1
|
Xu C. CRISPR/Cas9-mediated knockout strategies for enhancing immunotherapy in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8561-8601. [PMID: 38907847 DOI: 10.1007/s00210-024-03208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
Breast cancer, a prevalent disease with significant mortality rates, often presents treatment challenges due to its complex genetic makeup. This review explores the potential of combining Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene knockout strategies with immunotherapeutic approaches to enhance breast cancer treatment. The CRISPR/Cas9 system, renowned for its precision in inducing genetic alterations, can target and eliminate specific cancer cells, thereby minimizing off-target effects. Concurrently, immunotherapy, which leverages the immune system's power to combat cancer, has shown promise in treating breast cancer. By integrating these two strategies, we can potentially augment the effectiveness of immunotherapies by knocking out genes that enable cancer cells to evade the immune system. However, safety considerations, such as off-target effects and immune responses, necessitate careful evaluation. Current research endeavors aim to optimize these strategies and ascertain the most effective methods to stimulate the immune response. This review provides novel insights into the integration of CRISPR/Cas9-mediated knockout strategies and immunotherapy, a promising avenue that could revolutionize breast cancer treatment as our understanding of the immune system's interplay with cancer deepens.
Collapse
Affiliation(s)
- Chenchen Xu
- Department of Gynecology and Obstetrics, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
2
|
Gartrell RD, Blake Z, Rizk EM, Perez-Lorenzo R, Weisberg SP, Simoes I, Esancy C, Fu Y, Davari DR, Barker L, Finkel G, Mondal M, Minns HE, Wang SW, Fullerton BT, Lozano F, Chiuzan C, Horst B, Saenger YM. Combination immunotherapy including OncoVEX mGMCSF creates a favorable tumor immune micro-environment in transgenic BRAF murine melanoma. Cancer Immunol Immunother 2022; 71:1837-1849. [PMID: 34999916 PMCID: PMC10991384 DOI: 10.1007/s00262-021-03088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/05/2021] [Indexed: 12/01/2022]
Abstract
Talimogene Laherparepvec (OncoVEXmGMCSF), an oncolytic virus, immune checkpoint inhibitor anti-programmed cell death protein 1 (anti-PD1), and BRAF inhibition (BRAFi), are all clinically approved for treatment of melanoma patients and are effective through diverse mechanisms of action. Individually, these therapies also have an effect on the tumor immune microenvironment (TIME). Evaluating the combination effect of these three therapies on the TIME can help determine when combination therapy is most appropriate for further study. In this study, we use a transgenic murine melanoma model (Tyr::CreER; BRAFCA/+; PTENflox/flox), to evaluate the TIME in response to combinations of BRAFi, anti-PD1, and OncoVEXmGMCSF. We find that mice treated with the triple combination BRAFi + anti-PD1 + OncoVEXmGMCSF have decreased tumor growth compared to BRAFi alone and prolonged survival compared to control. Flow cytometry shows an increase in percent CD8 + /CD3 + cytotoxic T Lymphocytes (CTLs) and a decrease in percent FOXP3 + /CD4 + T regulatory cells (Tregs) in tumors treated with OncoVEXmGMCSF compared to mice not treated with OncoVEXmGMCSF. Immunogenomic analysis at 30d post-treatment shows an increase in Th1 and interferon-related genes in mice receiving OncoVEXmGMCSF + BRAFi. In summary, treatment with combination BRAFi + anti-PD1 + OncoVEXmGMCSF is more effective than any single treatment in controlling tumor growth, and groups receiving OncoVEXmGMCSF had more tumoral infiltration of CTLs and less intratumoral Tregs in the TIME. This study provides rational basis to combine targeted agents, oncolytic viral therapy, and checkpoint inhibitors in the treatment of melanoma.
