2022; 26:4463-4478. [PMID: 35818175 PMCID: PMC9357603 DOI: 10.1111/jcmm.17471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 03/17/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Adipose-derived stromal cells (ADSC) are increasingly used in clinical applications due to their regenerative capabilities. However, ADSC therapies show variable results. This study analysed the effects of specific factors of ex-obese patients on ADSC functions. ADSC were harvested from abdominal tissues (N = 20) after massive weight loss. Patients were grouped according to age, sex, current and maximum body mass index (BMI), BMI difference, weight loss method, smoking and infection at the surgical site. ADSC surface markers, viability, migration, transmigration, sprouting, differentiation potential, cytokine secretion, telomere length and mtDNA copy number were analysed. All ADSC expressed CD73, CD90, CD105, while functional properties differed significantly among patients. A high BMI difference due to massive weight loss was negatively correlated with ADSC proliferation, migration and transmigration, while age, sex or weight loss method had a smaller effect. ADSC from female and younger donors and individuals after weight loss by increase of exercise and diet change had a higher activity. Telomere length, mtDNA copy number, differentiation potential and the secretome did not correlate with patient factors or cell function. Therefore, we suggest that factors such as age, sex, increase of exercise and especially weight loss should be considered for patient selection and planning of regenerative therapies.
Collapse
Affiliation(s)
- Deborah Schmitz
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Jan W Robering
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Arkudas
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ingo Ludolph
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Raymund E Horch
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja M Boos
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Department of Plastic Surgery, Hand Surgery, Burns Center, University Hospital RWTH Aachen University, University Hospital Aachen, Germany
| | - Annika Kengelbach-Weigand
- Laboratory for Tissue-Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
33
|
Wang J, Chen Y, He J, Li G, Chen X, Liu H. Anti-Aging Effect of the Stromal Vascular Fraction/Adipose-Derived Stem Cells in a Mouse Model of Skin Aging Induced by UVB Irradiation. Front Surg 2022; 9:950967. [PMID: 35874134 PMCID: PMC9304656 DOI: 10.3389/fsurg.2022.950967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Adipose-derived stem cells(ADSCs) have been used for anti-photo-aging. But the purification of ADSCs requires in vitro amplification and culture, there is considerable risk of direct treatment for patients. Stromal vascular fraction(SVF) is a biologically and clinically interesting heterogeneous cell population contains ADSCs. There are few reports on anti-aging effects of SVF in photo-aging skin. The present study investigated the anti-aging effect of stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) injection in photo-aging skin. The relationship between the dosage of injection and effect was also discussed. Thirty healthy, 6-week-old, nude rats were randomly divided into the control and experimental groups. The experimental group needing ultraviolet B (UVB) irradiation five days per week, and a duration of 8 weeks. According to different dose regimens of SVF and ADSCs, experiment rats were randomly grouped as the model control group, low-dose (LD) treatment group, middle-dose (MD) treatment group and high-dose (HD) treatment group. At 7 and 28 days post-treatment, specimens were harvested for histological and immunohistochemical analysis. We found that certain concentrations of cells (MD and HD groups) could improve the texture of photoaged skin. Changes in the epidermal cell layer were clearly observed after 7 days of treatment. The epidermal layer becomes thinner and more tender. After 28 days of treatment, the dermal tissue was thickened and the collagen content and proportion were improved. All these indicators showed no significant difference between the same dosages in the two treatment groups. Our results demonstrate that SVF may have anti-aging potential in photo-aging skin and the ADSCs play an important role in SVF. SVF maybe a potential agent for photo-anging skin and the most effective dose of SVF was 106 cells /100 µl/injection point. The proper injection interval may be 1.5 cm.
