1
|
Glen WB, Peterseim MMW, Badilla R, Znoyko I, Bourg A, Wilson R, Hardiman G, Wolff D, Martinez J. A high prevalence of biallelic RPE65 mutations in Costa Rican children with Leber congenital amaurosis and early-onset retinal dystrophy. Ophthalmic Genet 2019; 40:110-117. [PMID: 30870047 DOI: 10.1080/13816810.2019.1582069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Leber congenital amaurosis (LCA) and early-onset retinal dystrophy (EORD), are primary causes of inherited childhood blindness. Both are autosomal recessive diseases, with mutations in more than 25 genes explaining approximately ~70% of cases. However, the genetic cause for many cases remains unclear. Sequencing studies from genetically isolated populations with increased prevalence of a disorder has proven useful for rare variant studies, making Costa Rica an ideal place to study LCA/EORD genetics. MATERIALS AND METHODS Twenty-eight affected children (25 LCA, three EORD) and their immediate family members, totaling 52 individuals (30 affected) from 22 families, were sequenced. Whole exome sequencing was performed on all affected individuals. Available parents were analyzed either by whole exome sequencing (WES) or Sanger sequencing to determine transmission. RESULTS All affected individuals demonstrated compound heterozygous or homozygous mutations in known Inherited Retinal Disease (IRD) associated genes. Twelve variants were identified in at least one individual in three genes, RDH12, RPE65, and USH2A. Four recurrent RPE65 mutations were observed in 97% of individuals and 95% of families. All patients with LCA and two of the three individuals with EORD had biallelic mutations in RPE65; one child with EORD had a homozygous RDH12 mutation. CONCLUSIONS These data suggest that the majority of LCA/EORD in Costa Rica is due to four founder mutations in RPE65 which have been maintained in this genetically isolated population. This finding is of great clinical significance due to the availability of gene therapy recently approved in the US and European Union for patients with biallelic RPE65 defects.
Collapse
Affiliation(s)
- W Bailey Glen
- a Pathology and Laboratory Medicine , Medical University of South Carolina.,b Center for Genomic Medicine , Medical University of South Carolina
| | | | - Ramses Badilla
- d Genetics and Metabolism , National Children's Hospital , San José , Costa Rica.,e Caja Costarricense del Seguro Social
| | - Iya Znoyko
- a Pathology and Laboratory Medicine , Medical University of South Carolina
| | - Andre Bourg
- f Department of Medicine , Medical University of South Carolina
| | - Robert Wilson
- a Pathology and Laboratory Medicine , Medical University of South Carolina.,b Center for Genomic Medicine , Medical University of South Carolina
| | - Gary Hardiman
- b Center for Genomic Medicine , Medical University of South Carolina.,f Department of Medicine , Medical University of South Carolina.,g Institute for Global Food Security , Queen's University Belfast
| | - Daynna Wolff
- a Pathology and Laboratory Medicine , Medical University of South Carolina
| | - Joaquin Martinez
- e Caja Costarricense del Seguro Social.,h Division of Ophthalmology , National Children's Hospital , San José , Costa Rica
| |
Collapse
|
2
|
Wiley LA, Burnight ER, Kaalberg EE, Jiao C, Riker MJ, Halder JA, Luse MA, Han IC, Russell SR, Sohn EH, Stone EM, Tucker BA, Mullins RF. Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants. Hum Gene Ther 2018; 29:424-436. [PMID: 29160116 DOI: 10.1089/hum.2017.179] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Advances in the discovery of the causes of monogenic retinal disorders, combined with technologies for the delivery of DNA to the retina, offer enormous opportunities for the treatment of previously untreatable blinding diseases. However, for gene augmentation to be most effective, vectors that have the correct cell-type specificity are needed. While animal models are very useful, they often exhibit differences in retinal cell surface receptors compared to the human retina. This study evaluated the use of an ex vivo organotypic explant system to test the transduction efficiency and tropism of seven different adeno-associated virus type 2 (AAV2) serotypes in the human retina and retinal pigment epithelium-choroid-AAV2/1, AAV2/2, AAV2/4, AAV2/5, AAV2/6, AAV2/8, and AAV2/9-all driving expression of GFP under control of the cytomegalovirus promoter. After 7 days in culture, it was found that AAV2/4 and AAV2/5 were particularly efficient at transducing photoreceptor cells and that AAV2/5 was highly specific to the outer nuclear layer, whereas AAV2/8 displayed consistently low transduction of photoreceptors. To validate the authenticity of the organotypic culture system, the transduction of the same set of AAVs was also compared in a pig model, in which sub-retinal injections in vivo were compared to cultured and transduced organotypic cultures ex vivo. This study shows how different AAV serotypes behave in the human retina and provides insight for further investigation of each of these serotypes for gene augmentation-based treatment of inherited retinal degeneration.