Collapse
Affiliation(s)
- Robyn D Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, 1130 St. Nicholas Avenue, ICRC 916A, New York, NY, 10032, USA
| | - Zoë Blake
- Department of Medicine, Columbia University Irving Medical Center, 630 W 168th Street, PS 9-428, New York, NY, 10032, USA
| | - Emanuelle M Rizk
- Department of Medicine, Columbia University Irving Medical Center, 630 W 168th Street, PS 9-428, New York, NY, 10032, USA
| | - Rolando Perez-Lorenzo
- Department of Dermatology, Columbia University Irving Medical Center, 1150 St. Nicholas Avenue, Russ Berrie Medical Science Pavillion Room 307, New York, NY, 10032, USA
| | - Stuart P Weisberg
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 W 168th Street, New York, NY, 10032, USA
| | - Ines Simoes
- Immunoreceptors del Sistema Innat I Adaptatiu, Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Catalunya, Spain
| | - Camden Esancy
- Herbert Irving Comprehensicve Cancer Center, Columbia University Irving Medical Center, 161 Fort Washington Avenue, New York, NY, 10032, USA
| | - Yichun Fu
- Department of Medicine, Mount Sinai Hospital, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Danielle R Davari
- University of North Carolina School of Medicine, 140 W Franklin Street, Unit 506, Chapel Hill, NC, 27516, USA
| | - Luke Barker
- Valegos College of Physicians and Surgeons, Columbia University, 630 W 168th Street, New York, NY, 10032, USA
| | - Grace Finkel
- Valegos College of Physicians and Surgeons, Columbia University, 630 W 168th Street, New York, NY, 10032, USA
| | - Manas Mondal
- Department of Medicine, Columbia University Irving Medical Center, 630 W 168th Street, PS 9-428, New York, NY, 10032, USA
| | - Hanna E Minns
- Department of Pediatrics, Columbia University Irving Medical Center, 1130 St. Nicholas Avenue, ICRC 916A, New York, NY, 10032, USA
| | - Samuel W Wang
- Department of Medicine, Columbia University Irving Medical Center, 630 W 168th Street, PS 9-428, New York, NY, 10032, USA
| | - Benjamin T Fullerton
- Department of Medicine, Columbia University Irving Medical Center, 630 W 168th Street, PS 9-428, New York, NY, 10032, USA
| | - Francisco Lozano
- Immunoreceptors del Sistema Innat I Adaptatiu, Institut d'Investigacions Biomediques August Pi I Sunyer, Barcelona, Catalunya, Spain
- Servei d'Immunologia, Hospital Clínic de Barcelona, Barcelona, Spain
- Departament de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Codruta Chiuzan
- Department of Biostatistics, Columbia University Irving Medical Center, 722 W 168th Street, Room 646, New York, NY, 10032, USA
| | - Basil Horst
- Department of Pathology, University of British Columbia, Vancouver, BC, Canada
| | - Yvonne M Saenger
- Department of Medicine, Columbia University Irving Medical Center, 630 W 168th Street, PS 9-428, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Xie X, Lv J, Zhu W, Tian C, Li J, Liu J, Zhou H, Sun C, Hu Z, Li X. The combination therapy of oncolytic HSV-1 armed with anti-PD-1 antibody and IL-12 enhances anti-tumor efficacy. Transl Oncol 2022; 15:101287. [PMID: 34808461 PMCID: PMC8607272 DOI: 10.1016/j.tranon.2021.101287] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Cancer immunotherapy is a new therapeutic strategy for cancer treatment that targets tumors by improving or restoring immune system function. Therapies targeting immune checkpoint molecules have exerted potent anti-tumor effects and prolonged the overall survival rate of patients. However, only a small number of patients benefit from the treatment. Oncolytic viruses exert anti-tumor effects by regulating the tumor microenvironment and affecting multiple steps of tumor immune circulation. In this study, we engineered two oncolytic viruses that express mouse anti-PD-1 antibody (VT1093M) or mouse IL-12 (VT1092M). We found that both oncolytic viruses showed significant anti-tumor effects in a murine CT26 colon adenocarcinoma model. Importantly, the intratumoral combined injection with VT1092M and VT1093M inhibited growth of the primary tumor, prevented growth of the contralateral untreated tumor, produced a vaccine-like response, activated antigen-specific T cell responses and prolonged the overall survival rate of mice. These results indicate that combination therapy with the engineered oncolytic virus may represent a potent immunotherapy strategy for cancer patients, especially those resistant to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Xin Xie
- School of Pharmacy, Yantai University, Yantai Shandong 264005, China
| | - Jingwen Lv
- School of Pharmacy, Yantai University, Yantai Shandong 264005, China
| | - Wei Zhu
- School of Pharmacy, Yantai University, Yantai Shandong 264005, China
| | - Chao Tian
- Beijing WellGene Company, Ltd, Beijing 100085, China
| | - Jingfeng Li
- School of Pharmacy, Yantai University, Yantai Shandong 264005, China; Beijing WellGene Company, Ltd, Beijing 100085, China
| | - Jiajia Liu
- Beijing WellGene Company, Ltd, Beijing 100085, China
| | - Hua Zhou
- Beijing WellGene Company, Ltd, Beijing 100085, China
| | - Chunyang Sun
- Beijing WellGene Company, Ltd, Beijing 100085, China
| | - Zongfeng Hu
- School of Pharmacy, Yantai University, Yantai Shandong 264005, China
| | - Xiaopeng Li
- School of Pharmacy, Yantai University, Yantai Shandong 264005, China; Beijing WellGene Company, Ltd, Beijing 100085, China.