Collapse
Affiliation(s)
- Jingru Wang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Burn Surgery, First People’s Hospital of Foshan, Foshan, China
| | - Yuanwen Chen
- Department of Burn and Plastic Surgery, The People's Hospital of Baoan shenzhen, Shenzhen, China
| | - Jia He
- Department of Burn Surgery, First People’s Hospital of Foshan, Foshan, China
| | - Guiqiang Li
- Department of Burn Surgery, First People’s Hospital of Foshan, Foshan, China
| | - Xiaodong Chen
- Department of Burn Surgery, First People’s Hospital of Foshan, Foshan, China
- Correspondence: Xiaodong Chen Hongwei Liu
| | - Hongwei Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Correspondence: Xiaodong Chen Hongwei Liu
| |
Collapse
|
34
|
Liu M, Chen Y, Zhu Q, Tao J, Tang C, Ruan H, Wu Y, Loh XJ. Antioxidant Thermogelling Formulation for Burn Wound Healing. Chem Asian J 2022; 17:e202200396. [DOI: 10.1002/asia.202200396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/13/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University 361102 Xiamen P. R. China
| | - Ying Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University 361102 Xiamen P. R. China
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
| | - Junjun Tao
- Zhejiang Fenix Health Science and Technology Co., Ltd. 176849 Zhejiang P. R. China
| | - Changming Tang
- Zhejiang Fenix Health Science and Technology Co., Ltd. 176849 Zhejiang P. R. China
| | - Huajun Ruan
- Zhejiang Fenix Health Science and Technology Co., Ltd. 176849 Zhejiang P. R. China
| | - Yunlong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University 361102 Xiamen P. R. China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
| |
Collapse
|
35
|
Azari Z, Nazarnezhad S, Webster TJ, Hoseini SJ, Brouki Milan P, Baino F, Kargozar S. Stem Cell-Mediated Angiogenesis in Skin Tissue Engineering and Wound Healing. Wound Repair Regen 2022; 30:421-435. [PMID: 35638710 PMCID: PMC9543648 DOI: 10.1111/wrr.13033] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
The timely management of skin wounds has been an unmet clinical need for centuries. While there have been several attempts to accelerate wound healing and reduce the cost of hospitalisation and the healthcare burden, there remains a lack of efficient and effective wound healing approaches. In this regard, stem cell‐based therapies have garnered an outstanding position for the treatment of both acute and chronic skin wounds. Stem cells of different origins (e.g., embryo‐derived stem cells) have been utilised for managing cutaneous lesions; specifically, mesenchymal stem cells (MSCs) isolated from foetal (umbilical cord) and adult (bone marrow) tissues paved the way to more satisfactory outcomes. Since angiogenesis plays a critical role in all four stages of normal wound healing, recent therapeutic approaches have focused on utilising stem cells for inducing neovascularisation. In fact, stem cells can promote angiogenesis via either differentiation into endothelial lineages or secreting pro‐angiogenic exosomes. Furthermore, particular conditions (e.g., hypoxic environments) can be applied in order to boost the pro‐angiogenic capability of stem cells before transplantation. For tissue engineering and regenerative medicine applications, stem cells can be combined with specific types of pro‐angiogenic biocompatible materials (e.g., bioactive glasses) to enhance the neovascularisation process and subsequently accelerate wound healing. As such, this review article summarises such efforts emphasising the bright future that is conceivable when using pro‐angiogenic stem cells for treating acute and chronic skin wounds.
Collapse
Affiliation(s)
- Zoleikha Azari
- Department of Anatomy and cell Biology, School of Medicine, MashhadUniversity of Medical Sciences, Mashhad, Iran
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Javad Hoseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
36
|
Tran NT, Park IS, Truong MD, Park DY, Park SH, Min BH. Conditioned media derived from human fetal progenitor cells improves skin regeneration in burn wound healing. Cell Tissue Res 2022; 389:289-308. [PMID: 35624315 DOI: 10.1007/s00441-022-03638-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/11/2022] [Indexed: 01/06/2023]
Abstract
Stem cells are known to have excellent regenerative ability, which is primarily facilitated by indirect paracrine factors, rather than via direct cell replacement. The regenerative process is mediated by the release of extracellular matrix molecules, cytokines, and growth factors, which are also present in the media during cultivation. Herein, we aimed to demonstrate the functionality of key factors and mechanisms in skin regeneration through the analysis of conditioned media derived from fetal stem cells. A series of processes, including 3D pellet cultures, filtration and lyophilization is developed to fabricate human fetal cartilage-derived progenitor cells-conditioned media (hFCPCs-CM) and its useful properties are compared with those of human bone marrow-derived MSCs-conditioned media (hBMSCs-CM) in terms of biochemical characterization, and in vitro studies of fibroblast behavior, macrophage polarization, and burn wound healing. The hFCPCs-CM show to be devoid of cellular components but to contain large amounts of total protein, collagen, glycosaminoglycans, and growth factors, including IGFBP-2, IGFBP-6, HGF, VEGF, TGF β3, and M-CSF, and contain a specific protein, collagen alpha-1(XIV) compare with hBMSCs-CM. The therapeutic potential of hFCPCs-CM observes to be better than that of hBMSCs-CM in the viability, proliferation, and migration of fibroblasts, and M2 macrophage polarization in vitro, and efficient acceleration of wound healing and minimization of scar formation in third-degree burn wounds in a rat model. The current study shows the potential therapeutic effect of hFCPCs and provides a rationale for using the secretome released from fetal progenitor cells to promote the regeneration of skin tissues, both quantitatively and qualitatively. The ready-to-use product of human fetal cartilage-derived progenitor cells-conditioned media (hFCPCs-CM) are fabricated via a series of techniques, including a 3D culture of hFCPCs, filtration using a 3.5 kDa cutoff dialysis membrane, and lyophilization of the CM. hFCPCs-CM contains many ECM molecules and biomolecules that improves wound healing through efficient acceleration of M2 macrophage polarization and reduction of scar formation.
