1
|
Escamilla J, Schokrpur S, Liu C, Priceman SJ, Moughon D, Jiang Z, Pouliot F, Magyar C, Sung JL, Xu J, Deng G, West BL, Bollag G, Fradet Y, Lacombe L, Jung ME, Huang J, Wu L. CSF1 receptor targeting in prostate cancer reverses macrophage-mediated resistance to androgen blockade therapy. Cancer Res 2015; 75:950-62. [PMID: 25736687 DOI: 10.1158/0008-5472.can-14-0992] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growing evidence suggests that tumor-associated macrophages (TAM) promote cancer progression and therapeutic resistance by enhancing angiogenesis, matrix-remodeling, and immunosuppression. In this study, prostate cancer under androgen blockade therapy (ABT) was investigated, demonstrating that TAMs contribute to prostate cancer disease recurrence through paracrine signaling processes. ABT induced the tumor cells to express macrophage colony-stimulating factor 1 (M-CSF1 or CSF1) and other cytokines that recruit and modulate macrophages, causing a significant increase in TAM infiltration. Inhibitors of CSF1 signaling through its receptor, CSF1R, were tested in combination with ABT, demonstrating that blockade of TAM influx in this setting disrupts tumor promotion and sustains a more durable therapeutic response compared with ABT alone.
Collapse
Affiliation(s)
- Jemima Escamilla
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Shiruyeh Schokrpur
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Connie Liu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Saul J Priceman
- Department of Cancer Immunotherapeutics and Tumor Immunology, Beckman Research Institute at City of Hope, Duarte, California
| | - Diana Moughon
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ziyue Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California. Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Frederic Pouliot
- Department of Surgery, Urology Division, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Clara Magyar
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - James L Sung
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jingying Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gang Deng
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| | | | | | - Yves Fradet
- Department of Surgery, Urology Division, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Louis Lacombe
- Department of Surgery, Urology Division, Centre Hospitalier Universitaire de Québec, Québec, Québec, Canada
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California. Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
2
|
Kim JW, Bilusic M, Heery CJ, Madan RA. Therapeutic cancer vaccines in prostate cancer: the quest for intermediate markers of response. Cancers (Basel) 2012; 4:1229-46. [PMID: 24213505 PMCID: PMC3712729 DOI: 10.3390/cancers4041229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 11/17/2022] Open
Abstract
Despite recent advances in cancer immunotherapy, no prospectively validated intermediate biomarkers exist to predict response. These biomarkers are highly desirable given modern immunotherapy's paradoxical pattern of clinical benefit; that is, improvement in overall survival without short-term change in progression. Immunotherapy clinical trials have evaluated biomarkers that may correlate with clinical outcomes. Many of them are performed on peripheral blood to evaluate the systemic response, such as tumor-targeted humoral and cellular immunity, and cytokine responses. Accumulating evidence suggests that immune infiltrates in tumors may suggest evidence for the therapy's mechanism of action, and have greater potential for providing prognostic and predictive information. In addition, a non-immunologic biomarker, such as tumor growth kinetics, may explain this paradoxical pattern of clinical benefit, and predict survival in patients treated with an immunotherapy. Prospective assessment and validation of these and other intermediate markers would be required to better understand their potential clinical role.
Collapse
Affiliation(s)
- Joseph W Kim
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
3
|
Maslinic acid inhibits the metastatic capacity of DU145 human prostate cancer cells: possible mediation via hypoxia-inducible factor-1α signalling. Br J Nutr 2012; 109:210-22. [PMID: 22716951 DOI: 10.1017/s0007114512000967] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maslinic acid is found in various natural sources, most notably in pomace olive oil, and exerts pro-apoptotic activities in various cancer cells in vitro. In the present study, DU145 human prostate cancer cells were cultured with 0-25 μm-maslinic acid to examine the effects of maslinic acid on the metastatic capacity of prostate cancer cells. Maslinic acid significantly (P <0.05) inhibited the basal and epidermal growth factor (EGF)-induced migration (27-64 %), invasion (23-60 %) and adhesion (8-40 %) of DU145 cells. Maslinic acid significantly (P <0·05) down-regulated both basal and EGF-stimulated secretion of matrix metalloproteinase (MMP)-9 (25-67 %), MMP-2 (50-86 %), urokinase-type plasminogen activator (uPA, about 100 %), vascular endothelial growth factor (VEGF, 98-100 %) and tissue inhibitors of metalloproteinases (TIMP)-1, as well as expression of uPA receptor (uPAR), intercellular adhesion molecules (22-33 %), vascular cell adhesion molecules (23-46 %) and E-cadherin, whereas it increased TIMP-2 secretion. Maslinic acid dramatically reduced the levels of hypoxia-inducible factor-1α (HIF-1α) protein and mRNA; the reduction was accompanied by reduced stability, nuclear levels and transcriptional activity of HIF-1α. The levels of phospho-Akt and phospho-extracellular signal-related kinase (ERK) were reduced in cells treated with maslinic acid, and the phosphoinositide 3-kinase inhibitor LY294002 and the mitogen-activated protein kinase kinase inhibitor PD98059 reduced HIF-1α levels and VEGF secretion. The results show that maslinic acid markedly inhibited the migration, invasion and adhesion of DU145 prostate cancer cells. Suppressing HIF-1α activation by inhibiting Akt and ERK activation may be part of the mechanism by which maslinic acid inhibited uPAR, E-cadherin, VEGF and MMP expression in DU145 cells.