| |
Collapse
|
4
|
Samy RN, Earl BR, Lipschitz N, Schweinzger I, Currier M, Cripe T. Engineered oncolytic virus for the treatment of cholesteatoma: A pilot in vivo study. Laryngoscope Investig Otolaryngol 2019; 4:532-542. [PMID: 31637298 PMCID: PMC6793611 DOI: 10.1002/lio2.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 01/04/2023] Open
Abstract
Objective Determine if oncolytic herpes simplex virus (oHSV) can eradicate cholesteatoma (CHST) in a gerbil model. Methods An in vivo model of CHST was developed in Mongolian gerbils by combining Pseudomonas aeruginosa inoculation with double ligation of the external auditory canal (EAC). CHST size and bone thickness were measured using morphometric and volumetric quantification techniques via micro‐computed tomography (micro‐CT). The CHST induction and quantification techniques were then used in an additional group of 10 gerbils (n = 20 ears) to determine the within‐group treatment efficacy of oHSV against CHST in vivo. Treated animals received either one, two, or three intrabullar injections of oHSV between 2 and 6 weeks postinduction of CHST. Results The P. aeruginosa inoculation plus double EAC ligation technique successfully induced a range of CHST growth in 100% of the ears in the model‐development group. Osteolytic effects of CHST were observed in 6% of ears whereas osteoblastic effects were observed in 31% of ears. CHST volume decreased by 50% or more in 12 of the 20 ears in the oHSV‐treatment groups. An apparent reversal of osteoblastic effects was also observed in three out of four ears 6 weeks following the third oHSV injection. Conclusions P. aeruginosa inoculation plus double EAC ligation reliably induces CHST formation in gerbil. CT‐based volumetric measures are significantly more accurate than single‐slice morphometric area measures for quantification of CHST size. Treatment with oHSV appears to be efficacious for reducing CHST volume by as much as 77% with as few as one treatment. Level of Evidence NA
Collapse
Affiliation(s)
- Ravi N Samy
- Department of Otolaryngology-Head and Neck Surgery University of Cincinnati College of Medicine Cincinnati Ohio U.S.A.,Neurosensory Disorders Center at University of Cincinnati Gardner Neuroscience Institute Cincinnati Ohio U.S.A.,Cincinnati Children's Hospital Medical Center Cincinnati Ohio U.S.A
| | - Brian R Earl
- Department of Otolaryngology-Head and Neck Surgery University of Cincinnati College of Medicine Cincinnati Ohio U.S.A.,Department of Communication Sciences and Disorders University of Cincinnati College of Allied Health Sciences Cincinnati Ohio U.S.A
| | - Noga Lipschitz
- Department of Otolaryngology-Head and Neck Surgery University of Cincinnati College of Medicine Cincinnati Ohio U.S.A
| | - Ivy Schweinzger
- Department of Communication Sciences and Disorders University of Cincinnati College of Allied Health Sciences Cincinnati Ohio U.S.A
| | - Mark Currier
- Center for Childhood Cancer and Blood Diseases The Research Institute at Nationwide Children's Hospital Columbus Ohio U.S.A
| | - Timothy Cripe
- Center for Childhood Cancer and Blood Diseases The Research Institute at Nationwide Children's Hospital Columbus Ohio U.S.A.,Division of Hematology, Oncology, Blood and Marrow Transplant, Department of Pediatrics Nationwide Children's Hospital Columbus Ohio U.S.A
| |
Collapse
|
5
|
Jennings VA, Scott GB, Rose AMS, Scott KJ, Migneco G, Keller B, Reilly K, Donnelly O, Peach H, Dewar D, Harrington KJ, Pandha H, Samson A, Vile RG, Melcher AA, Errington-Mais F. Potentiating Oncolytic Virus-Induced Immune-Mediated Tumor Cell Killing Using Histone Deacetylase Inhibition. Mol Ther 2019; 27:1139-1152. [PMID: 31053413 PMCID: PMC6554638 DOI: 10.1016/j.ymthe.2019.04.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/09/2023] Open
Abstract
A clinical oncolytic herpes simplex virus (HSV) encoding granulocyte-macrophage colony-stimulating factor (GM-CSF), talimogene laherparepvec, causes regression of injected and non-injected melanoma lesions in patients and is now licensed for clinical use in advanced melanoma. To date, limited data are available regarding the mechanisms of human anti-tumor immune priming, an improved understanding of which could inform the development of future combination strategies with improved efficacy. This study addressed direct oncolysis and innate and adaptive human immune-mediated effects of a closely related HSV encoding GM-CSF (HSVGM-CSF) alone and in combination with histone deacetylase inhibition. We found that HSVGM-CSF supported activation of anti-melanoma immunity via monocyte-mediated type I interferon production, which activates NK cells, and viral maturation of immature dendritic cells (iDCs) into potent antigen-presenting cells for cytotoxic T lymphocyte (CTL) priming. Addition of the histone deacetylase inhibitor valproic acid (VPA) to HSVGM-CSF treatment of tumor cells increased viral replication, viral GM-CSF production, and oncolysis and augmented the development of anti-tumor immunity. Mechanistically, VPA increased expression of activating ligands for NK cell recognition and induced expression of tumor-associated antigens, supporting innate NK cell killing and CTL priming. These data support the clinical combination of talimogene laherparepvec with histone deacetylase inhibition to enhance oncolysis and anti-tumor immunity.
Collapse
Affiliation(s)
- Victoria A Jennings
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK; Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Gina B Scott
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Ailsa M S Rose
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Karen J Scott
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Gemma Migneco
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Brian Keller
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Katrina Reilly
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Oliver Donnelly
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | - Howard Peach
- St James's University Hospital, Leeds LS9 7TF, UK
| | - Donald Dewar
- St James's University Hospital, Leeds LS9 7TF, UK
| | - Kevin J Harrington
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK
| | - Hardev Pandha
- Leggett Building, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7WG, UK
| | - Adel Samson
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| | | | - Alan A Melcher
- The Institute of Cancer Research, Division of Radiotherapy and Imaging, Chester Beatty Laboratories, London SW3 6JB, UK.