Collapse
Affiliation(s)
- Luke A Wiley
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Erin R Burnight
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Emily E Kaalberg
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Chunhua Jiao
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Megan J Riker
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jennifer A Halder
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Meagan A Luse
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Ian C Han
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Stephen R Russell
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Elliott H Sohn
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Edwin M Stone
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Budd A Tucker
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert F Mullins
- 1 Stephen A. Wynn Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
3
|
Öner A. Recent Advancements in Gene Therapy for Hereditary Retinal Dystrophies. Turk J Ophthalmol 2017; 47:338-343. [PMID: 29326851 PMCID: PMC5758769 DOI: 10.4274/tjo.41017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 04/20/2017] [Indexed: 12/01/2022] Open
Abstract
Hereditary retinal dystrophies (HRDs) are degenerative diseases of the retina which have marked clinical and genetic heterogeneity. Common presentations among these disorders include night or colour blindness, tunnel vision, and subsequent progression to complete blindness. The known causative disease genes have a variety of developmental and functional roles, with mutations in more than 120 genes shown to be responsible for the phenotypes. In addition, mutations within the same gene have been shown to cause different disease phenotypes, even amongst affected individuals within the same family, highlighting further levels of complexity. The known disease genes encode proteins involved in retinal cellular structures, phototransduction, the visual cycle, and photoreceptor structure or gene regulation. Significant advancements have been made in understanding the genetic pathogenesis of ocular diseases, and gene replacement and gene silencing have been proposed as potentially efficacious therapies. Because of its favorable anatomical and immunological characteristics, the eye has been at the forefront of translational gene therapy. Recent improvements have been made in the safety and specificity of vector-based ocular gene transfer methods. Dozens of promising proofs of concept have been obtained in animal models of HRDs and some of them have been relayed to the clinic. The results from the first clinical trials for a congenital form of blindness have generated great interest and have demonstrated the safety and efficacy of intraocular administrations of viral vectors in humans. This review summarizes the clinical development of retinal gene therapy.
Collapse
Affiliation(s)
- Ayşe Öner
- Erciyes University Faculty of Medicine, Department of Ophthalmology, Kayseri, Turkey
| |
Collapse
|
4
|
Zheng W, Meng Q, Wang H, Yan F, Little PJ, Deng X, Lin S. IGF-1-Mediated Survival from Induced Death of Human Primary Cultured Retinal Pigment Epithelial Cells Is Mediated by an Akt-Dependent Signaling Pathway. Mol Neurobiol 2017; 55:1915-1927. [PMID: 28238097 DOI: 10.1007/s12035-017-0447-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/06/2017] [Indexed: 10/20/2022]
Abstract
Degeneration of the human retinal pigmented epithelium (hRPE) is involved in several eye disorders such as age-related macular degeneration (AMD). In this study, we investigated the protective effect of IGF-1 on human primary cultured RPE cells and its underlying mechanism. IGF-1 dose- and time-dependently promoted the survival of RPE cells from serum deprivation. Western blot showed that IGF-1 stimulated the activation of the PI3K/Akt and MAPK pathways in hRPE. Inhibition of the PI3K/Akt pathway by the PI3K-specific inhibitor, LY294002 or inhibition of Akt by Akt-specific inhibitors Akt inhibitor VIII or SN-38, or downregulation Akt with siRNA specific for Akt blocked the effect of IGF-1 on hRPE. In contrast, blockade of the MAPK pathway with a specific inhibitor PD98059 had no effect. Interestingly, vitreous IGF-1 injection reversed the inhibitory effect of light exposure (a dry AMD model) on both a wave and b wave. Immunocytochemistry showed that vitreous IGF-1 injections promoted the survival of RPE cells in rat retina and the expression of RPE65 in RPE cells from light injury. These results indicate that IGF-1 is able to protect hRPE cell from different insults in vivo and in vitro. Further detailed studies may lead the way to a therapeutic intervention for retinal diseases in which cell death is an underlying contributory mechanism.