Collapse
Affiliation(s)
- Ngoc-Trinh Tran
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Korea
| | - In-Su Park
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Korea
| | | | - Do-Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Sang-Hyug Park
- Advanced Translational Engineering and Medical Science, Seoul, Korea.
- Department of Biomecial Engineering, Pukyong National University, Busan, 48513, Korea.
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea.
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Korea.
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.
- Advanced Translational Engineering and Medical Science, Seoul, Korea.
| |
Collapse
|
37
|
Comparison Study on the Effect of Mesenchymal Stem Cells-Conditioned Medium Derived from Adipose and Wharton’s Jelly on Versican Gene Expression in Hypoxia. IRANIAN BIOMEDICAL JOURNAL 2022; 26:202-8. [PMID: 35598150 PMCID: PMC9440690 DOI: 10.52547/ibj.26.3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background: Mesenchymal stem cells enhance tissue repair through paracrine effects following transplantation. The versican protein is one of the important factors contributing to this repair mechanism. Using MSC conditioned medium for cultivating monocytes may increase versican protein production and could be a good alternative for transplantation of MSCs. This study investigates the effect of culture medium conditioned by human MSCs on the expression of the versican gene in PBMCs under hypoxia-mimetic and normoxic conditions. Methods: The conditioned media used were derived from either adipose tissue or from WJ. Flow cytometry for surface markers (CD105, CD73, and CD90) was used to confirm MSCs. The PBMCs were isolated and cultured with the culture media of the MSC derived from either the adipose tissue or WJ. Desferrioxamine and cobalt chloride (200 and 300 µM final concentrations, respectively) were added to monocytes media to induce hypoxia-mimetic conditions. Western blotting was applied to detect HIF-1α protein and confirm hypoxia-mimetic conditions in PBMC. Versican gene expression was assessed in PBMC using RT-PCR. Western blotting showed that the expression of HIF-1α in PBMC increased significantly (p < 0.01). Results: RT-PCR results demonstrated that the expression of the versican and VEGF genes in PBMC increased significantly (p < 0.01) in hypoxia-mimetic conditions as compared to normoxia. Conclusion: Based on the findings in the present study, the secreted factors of MSCs can be replaced by direct use of MSCs to improve damaged tissues.
Collapse
|
38
|
Paganelli A, Benassi L, Rossi E, Tarentini E, Magnoni C. Mesenchymal stromal cells promote the proliferation of basal stem cells and efficient epithelization in organotypic models of wound healing. Microsc Res Tech 2022; 85:2752-2756. [PMID: 35388560 PMCID: PMC9322434 DOI: 10.1002/jemt.24110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 12/21/2022]
Abstract
Adipose derived mesenchymal stromal cells (ADSCs) represent a fascinating tool in the scenario of wound healing and regenerative medicine. Recent data already demonstrated that ADSCs could exert a stimulatory action on epithelial cells through secretion of soluble factors. The aim of the present study was to assess how ADSCs guide wound re‐epithelization in vitro in the presence of keratinocytes. We used an organotypic model of wound healing and we seeded keratinocytes on a ADSC‐induced dermal matrix. Conventional hematoxylin–eosin stain and immunohistochemistry staining for Ki67, p63 and pan‐keratins were performed at different timepoints. Histological sections of organotypic cultures showed complete coverage of the ADSC‐induced matrix by keratinocytes. Proliferation of basal stem cells was found to be the main mechanism responsible for epithelization of the dermis. In conclusion, ADSC do not only stimulate dermal regeneration through collagen deposition but also promote epithelization.