Collapse
|
4
|
Ouzaid I, Ravery V. [Sipuleucel-T: a prostate cancer vaccine: "instructions for use" for urologists]. Prog Urol 2011; 21:595-8. [PMID: 21943654 DOI: 10.1016/j.purol.2011.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 04/06/2011] [Accepted: 06/07/2011] [Indexed: 11/25/2022]
Abstract
Sipuleucel-T is the first approved vaccine for prostate cancer, opening the pathway for this new treatment approach. The treatment process consists in isolating the patient dentritic cells via leukapherisis, stimulate and infuse them into the patient. These enhanced cells are then able to stimulate patient T lymphocytes to target the tumour cells. The median survival in the pivotal study, IMPACT, as well as in the previously reported randomised trials, was 4.1 months longer in the sipuleucel-T group. The estimated probability of survival 36 months after randomisation was 31.7% in the sipuleucel-T group and 23.0% in the placebo group. However, the median time to objective disease progression was similar in the two groups (hazard ratio: 0.95; 95% CI, 0.77 to 1.17; P=0.63). We report herein, the treatment modalities, side effects and results in the light of recently published randomised trials.
Collapse
Affiliation(s)
- I Ouzaid
- Université Paris Diderot, clinique urologique, hôpital Bichat Claude-Bernard, AP-HP, Paris, France.
| | | |
Collapse
|
5
|
Alpizar YA, Chain B, Collins MK, Greenwood J, Katz D, Stauss HJ, Mitchison NA. Ten years of progress in vaccination against cancer: the need to counteract cancer evasion by dual targeting in future therapies. Cancer Immunol Immunother 2011; 60:1127-35. [PMID: 21479639 PMCID: PMC11028423 DOI: 10.1007/s00262-011-0985-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/31/2011] [Indexed: 12/19/2022]
Abstract
Although cancer immunology has made vigorous progress over the last decade, its future remains uncertain. Tumors have clearly proved subject to immune surveillance, leading to antigenic editing, and means of activating both T and B arms of the immune system have been devised. Therapeutic vaccination and monoclonal antibody therapy have so far proved disappointing, because tumors prove adept at evasion from immune control. Dual targeting could well counteract evasion, provided that the two targets are independent and are attacked simultaneously. This stage has nearly but not quite been reached in several forms of immunotherapy, particularly of B-cell cancers, although such treatment also carries hazards.
Collapse
Affiliation(s)
| | - Benjamin Chain
- Division of Infection and Immunity, University College London (UCL), London, UK
| | - Mary K. Collins
- Division of Infection and Immunity, University College London (UCL), London, UK
| | - John Greenwood
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - David Katz
- Division of Infection and Immunity, University College London (UCL), London, UK
| | - Hans J. Stauss
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | | |
Collapse
|
6
|
Melcher A, Parato K, Rooney CM, Bell JC. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther 2011; 19:1008-16. [PMID: 21505424 DOI: 10.1038/mt.2011.65] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For the last several decades, the development of antitumor immune-based strategies and the engineering and testing of oncolytic viruses (OVs) has occurred largely in parallel tracks. Indeed, the immune system is often thought of as an impediment to successful oncolytic virus delivery and efficacy. More recently, however, both preclinical and clinical results have revealed potential synergy between these two promising therapeutic strategies. Here, we summarize some of the evidence that supports combining OVs with immuno-therapeutics and suggest new ways to mount a multipronged biological attack against cancers.
Collapse
Affiliation(s)
- Alan Melcher
- Targeted and Biological Therapies Group, Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St James's University Hospital, Leeds, UK
| | | | | | | |
Collapse
|