Collapse
Affiliation(s)
- Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Room 4021, Building E12, Avenida de Universidade, Taipa, Macau, China. .,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Qian Meng
- Faculty of Health Sciences, University of Macau, Room 4021, Building E12, Avenida de Universidade, Taipa, Macau, China
| | - Haitao Wang
- Faculty of Health Sciences, University of Macau, Room 4021, Building E12, Avenida de Universidade, Taipa, Macau, China.,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fengxia Yan
- Faculty of Health Sciences, University of Macau, Room 4021, Building E12, Avenida de Universidade, Taipa, Macau, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence (PACE), The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia
| | - Xinguo Deng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaofen Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Wiley LA, Burnight ER, Drack AV, Banach BB, Ochoa D, Cranston CM, Madumba RA, East JS, Mullins RF, Stone EM, Tucker BA. Using Patient-Specific Induced Pluripotent Stem Cells and Wild-Type Mice to Develop a Gene Augmentation-Based Strategy to Treat CLN3-Associated Retinal Degeneration. Hum Gene Ther 2016; 27:835-846. [PMID: 27400765 DOI: 10.1089/hum.2016.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a childhood neurodegenerative disease with early-onset, severe central vision loss. Affected children develop seizures and CNS degeneration accompanied by severe motor and cognitive deficits. There is no cure for JNCL, and patients usually die during the second or third decade of life. In this study, independent lines of induced pluripotent stem cells (iPSCs) were generated from two patients with molecularly confirmed mutations in CLN3, the gene mutated in JNCL. Clinical-grade adeno-associated adenovirus serotype 2 (AAV2) carrying the full-length coding sequence of human CLN3 was generated in a U.S. Food and Drug Administration-registered cGMP facility. AAV2-CLN3 was efficacious in restoring full-length CLN3 transcript and protein in patient-specific fibroblasts and iPSC-derived retinal neurons. When injected into the subretinal space of wild-type mice, purified AAV2-CLN3 did not show any evidence of retinal toxicity. This study provides proof-of-principle for initiation of a clinical trial using AAV-mediated gene augmentation for the treatment of children with CLN3-associated retinal degeneration.
Collapse
Affiliation(s)
- Luke A Wiley
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Erin R Burnight
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Bailey B Banach
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Dalyz Ochoa
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Cathryn M Cranston
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert A Madumba
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jade S East
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert F Mullins
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Edwin M Stone
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Budd A Tucker
- Department of Ophthalmology and Visual Sciences, Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
6
|
Wang Y, Rajala A, Rajala RVS. Lipid Nanoparticles for Ocular Gene Delivery. J Funct Biomater 2015; 6:379-94. [PMID: 26062170 PMCID: PMC4493518 DOI: 10.3390/jfb6020379] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/01/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023] Open
Abstract
Lipids contain hydrocarbons and are the building blocks of cells. Lipids can naturally form themselves into nano-films and nano-structures, micelles, reverse micelles, and liposomes. Micelles or reverse micelles are monolayer structures, whereas liposomes are bilayer structures. Liposomes have been recognized as carriers for drug delivery. Solid lipid nanoparticles and lipoplex (liposome-polycation-DNA complex), also called lipid nanoparticles, are currently used to deliver drugs and genes to ocular tissues. A solid lipid nanoparticle (SLN) is typically spherical, and possesses a solid lipid core matrix that can solubilize lipophilic molecules. The lipid nanoparticle, called the liposome protamine/DNA lipoplex (LPD), is electrostatically assembled from cationic liposomes and an anionic protamine-DNA complex. The LPD nanoparticles contain a highly condensed DNA core surrounded by lipid bilayers. SLNs are extensively used to deliver drugs to the cornea. LPD nanoparticles are used to target the retina. Age-related macular degeneration, retinitis pigmentosa, and diabetic retinopathy are the most common retinal diseases in humans. There have also been promising results achieved recently with LPD nanoparticles to deliver functional genes and micro RNA to treat retinal diseases. Here, we review recent advances in ocular drug and gene delivery employing lipid nanoparticles.
Collapse
Affiliation(s)
- Yuhong Wang
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104, USA.