Collapse
Affiliation(s)
- Alessia Paganelli
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena, Italy.,PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luisa Benassi
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Rossi
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Tarentini
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Magnoni
- Surgical, Medical and Dental Department of Morphological Sciences related to Transplant, Oncology and Regenerative Medicine, Division of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
39
|
Mesenchymal Stem Cell-Based Therapy as a New Approach for the Treatment of Systemic Sclerosis. Clin Rev Allergy Immunol 2022; 64:284-320. [PMID: 35031958 DOI: 10.1007/s12016-021-08892-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Systemic sclerosis (SSc) is an intractable autoimmune disease with unmet medical needs. Conventional immunosuppressive therapies have modest efficacy and obvious side effects. Targeted therapies with small molecules and antibodies remain under investigation in small pilot studies. The major breakthrough was the development of autologous haematopoietic stem cell transplantation (AHSCT) to treat refractory SSc with rapidly progressive internal organ involvement. However, AHSCT is contraindicated in patients with advanced visceral involvement. Mesenchymal stem cells (MSCs) which are characterized by immunosuppressive, antifibrotic and proangiogenic capabilities may be a promising alternative option for the treatment of SSc. Multiple preclinical and clinical studies on the use of MSCs to treat SSc are underway. However, there are several unresolved limitations and safety concerns of MSC transplantation, such as immune rejections and risks of tumour formation, respectively. Since the major therapeutic potential of MSCs has been ascribed to their paracrine signalling, the use of MSC-derived extracellular vesicles (EVs)/secretomes/exosomes as a "cell-free" therapy might be an alternative option to circumvent the limitations of MSC-based therapies. In the present review, we overview the current knowledge regarding the therapeutic efficacy of MSCs in SSc, focusing on progresses reported in preclinical and clinical studies using MSCs, as well as challenges and future directions of MSC transplantation as a treatment option for patients with SSc.
Collapse
|
40
|
Guillaume VGJ, Ruhl T, Boos AM, Beier JP. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:394-406. [PMID: 35274703 PMCID: PMC9052412 DOI: 10.1093/stcltm/szac002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
Adipose-derived stem or stromal cells (ASCs) possess promising potential in the fields of tissue engineering and regenerative medicine due to their secretory activity, their multilineage differentiation potential, their easy harvest, and their rich yield compared to other stem cell sources. After the first identification of ASCs in humans in 2001, the knowledge of their cell biology and cell characteristics have advanced, and respective therapeutic options were determined. Nowadays, ASC-based therapies are on the verge of translation into clinical practice. However, conflicting evidence emerged in recent years about the safety profile of ASC applications as they may induce tumor progression and invasion. Numerous in-vitro and in-vivo studies demonstrate a potential pro-oncogenic effect of ASCs on various cancer entities. This raises questions about the safety profile of ASCs and their broad handling and administration. However, these findings spark controversy as in clinical studies ASC application did not elevate tumor incidence rates, and other experimental studies reported an inhibitory effect of ASCs on different cancer cell types. This comprehensive review aims at providing up-to-date information about ASCs and cancer cell interactions, and their potential carcinogenesis and tumor tropism. The extracellular signaling activity of ASCs, the interaction of ASCs with the tumor microenvironment, and 3 major organ systems (the breast, the skin, and genitourinary system) will be presented with regard to cancer formation and progression.