| | - Fiona Errington-Mais
- Section of Infection and Immunity, Leeds Institute of Medical Research, University of Leeds, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
6
|
Khair DO, Bax HJ, Mele S, Crescioli S, Pellizzari G, Khiabany A, Nakamura M, Harris RJ, French E, Hoffmann RM, Williams IP, Cheung A, Thair B, Beales CT, Touizer E, Signell AW, Tasnova NL, Spicer JF, Josephs DH, Geh JL, MacKenzie Ross A, Healy C, Papa S, Lacy KE, Karagiannis SN. Combining Immune Checkpoint Inhibitors: Established and Emerging Targets and Strategies to Improve Outcomes in Melanoma. Front Immunol 2019; 10:453. [PMID: 30941125 PMCID: PMC6435047 DOI: 10.3389/fimmu.2019.00453] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
The immune system employs several checkpoint pathways to regulate responses, maintain homeostasis and prevent self-reactivity and autoimmunity. Tumor cells can hijack these protective mechanisms to enable immune escape, cancer survival and proliferation. Blocking antibodies, designed to interfere with checkpoint molecules CTLA-4 and PD-1/PD-L1 and counteract these immune suppressive mechanisms, have shown significant success in promoting immune responses against cancer and can result in tumor regression in many patients. While inhibitors to CTLA-4 and the PD-1/PD-L1 axis are well-established for the clinical management of melanoma, many patients do not respond or develop resistance to these interventions. Concerted efforts have focused on combinations of approved therapies aiming to further augment positive outcomes and survival. While CTLA-4 and PD-1 are the most-extensively researched targets, results from pre-clinical studies and clinical trials indicate that novel agents, specific for checkpoints such as A2AR, LAG-3, IDO and others, may further contribute to the improvement of patient outcomes, most likely in combinations with anti-CTLA-4 or anti-PD-1 blockade. This review discusses the rationale for, and results to date of, the development of inhibitory immune checkpoint blockade combination therapies in melanoma. The clinical potential of new pipeline therapeutics, and possible future therapy design and directions that hold promise to significantly improve clinical prognosis compared with monotherapy, are discussed.
Collapse
Affiliation(s)
- Duaa O. Khair
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Heather J. Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Atousa Khiabany
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | | | - Elise French
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Ricarda M. Hoffmann
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Iwan P. Williams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, United Kingdom
| | - Benjamin Thair
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Charlie T. Beales
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Emma Touizer
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Adrian W. Signell
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Nahrin L. Tasnova
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - James F. Spicer
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Debra H. Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Jenny L. Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Alastair MacKenzie Ross
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' Hospitals, London, United Kingdom
| | - Sophie Papa
- School of Cancer & Pharmaceutical Sciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Katie E. Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| | - Sophia N. Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, Guy's Hospital, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Leoni V, Vannini A, Gatta V, Rambaldi J, Sanapo M, Barboni C, Zaghini A, Nanni P, Lollini PL, Casiraghi C, Campadelli-Fiume G. A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog 2018; 14:e1007209. [PMID: 30080893 PMCID: PMC6095629 DOI: 10.1371/journal.ppat.1007209] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/16/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022] Open
Abstract
Oncolytic herpes simplex viruses (oHSVs) showed efficacy in clinical trials and practice. Most of them gain cancer-specificity from deletions/mutations in genes that counteract the host response, and grow selectively in cancer cells defective in anti-viral response. Because of the deletions/mutations, they are frequently attenuated or over-attenuated. We developed next-generation oHSVs, which carry no deletion/mutation, gain cancer-specificity from specific retargeting to tumor cell receptors-e.g. HER2 (human epidermal growth factor receptor 2)-hence are fully-virulent in the targeted cancer cells. The type of immunotherapy they elicit was not predictable, since non-attenuated HSVs induce and then dampen the innate response, whereas deleted/attenuated viruses fail to contrast it, and since the retargeted oHSVs replicate efficiently in tumor cells, but spare other cells in the tumor. We report on the first efficacy study of HER2-retargeted, fully-virulent oHSVs in immunocompetent mice. Their safety profile was very high. Both the unarmed R-LM113 and the IL-12-armed R-115 inhibited the growth of the primary HER2-Lewis lung carcinoma-1 (HER2-LLC1) tumor, R-115 being constantly more efficacious. All the mice that did not die because of the primary treated tumors, were protected from the growth of contralateral untreated tumors. The long-term survivors were protected from a second contralateral tumor, providing additional evidence for an abscopal immunotherapeutic effect. Analysis of the local response highlighted that particularly R-115 unleashed the immunosuppressive tumor microenvironment, i.e. induced immunomodulatory cytokines, including IFNγ, T-bet which promoted Th1 polarization. Some of the tumor infiltrating cells, e.g. CD4+, CD335+ cells were increased in the tumors of all responders mice, irrespective of which virus was employed, whereas CD8+, Foxp3+, CD141+ were increased and CD11b+ cells were decreased preferentially in R-115-treated mice. The durable response included a breakage of tolerance towards both HER2 and the wt tumor cells, and underscored a systemic immunotherapeutic vaccine response.