- Department of Ophthalmology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73014, USA.
| | - Ammaji Rajala
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104, USA.
- Department of Ophthalmology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73014, USA.
| | - Raju V S Rajala
- Dean A. McGee Eye Institute, Oklahoma City, OK 73104, USA.
- Department of Ophthalmology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73014, USA.
- Department of Physiology and Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73014, USA.
| |
Collapse
|
7
|
Bello A, Chand A, Aviles J, Soule G, Auricchio A, Kobinger GP. Novel adeno-associated viruses derived from pig tissues transduce most major organs in mice. Sci Rep 2014; 4:6644. [PMID: 25335510 PMCID: PMC4205840 DOI: 10.1038/srep06644] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 09/30/2014] [Indexed: 01/12/2023] Open
Abstract
Recently, development of Adeno-associated virus (AAV) vectors has been focusing on expanding the genetic diversity of vectors from existing sequences via directed evolution or epitope remapping. Apart from intelligent design, AAV isolation from natural sources remains an important source of new AAVs with unique biological features. In this study, several new AAV sequences were isolated from porcine tissues (AAVpo2.1, -po4, -po5, and -po6), which aligned in divergent new clades. Viral particles generated from these sequences displayed tissue tropism and transduction efficiency profile specific to each porcine-derived AAV. When delivered systemically, AAVpo2.1 targeted the heart, kidney, and muscle, AAVpo5 performed poorly but was able to transduce muscle fibers when injected intramuscularly, whereas AAVpo4 and -po6 efficiently transduced all the major organs sampled, contending with ‘gold-standard’ AAVs. When delivered systemically, AAVpo4 and -po6 were detected by polymerase chain reaction (PCR) and histochemical staining of the transgene product in adult mouse brain, suggesting that these vectors can pass through the blood-brain barrier with efficiencies that may be useful for the development of therapeutic approaches. Porcine tissues are antigenically similar to human tissues and by inference, porcine AAVs may provide fresh tools to contribute to the development of gene therapy-based solutions to human diseases.
Collapse
Affiliation(s)
- Alexander Bello
- 1] Public Health Agency of Canada, National Microbiology Laboratory, Special Pathogens Program, Winnipeg, Canada [2] University of Manitoba, Department of Medical Microbiology
| | - Allan Chand
- 1] Public Health Agency of Canada, National Microbiology Laboratory, Special Pathogens Program, Winnipeg, Canada [2] University of Manitoba, Department of Medical Microbiology
| | - Jenna Aviles
- 1] Public Health Agency of Canada, National Microbiology Laboratory, Special Pathogens Program, Winnipeg, Canada [2] Department of Immunology, Winnipeg, Canada
| | - Geoff Soule
- Public Health Agency of Canada, National Microbiology Laboratory, Special Pathogens Program, Winnipeg, Canada
| | - Alberto Auricchio
- 1] Telethon Institute of Genetics and Medicine, Naples, Italy [2] Medical Genetics, Translational Medicine, "Federico II" University, Naples, Italy
| | - Gary P Kobinger
- 1] Public Health Agency of Canada, National Microbiology Laboratory, Special Pathogens Program, Winnipeg, Canada [2] University of Manitoba, Department of Medical Microbiology [3] Department of Immunology, Winnipeg, Canada
| |
Collapse
|
8
|
Hines-Beard J, Desai S, Haag R, Esumi N, D'Surney L, Parker S, Richardson C, Rex TS. Identification of a therapeutic dose of continuously delivered erythropoietin in the eye using an inducible promoter system. Curr Gene Ther 2014; 13:275-81. [PMID: 23773177 DOI: 10.2174/15665232113139990024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/30/2022]
Abstract
Erythropoietin (EPO) can protect the retina from acute damage, but long-term systemic treatment induces polycythemia. Intraocular gene delivery of EPO is not protective despite producing high levels of EPO likely due to its bellshaped dose curve. The goal of this study was to identify a therapeutic dose of continuously produced EPO in the eye. We packaged a mutated form of EPO (EPOR76E) that has equivalent neuroprotective activity as wild-type EPO and attenuated erythropoietic activity into a recombinant adeno-associated viral vector under the control of the tetracycline inducible promoter. This vector was injected into the subretinal space of homozygous postnatal 5-7 day retinal degeneration slow mice, that express the tetracycline transactivators from a retinal pigment epithelium specific promoter. At weaning, mice received a single intraperitoneal injection of doxycycline and were then maintained on water with or without doxycycline until postnatal day 60. Intraocular EPO levels and outer nuclear layer thickness were quantified and correlated. Control eyes contained 6.1 ± 0.1 (SEM) mU/ml EPO. The eyes of mice that received an intraperitoneal injection of doxycycline contained 11.8 ± 2.0 (SEM) mU/ml EPO-R76E. Treatment with doxycycline water induced production of 35.9 ± 2.4 (SEM) mU/ml EPO-R76E in the eye. The outer nuclear layer was approximately 8 μm thicker in eyes of mice that received doxycycline water as compared to the control groups. Our data indicates that drug delivery systems should be optimized to deliver at least 36 mU/ml EPO into the eye since this dose was effective for the treatment of a progressive retinal degeneration.