Collapse
Affiliation(s)
- Vincent G J Guillaume
- Corresponding author: Vincent G. J. Guillaume, Resident Physician and Research Assistant, Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany. Tel: 0049-241-80-89700; Fax: 0241-80-82448;
| | - Tim Ruhl
- Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Anja M Boos
- Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| | - Justus P Beier
- Department of Plastic Surgery, Hand Surgery, Burn Center, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
41
|
LEE TM, LEE CC, HARN HJ, Chiou TW, CHUANG MH, CHEN CH, CHUANG CH, LIN PC, LIN SZ. Intramyocardial injection of human adipose-derived stem cells ameliorates cognitive deficit by regulating oxidative stress-mediated hippocampal damage after myocardial infarction. J Mol Med (Berl) 2021; 99:1815-1827. [PMID: 34633469 PMCID: PMC8599314 DOI: 10.1007/s00109-021-02135-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
Cognitive impairment is a serious side effect of post-myocardial infarction (MI) course. We have recently demonstrated that human adipose-derived stem cells (hADSCs) ameliorated myocardial injury after MI by attenuating reactive oxygen species (ROS) levels. Here, we studied whether the beneficial effects of intramyocardial hADSC transplantation can extend to the brain and how they may attenuate cognitive dysfunction via modulating ROS after MI. After coronary ligation, male Wistar rats were randomized via an intramyocardial route to receive either vehicle, hADSC transplantation (1 × 106 cells), or the combination of hADSCs and 3-Morpholinosydnonimine (SIN-1, a peroxynitrite donor). Whether hADSCs migrated into the hippocampus was assessed by using human-specific primers in qPCR reactions. Passive avoidance test was used to assess cognitive performance. Postinfarction was associated with increased oxidative stress in the myocardium, circulation, and hippocampus. This was coupled with decreased numbers of dendritic spines as well as a significant downregulation of synaptic plasticity consisting of synaptophysin and PSD95. Step-through latency during passive avoidance test was impaired in vehicle-treated rats after MI. Intramyocardial hADSC injection exerted therapeutic benefits in improving cardiac function and cognitive impairment. None of hADSCs was detected in rat's hippocampus at the 3rd day after intramyocardial injection. The beneficial effects of hADSCs on MI-induced histological and cognitive changes were abolished after adding SIN-1. MI-induced ROS attacked the hippocampus to induce neurodegeneration, resulting in cognitive deficit. The remotely intramyocardial administration of hADSCs has the capacity of improved synaptic neuroplasticity in the hippocampus mediated by ROS, not the cell engraftment, after MI. KEY MESSAGES: Human adipose-derived stem cells (hADSCs) ameliorated injury after myocardial infarction by attenuating reactive oxygen species (ROS) levels. Intramyocardial administration of hADSCs remotely exerted therapeutic benefits in improving cognitive impairment after myocardial infarction. The improved synaptic neuroplasticity in the hippocampus was mediated by hADSC-inhibiting ROS, not by the stem cell engraftment.
Collapse
Affiliation(s)
| | | | - Horng-Jyh HARN
- Bioinnovation Center, Tzu Chi Foundation, Department of Pathology, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Ming-Hsi CHUANG
- Department of Technology Management, Chung Hua University, Hsinchu City, Taiwan
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | | | | | - Po-Cheng LIN
- Gwo Xi Stem Cell Applied Technology, Hsinchu, Taiwan
| | - Shinn-Zong LIN
- Bioinnovation Center, Tzu Chi Foundation, Department of Neurosurgery, Buddhist Tzu Chi General Hospital, Tzu Chi University, No.707, Sec. 3, Chung Yang Rd. 970, Hualien, Taiwan
| |
Collapse
|
42
|
Chen TY, Liu CH, Chen TH, Chen MR, Liu SW, Lin P, Lin KMC. Conditioned Media of Adipose-Derived Stem Cells Suppresses Sidestream Cigarette Smoke Extract Induced Cell Death and Epithelial-Mesenchymal Transition in Lung Epithelial Cells. Int J Mol Sci 2021; 22:ijms222112069. [PMID: 34769496 PMCID: PMC8584490 DOI: 10.3390/ijms222112069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
The role of the epithelial-mesenchymal transition (EMT) in lung epithelial cells is increasingly being recognized as a key stage in the development of COPD, fibrosis, and lung cancers, which are all highly associated with cigarette smoking and with exposure to second-hand smoke. Using the exposure of human lung cancer epithelial A549 cells and non-cancerous Beas-2B cells to sidestream cigarette smoke extract (CSE) as a model, we studied the protective effects of adipose-derived stem cell-conditioned medium (ADSC-CM) against CSE-induced cell death and EMT. CSE dose-dependently induced cell death, decreased epithelial markers, and increased the expression of mesenchymal markers. Upstream regulator analysis of differentially expressed genes after CSE exposure revealed similar pathways as those observed in typical EMT induced by TGF-β1. CSE-induced cell death was clearly attenuated by ADSC-CM but not by other control media, such as a pass-through fraction of ADSC-CM or A549-CM. ADSC-CM effectively inhibited CSE-induced EMT and was able to reverse the gradual loss of epithelial marker expression associated with TGF-β1 treatment. CSE or TGF-β1 enhanced the speed of A549 migration by 2- to 3-fold, and ADSC-CM was effective in blocking the cell migration induced by either agent. Future work will build on the results of this in vitro study by defining the molecular mechanisms through which ADSC-CM protects lung epithelial cells from EMT induced by toxicants in second-hand smoke.