Collapse
Affiliation(s)
- Valerio Leoni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Andrea Vannini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Julie Rambaldi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Mara Sanapo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Catia Barboni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Nanni
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pier-Luigi Lollini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Costanza Casiraghi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
8
|
Optimizing the Targeting of Mouse Parvovirus 1 to Murine Melanoma Selects for Recombinant Genomes and Novel Mutations in the Viral Capsid Gene. Viruses 2018; 10:v10020054. [PMID: 29385689 PMCID: PMC5850361 DOI: 10.3390/v10020054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 12/15/2022] Open
Abstract
Combining virus-enhanced immunogenicity with direct delivery of immunomodulatory molecules would represent a novel treatment modality for melanoma, and would require development of new viral vectors capable of targeting melanoma cells preferentially. Here we explore the use of rodent protoparvoviruses targeting cells of the murine melanoma model B16F10. An uncloned stock of mouse parvovirus 1 (MPV1) showed some efficacy, which was substantially enhanced following serial passage in the target cell. Molecular cloning of the genes of both starter and selected virus pools revealed considerable sequence diversity. Chimera analysis mapped the majority of the improved infectivity to the product of the major coat protein gene, VP2, in which linked blocks of amino acid changes and one or other of two apparently spontaneous mutations were selected. Intragenic chimeras showed that these represented separable components, both contributing to enhanced infection. Comparison of biochemical parameters of infection by clonal viruses indicated that the enhancement due to changes in VP2 operates after the virus has bound to the cell surface and penetrated into the cell. Construction of an in silico homology model for MPV1 allowed placement of these changes within the capsid shell, and revealed aspects of the capsid involved in infection initiation that had not been previously recognized.
Collapse
|
9
|
Dyer A, Di Y, Calderon H, Illingworth S, Kueberuwa G, Tedcastle A, Jakeman P, Chia SL, Brown A, Silva MA, Barlow D, Beadle J, Hermiston T, Ferguson DJ, Champion B, Fisher KD, Seymour LW. Oncolytic Group B Adenovirus Enadenotucirev Mediates Non-apoptotic Cell Death with Membrane Disruption and Release of Inflammatory Mediators. Mol Ther Oncolytics 2017; 4:18-30. [PMID: 28345021 PMCID: PMC5363721 DOI: 10.1016/j.omto.2016.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/28/2016] [Indexed: 11/22/2022] Open
Abstract
Enadenotucirev (EnAd) is a chimeric group B adenovirus isolated by bioselection from a library of adenovirus serotypes. It replicates selectively in and kills a diverse range of carcinoma cells, shows effective anticancer activity in preclinical systems, and is currently undergoing phase I/II clinical trials. EnAd kills cells more quickly than type 5 adenovirus, and speed of cytotoxicity is dose dependent. The EnAd death pathway does not involve p53, is predominantly caspase independent, and appears to involve a rapid fall in cellular ATP. Infected cells show early loss of membrane integrity; increased exposure of calreticulin; extracellular release of ATP, HSP70, and HMGB1; and influx of calcium. The virus also causes an obvious single membrane blister reminiscent of ischemic cell death by oncosis. In human tumor biopsies maintained in ex vivo culture, EnAd mediated release of pro-inflammatory mediators such as TNF-α, IL-6, and HMGB1. In accordance with this, EnAd-infected tumor cells showed potent stimulation of dendritic cells and CD4+ T cells in a mixed tumor-leukocyte reaction in vitro. Whereas many viruses have evolved for efficient propagation with minimal inflammation, bioselection of EnAd for rapid killing has yielded a virus with a short life cycle that combines potent cytotoxicity with a proinflammatory mechanism of cell death.
Collapse
Affiliation(s)
- Arthur Dyer
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Ying Di
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Hugo Calderon
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 4SD, UK
| | - Sam Illingworth
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 4SD, UK
| | - Gray Kueberuwa
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Alison Tedcastle
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Phil Jakeman
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Suet Lin Chia
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Alice Brown
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 4SD, UK
| | - Michael A. Silva
- Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - David Barlow
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - John Beadle
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 4SD, UK
| | - Terry Hermiston
- Bayer HealthCare, 455 Mission Bay Blvd. S., San Francisco, CA 94158, USA
| | - David J.P. Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, Oxford OX3 9DU, UK
| | - Brian Champion
- PsiOxus Therapeutics, Ltd., Milton Park, Abingdon OX14 4SD, UK
| | - Kerry D. Fisher
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
10
|
Faries MB. Intralesional Immunotherapy for Metastatic Melanoma: The Oldest and Newest Treatment in Oncology. Crit Rev Oncog 2016; 21:65-73. [PMID: 27481003 DOI: 10.1615/critrevoncog.2016017124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The last few years have yielded exciting developments in immunotherapy for cancer. The promise of cancer immunotherapy has been well known for many years, but had generally produced limited or inconsistent benefit to patients. Intralesional therapies, which are in fact one of the oldest forms of immunotherapy, are also demonstrating benefits in the modern age. This review discusses the origins of intralesional immunotherapy and its underlying rationale. It also discusses the reemergence of this mode of therapy into the modern era, which is where Donald L. Morton, subject of this edition of the journal, plays a major role. The review also discusses current areas of investigation. Given the intuitive advantages of this strategy and the demonstrated, expanding areas of clinical responses, it is likely that intralesional immunotherapy will remain a useful component of cancer treatment into the future.