Collapse
Affiliation(s)
- Jessica Hines-Beard
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, 11435 MRBIV, 2213 Garland Ave, Nashville, TN 37232-8808, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Humayun MS, Fernandes RAB, Weiland JD. Artificial Vision. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Reetz J, Herchenröder O, Schmidt A, Pützer BM. Vector Technology and Cell Targeting: Peptide-Tagged Adenoviral Vectors as a Powerful Tool for Cell Specific Targeting. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
11
|
Photoreceptor degeneration in mice: adeno-associated viral vector-mediated delivery of erythropoietin. Methods Mol Biol 2013; 982:237-63. [PMID: 23456874 DOI: 10.1007/978-1-62703-308-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The exogenous delivery of erythropoietin (EPO) and EPO derivatives (EPO-Ds) represents a valuable strategy to protect the retina from degeneration. In this chapter we describe a method to deliver EPO and the EPO derivative S100E in the light-damage model of induced retinal degeneration using adeno--associated viral (AAV) vectors and to evaluate the functional and morphological protection of the retina from light damage.
Collapse
|
12
|
Datta R, Lee J, Duda J, Avants BB, Vite CH, Tseng B, Gee JC, Aguirre GD, Aguirre GK. A digital atlas of the dog brain. PLoS One 2012; 7:e52140. [PMID: 23284904 PMCID: PMC3527386 DOI: 10.1371/journal.pone.0052140] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/08/2012] [Indexed: 01/24/2023] Open
Abstract
There is a long history and a growing interest in the canine as a subject of study in neuroscience research and in translational neurology. In the last few years, anatomical and functional magnetic resonance imaging (MRI) studies of awake and anesthetized dogs have been reported. Such efforts can be enhanced by a population atlas of canine brain anatomy to implement group analyses. Here we present a canine brain atlas derived as the diffeomorphic average of a population of fifteen mesaticephalic dogs. The atlas includes: 1) A brain template derived from in-vivo, T1-weighted imaging at 1 mm isotropic resolution at 3 Tesla (with and without the soft tissues of the head); 2) A co-registered, high-resolution (0.33 mm isotropic) template created from imaging of ex-vivo brains at 7 Tesla; 3) A surface representation of the gray matter/white matter boundary of the high-resolution atlas (including labeling of gyral and sulcal features). The properties of the atlas are considered in relation to historical nomenclature and the evolutionary taxonomy of the Canini tribe. The atlas is available for download (https://cfn.upenn.edu/aguirre/wiki/public:data_plosone_2012_datta).
Collapse
Affiliation(s)
- Ritobrato Datta
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jongho Lee
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jeffrey Duda
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brian B. Avants
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Charles H. Vite
- Section of Neurology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ben Tseng
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - James C. Gee
- Department of Radiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gustavo D. Aguirre
- Section of Ophthalmology, Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Geoffrey K. Aguirre
- Department of Neurology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
13
|
Tarantal AF, Skarlatos SI. Center for fetal monkey gene transfer for heart, lung, and blood diseases: an NHLBI resource for the gene therapy community. Hum Gene Ther 2012; 23:1130-5. [PMID: 22974119 PMCID: PMC3498881 DOI: 10.1089/hum.2012.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 09/12/2012] [Indexed: 12/17/2022] Open
Abstract
The goals of the National Heart, Lung, and Blood Institute (NHLBI) Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases are to conduct gene transfer studies in monkeys to evaluate safety and efficiency; and to provide NHLBI-supported investigators with expertise, resources, and services to actively pursue gene transfer approaches in monkeys in their research programs. NHLBI-supported projects span investigators throughout the United States and have addressed novel approaches to gene delivery; "proof-of-principle"; assessed whether findings in small-animal models could be demonstrated in a primate species; or were conducted to enable new grant or IND submissions. The Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases successfully aids the gene therapy community in addressing regulatory barriers, and serves as an effective vehicle for advancing the field.