Collapse
Affiliation(s)
- Tzu-Yin Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
| | - Chia-Hao Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
| | - Tsung-Hsien Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 600566, Taiwan
| | - Mei-Ru Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
| | - Shan-Wen Liu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
- Institute of Population Health, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan; (T.-Y.C.); (C.-H.L.); (T.-H.C.); (M.-R.C.); (S.-W.L.)
- Correspondence: ; Tel.: +886-37206166 (ext. 37118)
| |
Collapse
|
43
|
Retinal Lineage Therapeutic Specific Effect of Human Orbital and Abdominal Adipose-Derived Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:7022247. [PMID: 34712333 PMCID: PMC8548122 DOI: 10.1155/2021/7022247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Retinal degenerative diseases are one of the main causes of complete blindness in aged population. In this study, we compared the therapeutic potential for retinal degeneration of human mesenchymal stem cells derived from abdominal subcutaneous fat (ABASCs) or from orbital fat (OASCs) due to their accessibility and mutual embryonic origin with retinal tissue, respectively. OASCs were found to protect RPE cells from cell death and were demonstrated to increase early RPE precursor markers, while ABASCs showed a raise in retinal precursor marker expression. Subretinal transplantation of OASCs in a mouse model of retinal degeneration led to restoration of the RPE layer while transplantation of ABASCs resulted in a significant restoration of the photoreceptor layer. Taken together, we demonstrated a lineage-specific therapeutic effect for either OASCs or ABASCs in retinal regeneration.
Collapse
|
44
|
Therapeutic approach of adipose-derived mesenchymal stem cells in refractory peptic ulcer. Stem Cell Res Ther 2021; 12:515. [PMID: 34565461 PMCID: PMC8474857 DOI: 10.1186/s13287-021-02584-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Peptic ulcer is one of the most common gastrointestinal tract disorders worldwide, associated with challenges such as refractory morbidity, bleeding, interference with use of anticoagulants, and potential side effects associated with long-term use of proton pump inhibitors. A peptic ulcer is a defect in gastric or duodenal mucosa extending from muscularis mucosa to deeper layers of the stomach wall. In most cases, ulcers respond to standard treatments. However, in some people, peptic ulcer becomes resistant to conventional treatment or recurs after initially successful therapy. Therefore, new and safe treatments, including the use of stem cells, are highly favored for these patients. Adipose-derived mesenchymal stem cells are readily available in large quantities with minimal invasive intervention, and isolation of adipose-derived mesenchymal stromal stem cells (ASC) produces large amounts of stem cells, which are essential for cell-based and restorative therapies. These cells have high flexibility and can differentiate into several types of cells in vitro. This article will investigate the effects and possible mechanisms and signaling pathways of adipose tissue-derived mesenchymal stem cells in patients with refractory peptic ulcers.
Collapse
|
45
|
Evaluation the Healing Potential of Oleuropein on Second-Degree Burn Wounds in a Rat Model. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Skin burn is one of the most common complications throughout the world. Olive derivatives have been used for the treatment of skin lesions in Iran. Oleuropein is one of the main constituents of olive leaves. Objectives: The aim of the present study was to evaluate the healing effects of oleuropein cream on second-degree burns wounds in a rat model. Methods: This experimental study was performed on 72 male Wistar rats. Superficial second-degree burns were induced in the hairless back of the animals. Then, they were randomly divided into six equal groups. The burnt area in the first group was covered twice a day with normal saline, in the second group with eucerin, in the third group with 1% silver sulfadiazine and in the fourth-sixth groups, oleuropein cream was applied topically. To evaluate the efficacy of treatment, four rats in each group were euthanized on days 4, 9, and 14, and their skin was processed for wound contraction, glutathione (GSH) level, malondialdehyde (MDA) level, hydroxyproline (HP) content, inflammatory factors (transforming growth factor beta [TGF-β] and interleukin 6 [IL-6]), and histological examination. Results: In comparison with untreated control rats, the daily application of 5% oleuropein cream significantly increased wound contraction, HP content, and GSH level over time. Moreover, it caused a significant reduction in inflammatory factors and MDA level. Histological examination confirmed the results. Conclusions: This study indicated that oleuropein has therapeutic value in treating burn wounds and thus supports its traditional use.