Collapse
Affiliation(s)
- Mark B Faries
- John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404
| |
Collapse
|
11
|
Appleton ES, Turnbull S, Ralph C, West E, Scott K, Harrington K, Pandha H, Melcher A. Talimogene laherparepvec in the treatment of melanoma. Expert Opin Biol Ther 2015; 15:1517-30. [DOI: 10.1517/14712598.2015.1084280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Ther 2014; 21:283-9. [PMID: 24924199 DOI: 10.1038/cgt.2014.28] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/13/2014] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancers (TNBCs) have poor clinical outcomes owing to a lack of targeted therapies. Activation of the MEK/MAPK pathway in TNBC has been associated with resistance to conventional chemotherapy and biologic agents and has a significant role in poor clinical outcomes. NV1066, a replication-competent herpes virus, infected, replicated in and killed all TNBC cell lines (MDA-MB-231, HCC1806, HCC38, HCC1937, HCC1143) tested. Greater than 90% cell kill was achieved in more-sensitive lines (MDA-MB-231, HCC1806, HCC38) by day 6 at a multiplicity of infection (MOI) of 0.1. In less-sensitive lines (HCC1937, HCC1143), NV1066 still achieved >70% cell kill by day 7 (MOI 1.0). In vivo, mean volume of flank tumors 14 days after treatment with NV1066 was 57 versus 438 mm(3) in controls (P=0.002). NV1066 significantly downregulated p-MAPK activation by 48 h in all cell lines in vitro and in MDA-MB-231 xenografts in vivo. NV1066 demonstrated synergistic effects with a MEK inhibitor, PD98059 in vitro. We demonstrate that oncolytic viral therapy (NV1066) effectively treats TNBC with correlation to decreased MEK/MAPK signaling. These findings merit future studies investigating the potential role of NV1066 as a sensitizing agent for conventional chemotherapeutic and biologic agents by downregulating the MAPK signaling pathway.
Collapse
|
13
|
Viral oncolysis - can insights from measles be transferred to canine distemper virus? Viruses 2014; 6:2340-75. [PMID: 24921409 PMCID: PMC4074931 DOI: 10.3390/v6062340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Neoplastic diseases represent one of the most common causes of death among humans and animals. Currently available and applied therapeutic options often remain insufficient and unsatisfactory, therefore new and innovative strategies and approaches are highly needed. Periodically, oncolytic viruses have been in the center of interest since the first anecdotal description of their potential usefulness as an anti-tumor treatment concept. Though first reports referred to an incidental measles virus infection causing tumor regression in a patient suffering from lymphoma several decades ago, no final treatment concept has been developed since then. However, numerous viruses, such as herpes-, adeno- and paramyxoviruses, have been investigated, characterized, and modified with the aim to generate a new anti-cancer treatment option. Among the different viruses, measles virus still represents a highly interesting candidate for such an approach. Numerous different tumors of humans including malignant lymphoma, lung and colorectal adenocarcinoma, mesothelioma, and ovarian cancer, have been studied in vitro and in vivo as potential targets. Moreover, several concepts using different virus preparations are now in clinical trials in humans and may proceed to a new treatment option. Surprisingly, only few studies have investigated viral oncolysis in veterinary medicine. The close relationship between measles virus (MV) and canine distemper virus (CDV), both are morbilliviruses, and the fact that numerous tumors in dogs exhibit similarities to their human counterpart, indicates that both the virus and species dog represent a highly interesting translational model for future research in viral oncolysis. Several recent studies support such an assumption. It is therefore the aim of the present communication to outline the mechanisms of morbillivirus-mediated oncolysis and to stimulate further research in this potentially expanding field of viral oncolysis in a highly suitable translational animal model for the benefit of humans and dogs.
Collapse
|
14
|
Kaufman HL, Kim DW, Kim-Schulze S, DeRaffele G, Jagoda MC, Broucek JR, Zloza A. Results of a randomized phase I gene therapy clinical trial of nononcolytic fowlpox viruses encoding T cell costimulatory molecules. Hum Gene Ther 2014; 25:452-60. [PMID: 24484178 DOI: 10.1089/hum.2013.217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have shown promise as gene delivery vehicles in the treatment of cancer; however, their efficacy may be inhibited by the induction of anti-viral antibody titers. Fowlpox virus is a nonreplicating and nononcolytic vector that has been associated with lesser humoral but greater cell-mediated immunity in animal tumor models. To test whether fowlpox virus gene therapy is safe and can elicit immune responses in patients with cancer, we conducted a randomized phase I clinical trial of two recombinant fowlpox viruses encoding human B7.1 or a triad of costimulatory molecules (B7.1, ICAM-1, and LFA-3; TRICOM). Twelve patients (10 with melanoma and 2 with colon adenocarcinoma) enrolled in the trial and were randomized to rF-B7.1 or rF-TRICOM administered in a dose escalation manner (~3.7×10(7) or ~3.7×10(8) plaque-forming units) by intralesional injection every 4 weeks. The therapy was well tolerated, with only four patients experiencing grade 1 fever or injection site pain, and there were no serious adverse events. All patients developed anti-viral antibody titers after vector delivery, and posttreatment anti-carcinoembryonic antigen antibody titers were detected in the two patients with colon cancer. All patients developed CD8(+) T cell responses against fowlpox virus, but few responses against defined tumor-associated antigens were observed. This is the first clinical trial of direct (intratumoral) gene therapy with a nononcolytic fowlpox virus. Treatment was well tolerated in patients with metastatic cancer; all subjects exhibited anti-viral antibody responses, but limited tumor-specific T cell responses were detected. Nononcolytic fowlpox viruses are safe and induce limited T cell responses in patients with cancer. Further development may include prime-boost strategies using oncolytic viruses for initial priming.