Collapse
Affiliation(s)
- Alice F Tarantal
- Center for Fetal Monkey Gene Transfer for Heart, Lung, and Blood Diseases, University of California, Davis, 95616, USA.
| | | |
Collapse
|
14
|
Recombinant adeno-associated virus: clinical application and development as a gene-therapy vector. Ther Deliv 2012; 3:835-56. [DOI: 10.4155/tde.12.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gene therapy is gaining momentum as a method of treating human disease. Initially conceived as a strategy to complement defective genes in monogenic disorders, the scope of gene therapy has expanded to encompass a variety of applications. Likewise, the molecular tools for gene delivery have evolved and diversified to meet these various therapeutic needs. Recombinant adeno-associated virus (rAAV) has made significant strides toward clinical application with an excellent safety profile and successes in several clinical trials. This review covers the basic biology of rAAV as a gene therapy vector as well as its advantages compared with other methods of gene delivery. The status of clinical trials utilizing rAAV is also discussed in detail. In conclusion, methods of engineering the vector to overcome challenges identified from these trials are covered, with emphasis on modification of the viral capsid to increase the tissue/cell-specific targeting and transduction efficiency.
Collapse
|
15
|
Cao H, Molday RS, Hu J. Gene therapy: light is finally in the tunnel. Protein Cell 2012; 2:973-89. [PMID: 22231356 DOI: 10.1007/s13238-011-1126-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/27/2011] [Indexed: 01/23/2023] Open
Abstract
After two decades of ups and downs, gene therapy has recently achieved a milestone in treating patients with Leber's congenital amaurosis (LCA). LCA is a group of inherited blinding diseases with retinal degeneration and severe vision loss in early infancy. Mutations in several genes, including RPE65, cause the disease. Using adeno-associated virus as a vector, three independent teams of investigators have recently shown that RPE65 can be delivered to retinal pigment epithelial cells of LCA patients by subretinal injections resulting in clinical benefits without side effects. However, considering the whole field of gene therapy, there are still major obstacles to clinical applications for other diseases. These obstacles include innate and immune barriers to vector delivery, toxicity of vectors and the lack of sustained therapeutic gene expression. Therefore, new strategies are needed to overcome these hurdles for achieving safe and effective gene therapy. In this article, we shall review the major advancements over the past two decades and, using lung gene therapy as an example, discuss the current obstacles and possible solutions to provide a roadmap for future gene therapy research.
Collapse
Affiliation(s)
- Huibi Cao
- Programme in Physiology and Experimental Medicine, Hospital for Sick Children, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5G, 1X8, Canada
| | | | | |
Collapse
|
16
|
Borrás T. Gene therapy strategies in glaucoma and application for steroid-induced hypertension. Saudi J Ophthalmol 2011; 25:353-62. [PMID: 23960949 DOI: 10.1016/j.sjopt.2011.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 07/29/2011] [Accepted: 07/30/2011] [Indexed: 01/15/2023] Open
Abstract
Gene therapy of the eye has a high potential of becoming the preferred treatment of a number of eye diseases. Because of its easy accessibility, all the tissues of the eye can be reached and genetically manipulated with nowadays standard gene delivery technologies. Gene therapy offers the possibility to do both, correct a genetic defect by replacing the mutated or missing gene and that of using genes as drugs. Gene drugs would be more specific and would have a longer duration of action and less toxicity than conventional drugs. Examples of both applications are beginning to emerge. Using gene replacement, vision has been restored in several patients of Leber congenital amaurosis (Maguire et al., 2009). Some gene drugs, such as siRNA, are currently in clinical trials to silence angiogenic factors in macular degeneration (Campa and Harding, 2011). In this manuscript we first give a short overview of the basics of gene therapy in the eye and then review the ongoing preclinical studies in our laboratory for the gene-drug treatment of steroid-induced ocular hypertension.
Collapse
Affiliation(s)
- Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|