Collapse
|
46
|
Liu M, Tao J, Guo H, Tang L, Zhang G, Tang C, Zhou H, Wu Y, Ruan H, Loh XJ. Efficacy of Water-Soluble Pearl Powder Components Extracted by a CO 2 Supercritical Extraction System in Promoting Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4458. [PMID: 34442981 PMCID: PMC8399097 DOI: 10.3390/ma14164458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/04/2022]
Abstract
Pearl powder is a biologically active substance that is widely used in traditional medicine, skin repair and maintenance. The traditional industrial extraction processes of pearl powder are mainly based on water, acid or enzyme extraction methods, all of which have their own drawbacks. In this study, we propose a new extraction process for these active ingredients, specifically, water-soluble components of pearl powder extracted by a CO2 supercritical extraction system (SFE), followed by the extraction efficiency evaluation. A wound-healing activity was evaluated in vitro and in vivo. This demonstrated that the supercritical extraction technique showed high efficiency as measured by the total protein percentage. The extracts exhibited cell proliferation and migration-promoting activity, in addition to improving collagen formation and healing efficiency in vivo. In brief, this study proposes a novel extraction process for pearl powder, and the extracts were also explored for wound-healing bioactivity, demonstrating the potential in wound healing.
Collapse
Affiliation(s)
- Minting Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (M.L.); (H.Z.); (Y.W.)
| | - Junjun Tao
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Hongchen Guo
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Liang Tang
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Guorui Zhang
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Changming Tang
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Hu Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (M.L.); (H.Z.); (Y.W.)
| | - Yunlong Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China; (M.L.); (H.Z.); (Y.W.)
| | - Huajun Ruan
- Zhejiang Fenix Health Science and Technology Co., Ltd., Zhuji 311800, China; (J.T.); (H.G.); (L.T.); (G.Z.); (C.T.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Singapore 138634, Singapore
| |
Collapse
|
47
|
Biyao Z, Gang X, Hai J, Chenwang D, Xuan L. Autologous fat grafting combined with negative pressure wound therapy in severe diabetic foot ulcer: a case study. J Wound Care 2021; 30:S38-S40. [PMID: 33856926 DOI: 10.12968/jowc.2021.30.sup4.s38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Hard-to-heal wounds are a surgical challenge, and diabetic foot ulcers (DFUs) are one of the most common and severe varieties. Previous studies have shown that autologous fat grafting (AFG) and negative pressure wound therapy (NPWT) have the potential to promote wound healing. This case study describes how these two methods together helped in the healing of a serious DFU. CASE HISTORY A 65-year-old female patient had a severe DFU on her right foot, with a 30-year history of disease and renal failure. By the time symptoms were evident, regular dressing changes and antibiotic treatment were inadequate. She received surgical debridement, AFG and NPWT. Finally, as the granulation tissue covered the full wound bed, the wound was closed by split-thickness skin grafting. One month later, the DFU was fully healed with no recurrences. CONCLUSION The application of AFG or components of adipose tissue to treat hard-to-heal wounds has been researched at both the molecular level and in clinic. In this case, we have proved the curative effect of jointly using AFG and NPWT.