Collapse
Affiliation(s)
- Howard L Kaufman
- 1 Rutgers Cancer Institute of New Jersey, Rutgers University , New Brunswick, NJ 08903
| | | | | | | | | | | | | |
Collapse
|
15
|
Bauzon M, Hermiston T. Armed therapeutic viruses - a disruptive therapy on the horizon of cancer immunotherapy. Front Immunol 2014; 5:74. [PMID: 24605114 PMCID: PMC3932422 DOI: 10.3389/fimmu.2014.00074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022] Open
Abstract
For the past 150 years cancer immunotherapy has been largely a theoretical hope that recently has begun to show potential as a highly impactful treatment for various cancers. In particular, the identification and targeting of immune checkpoints have given rise to exciting data suggesting that this strategy has the potential to activate sustained antitumor immunity. It is likely that this approach, like other anti-cancer strategies before it, will benefit from co-administration with an additional therapeutic and that it is this combination therapy that may generate the greatest clinical outcome for the patient. In this regard, oncolytic viruses are a therapeutic moiety that is well suited to deliver and augment these immune-modulating therapies in a highly targeted and economically advantageous way over current treatment. In this review, we discuss the blockade of immune checkpoints, how oncolytic viruses complement and extend these therapies, and speculate on how this combination will uniquely impact the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Maxine Bauzon
- Bayer HealthCare, US Innovation Center, Biologics Research , San Francisco, CA , USA
| | - Terry Hermiston
- Bayer HealthCare, US Innovation Center, Biologics Research , San Francisco, CA , USA
| |
Collapse
|
16
|
Liu YP, Suksanpaisan L, Steele MB, Russell SJ, Peng KW. Induction of antiviral genes by the tumor microenvironment confers resistance to virotherapy. Sci Rep 2014; 3:2375. [PMID: 23921465 PMCID: PMC3736178 DOI: 10.1038/srep02375] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/22/2013] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses obliterate tumor cells in tissue culture but not against the same tumors in vivo. We report that macrophages can induce a powerfully protective antiviral state in ovarian and breast tumors, rendering them resistant to oncolytic virotherapy. These tumors have activated JAK/STAT pathways and expression of interferon-stimulated genes (ISGs) is upregulated. Gene expression profiling (GEP) of human primary ovarian and breast tumors confirmed constitutive activation of ISGs. The tumors were heavily infiltrated with CD68+ macrophages. Exposure of OV-susceptible tumor cell lines to conditioned media from RAW264.7 or primary macrophages activated antiviral ISGs, JAK/STAT signaling and an antiviral state. Anti-IFN antibodies and shRNA knockdown studies show that this effect is mediated by an extremely low concentration of macrophage-derived IFNβ. JAK inhibitors reversed the macrophage-induced antiviral state. This study points to a new role for tumor-associated macrophages in the induction of a constitutive antiviral state that shields tumors from viral attack.
Collapse
Affiliation(s)
- Yu-Ping Liu
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | |
Collapse
|
17
|
Workenhe ST, Mossman KL. Oncolytic virotherapy and immunogenic cancer cell death: sharpening the sword for improved cancer treatment strategies. Mol Ther 2013; 22:251-256. [PMID: 24048442 DOI: 10.1038/mt.2013.220] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/10/2013] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses are novel immunotherapeutics with increasingly promising outcomes in cancer patient clinical trials. Preclinical and clinical studies have uncovered the importance of virus-induced activation of antitumor immune responses for optimal therapeutic efficacy. Recently, several classes of chemotherapeutics have been shown to cause immunogenic cancer cell death characterized by the release of immunomodulatory molecules that activate antigen-presenting cells and thus trigger the induction of more potent anticancer adaptive immune responses. In preclinical models, several oncolytic viruses induce immunogenic cell death, which is associated with increased cross-priming of tumor-associated antigens. In this review, we discuss the recent advances in immunogenic cancer cell death as induced by chemotherapeutic treatments, including the roles of relevant danger-associated molecular patterns and signaling pathways, and highlighting the significance of the endoplasmic reticulum (ER) stress response. As virtually all viruses modulate both ER stress and cell death responses, we provide perspectives on future research directions that can be explored to optimize oncolytic viruses, alone or in combination with targeted drug therapies, as potent immunogenic cancer cell death-inducing agents. We propose that such optimized virus-drug synergistic strategies will improve the therapeutic outcomes for many currently intractable cancers.
Collapse
Affiliation(s)
- Samuel T Workenhe
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Karen L Mossman
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
18
|
Mohit E, Rafati S. Biological delivery approaches for gene therapy: strategies to potentiate efficacy and enhance specificity. Mol Immunol 2013; 56:599-611. [PMID: 23911418 DOI: 10.1016/j.molimm.2013.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/20/2022]
Abstract
Nowadays many therapeutic agents such as suicide genes, anti-angiogenesis agents, cytokines, chemokines and other therapeutic genes were delivered to cancer cells. Various biological delivery systems have been applied for directing therapeutic gene to target cells. Some of these successful preclinical studies, steps forward to clinical trials and a few are examined in phase III clinical trials. In this review, the biological gene delivery systems were categorized into microorganism and cell based delivery systems. Viral, bacterial, yeast and parasite are among microorganism based delivery systems which are expanded in this review. In cell based approach, different strategies such as tumor cells, stem cells, dendritic cells and sertoli cells will be discussed. Different drawbacks are associated with each delivery system; therefore, many strategies have been improved and potentiated their direction toward specific target cells. Herein, further to the principle of each delivery system, the progresses of these approaches for development of newer generation are discussed.
Collapse
Affiliation(s)
- Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
19
|
Triple-negative breast cancer: new perspectives for novel therapies. Med Oncol 2013; 30:653. [DOI: 10.1007/s12032-013-0653-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/24/2013] [Indexed: 01/13/2023]
|
20
|
Xu C, Li H, Su C, Li Z. Viral therapy for pancreatic cancer: tackle the bad guys with poison. Cancer Lett 2013; 333:1-8. [PMID: 23354590 DOI: 10.1016/j.canlet.2013.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is one of the most devastating diseases with very poor prognosis. Only a small proportion is curable by surgical resection, whilst standard chemotherapy for patients with advanced disease has only modest effect with substantial toxicity. Therefore, there is an urgent need for the development of novel therapeutic approaches to improve the patient outcome. Recently the viral therapy is emerging as a novel effective therapeutic approach for cancer with the potential to selectively treat both primary tumor and metastatic lesions. This review provides an overview of the current status of viral treatment for pancreatic cancer, both in the laboratories and in clinical settings.
Collapse
Affiliation(s)
- Can Xu
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | | | | | | |
Collapse
|
21
|
Abstract
A common-cold virus uses an undercover strategy to avoid neutralizing antibodies in cancer patients and targets distant sites of metastatic cancer growth.
Collapse
Affiliation(s)
- John C Bell
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, and Department of Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada.
| |
Collapse
|
22
|
Hiss DC, Fielding BC. Optimization and preclinical design of genetically engineered viruses for human oncolytic therapy. Expert Opin Biol Ther 2012; 12:1427-47. [PMID: 22788715 DOI: 10.1517/14712598.2012.707183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oncolytic viruses (OVs) occupy a strategic niche in the dynamic era of biological and gene therapy of human cancers. However, the use of OVs is the subject of close scrutiny due to impediments such as the insufficiency of patient generalizations posed by heterogeneous tumor responses to treatment, inherent or potentially lethal viral pathogenicities, unanticipated host- or immune-related adverse effects, and the emergence of virus-resistant cancer cells. These challenges can be overcome by the design and development of more definitive (optimized, targeted, and individualized) cancer virotherapeutics. AREAS COVERED The translation of current knowledge and recent innovations into rational treatment prospects hinges on an iterative loop of variables pertaining to genetically engineered viral oncolytic efficacy and safety profiles, mechanism-of-action data, potencies of synergistic oncolytic viral combinations with conventional tumor, immuno-, chemo-, and radiation treatment modalities, optimization of the probabilities of treatment successes in heterogeneous (virus-sensitive and -resistant) tumor cell populations by mathematical modeling, and lessons learned from preclinical studies and human clinical trials. EXPERT OPINION In recent years, it has become increasingly clear that proof-of-principle is critical for the preclinical optimization of oncolytic viruses to target heterogeneous forms of cancer and to prioritize current concerns related to the efficacy and safety of oncolytic virotherapy.
Collapse
Affiliation(s)
- Donavon C Hiss
- University of the Western Cape, Department of Medical Biosciences, Molecular Oncology Research Laboratory, Bellville, 7535, South Africa.
| | | |
Collapse
|
23
|
Affiliation(s)
- Rebecca Auer
- Ottawa Health Research Institute Ottawa, Ontario, K1H 8L6, Canada
| | - John C Bell
- Ottawa Health Research Institute Ottawa, Ontario, K1H 8L6, Canada
| |
Collapse
|
24
|
Sondak VK, Han D, Deneve J, Kudchadkar R. Current and planned multicenter trials for patients with primary or metastatic melanoma. J Surg Oncol 2011; 104:430-7. [PMID: 21858839 DOI: 10.1002/jso.21867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multicenter clinical trials have established new standards of care in the surgical and medical management of malignant melanoma. They have led to the testing of new therapies and improved outcomes for patients with loco-regional and distant disease. Many pressing questions remain, however, and additional multicenter trials are currently underway to address them. The purpose of this review is to summarize relevant ongoing and planned multicenter trials that have and continue to define current melanoma management.
Collapse
Affiliation(s)
- Vernon K Sondak
- The Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA.
| | | | | | | |
Collapse
|
25
|
Sivendran S, Glodny B, Pan M, Merad M, Saenger Y. Melanoma Immunotherapy. ACTA ACUST UNITED AC 2010; 77:620-42. [DOI: 10.1002/msj.20215] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|