Collapse
Affiliation(s)
- Zheng Biyao
- Department of Burns and Plastic Surgery, Tangshan Gongren Hospital, China
| | - Xu Gang
- Department of Burns and Plastic Surgery, Tangshan Gongren Hospital, China
| | - Jiang Hai
- Department of Burns and Plastic Surgery, Tangshan Gongren Hospital, China
| | - Duan Chenwang
- Department of Burns and Plastic Surgery, Tangshan Gongren Hospital, China
| | - Liu Xuan
- Department of Burns and Plastic Surgery, Tangshan Gongren Hospital, China
| |
Collapse
|
48
|
Josh F, Soekamto TH, Adriani JR, Jonatan B, Mizuno H, Faruk M. The Combination of Stromal Vascular Fraction Cells and Platelet-Rich Plasma Reduces Malondialdehyde and Nitric Oxide Levels in Deep Dermal Burn Injury. J Inflamm Res 2021; 14:3049-3061. [PMID: 34267534 PMCID: PMC8275197 DOI: 10.2147/jir.s318055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Thermal burns release reactive oxygen species, which cause profound systemic and local changes. Stromal vascular fraction cells (SVFs) combined with platelet-rich plasma accelerate burn wound healing. This study investigated the effect of a combination of locally injected SVFs and PRP on malondialdehyde (MDA) and nitric oxide (NO) serum and tissue levels in a deep dermal burn model in Wistar rats. Methods Thirty-six adult Wistar rats weighing between 150 and 250 grams were used in this study to establish a deep dermal degree burn wound model. They were randomly divided into 4 groups: locally injected the combination SVFs and PRP, the Vaseline group, the placebo group, and healthy Wistar rats (the normal control group). MDA and NO levels in blood serum and burn wound tissue were measured at 8, 24, and 48 hours. Data were analyzed with one-way ANOVA followed by multiple comparisons tests and regression tests. Results Local injection of SVFs and PRP in combination affected blood MDA, tissue MDA, blood NO and tissue NO levels, with reductions of 0.257µmol/L, 0.427 µmol/L, 21.78nmol/mg, and 23.777nmol/mg, respectively. Injection of SVFs and PRP in combination reduced tissue MDA levels by 1.282 times, NO blood levels by 2.305, and NO tissue levels by 2.377 times compared to Vaseline application. Conclusion The combination of SVFs and PRP undeniably reduced the MDA and NO levels in blood and tissue compared to those in the Vaseline and placebo groups. The injection of these two preparations in combination inhibited the local and systemic stress oxidative response, as illustrated by the decreased MDA and NO levels in blood serum and tissue.
Collapse
Affiliation(s)
- Fonny Josh
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia.,Department of Plastic and Reconstructive Surgery, Wahidin Sudirohusodo Hospital, Makassar, South Sulawesi, Indonesia
| | | | - Januar Rizky Adriani
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Billy Jonatan
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University, Tokyo, Japan
| | - Muhammad Faruk
- Department of Surgery, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| |
Collapse
|
49
|
Deptuła M, Brzezicka A, Skoniecka A, Zieliński J, Pikuła M. Adipose-derived stromal cells for nonhealing wounds: Emerging opportunities and challenges. Med Res Rev 2021; 41:2130-2171. [PMID: 33522005 PMCID: PMC8247932 DOI: 10.1002/med.21789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Wound healing complications affect thousands of people each year, thus constituting a profound economic and medical burden. Chronic wounds are a highly complex problem that usually affects elderly patients as well as patients with comorbidities such as diabetes, cancer (surgery, radiotherapy/chemotherapy) or autoimmune diseases. Currently available methods of their treatment are not fully effective, so new solutions are constantly being sought. Cell-based therapies seem to have great potential for use in stimulating wound healing. In recent years, much effort has been focused on characterizing of adipose-derived mesenchymal stromal cells (AD-MSCs) and evaluating their clinical use in regenerative medicine and other medical fields. These cells are easily obtained in large amounts from adipose tissue and show a high proregenerative potential, mainly through paracrine activities. In this review, the process of healing acute and nonhealing (chronic) wounds is detailed, with a special attention paid to the wounds of patients with diabetes and cancer. In addition, the methods and technical aspects of AD-MSCs isolation, culture and transplantation in chronic wounds are described, and the characteristics, genetic stability and role of AD-MSCs in wound healing are also summarized. The biological properties of AD-MSCs isolated from subcutaneous and visceral adipose tissue are compared. Additionally, methods to increase their therapeutic potential as well as factors that may affect their biological functions are summarized. Finally, their therapeutic potential in the treatment of diabetic and oncological wounds is also discussed.
Collapse
Affiliation(s)
- Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| | | | - Aneta Skoniecka
- Department of Embryology, Faculty of MedicineMedical University of GdanskGdańskPoland
| | - Jacek Zieliński
- Department of Oncologic SurgeryMedical University of GdanskGdańskPoland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of EmbryologyMedical University of GdanskGdańskPoland
| |
Collapse
|
50
|
Josh F, Soekamto TH, Adriani JR, Jonatan B, Mizuno H, Faruk M. The Combination of Stromal Vascular Fraction Cells and Platelet-Rich Plasma Reduces Malondialdehyde and Nitric Oxide Levels in Deep Dermal Burn Injury. J Inflamm Res 2021; Volume 14:3049-3061. [DOI: https:/doi.org/10.2147/jir.s318055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|