1
|
Qiu Y, Yin Z, Wang Z, Xie M, Chen Z, Wu J, Wang Z. Early versus late tracheostomy in stroke-related patients: A systematic review and meta-analysis. J Clin Neurosci 2023; 114:48-54. [PMID: 37302372 DOI: 10.1016/j.jocn.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tracheostomy is an operative intervention for patients who require ventilator assistance while in the intensive care unit (ICU). This study aimed to compare efficacy and safety between early tracheostomy (ET) and late tracheostomy (LT) in stroke patients. METHODS Embase, PubMed, and the Cochrane Library were searched for available studies. Stroke-related patients were categorized into ET and LT groups using seven days as the cutoff timepoint. The primary efficacy outcome was mortality; secondary efficacy outcomes were modified Rankin Scores (mRS) obtained at follow up, as well as durations of hospital stay, ICU stay, and ventilator use. Safety outcomes were total complication and ventilator associated pneumonia (VAP) incidence. RESULTS Nine studies with 3,789 patients were included in the current analysis. No statistical difference in mortality was observed. ET was associated with shorter hospital stay (MD -5.72, 95% CI -9.76 to -1.67), shorter ICU stay (MD -4.77, 95% CI -6.82 to -2.72), and shorter ventilator duration (MD -4.65, 95% CI -8.39 to -0.90); however, no statistically significant difference was found in follow-up mRS scores. Examination of safety measures found the ET group exhibited a lower rate of VAP compared with LT (OR 0.80, 95 % CI 0.68 to 0.93), while no statistical difference was found in total complications. CONCLUSION Our meta-analysis concluded that ET was associated with shorter hospital stay, less time on a ventilator, and lower incidence of VAP. Future studies are warranted to investigate the functional outcomes and the occurrence of complications of ET in stroke patients.
Collapse
Affiliation(s)
- Youjia Qiu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Ziqian Yin
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215002, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.
| | - Minjia Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China.
| |
Collapse
|
2
|
Zhang XL, Zhang XG, Huang YR, Zheng YY, Ying PJ, Zhang XJ, Lu X, Wang YJ, Zheng GQ. Stem Cell-Based Therapy for Experimental Ischemic Stroke: A Preclinical Systematic Review. Front Cell Neurosci 2021; 15:628908. [PMID: 33935650 PMCID: PMC8079818 DOI: 10.3389/fncel.2021.628908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cell transplantation offers promise in the treatment of ischemic stroke. Here we utilized systematic review, meta-analysis, and meta-regression to study the biological effect of stem cell treatments in animal models of ischemic stroke. A total of 98 eligible publications were included by searching PubMed, EMBASE, and Web of Science from inception to August 1, 2020. There are about 141 comparisons, involving 5,200 animals, that examined the effect of stem cell transplantation on neurological function and infarct volume as primary outcome measures in animal models for stroke. Stem cell-based therapy can improve both neurological function (effect size, −3.37; 95% confidence interval, −3.83 to −2.90) and infarct volume (effect size, −11.37; 95% confidence interval, −12.89 to −9.85) compared with controls. These results suggest that stem cell therapy could improve neurological function deficits and infarct volume, exerting potential neuroprotective effect for experimental ischemic stroke, but further clinical studies are still needed.
Collapse
Affiliation(s)
- Xi-Le Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Guang Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Ran Huang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan-Yan Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng-Jie Ying
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lu
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Wang
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Zhang XG, Shan C, Zhu JZ, Bao XY, Tong Q, Wu XF, Tang XC, Xue T, Liu J, Zheng GQ, Wang Y. Additive Neuroprotective Effect of Borneol with Mesenchymal Stem Cells on Ischemic Stroke in Mice. Front Physiol 2018; 8:1133. [PMID: 29387017 PMCID: PMC5776113 DOI: 10.3389/fphys.2017.01133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
Intravenous stem cell transplantation initiates neuroprotection related to the secretion of trophic factor. Borneol, a potential herbal neuroprotective agent, is a penetration enhancer. Here, we aimed to investigate whether they have additive neuroprotective effect on cerebral ischemia. Borneol was given to mice by gavage 3 days before middle cerebral artery occlusion (MCAO) induction until the day when the mice were sacrificed. Mesenchymal stem cells (MSCs) were intravenously injected at 24 h after MCAO induction. Neurological deficits, infarct volume, cell death, and neurogenesis were evaluated. Combined use of MSCs and borneol could more effectively reduce infarction volume and cell apoptosis, enhance neurogenesis, and improve the functional recovery than that of MSCs alone. The findings showed that combined use of borneol and stem cells provided additive neuroprotective effect on cerebral ischemia. However, the supposed effect of borneol on the improved MSC penetration still needs further direct evidence.
Collapse
Affiliation(s)
- Xiao-Guang Zhang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Chang Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai, China
| | - Jia-Zhen Zhu
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Yi Bao
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Tong
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xi-Fan Wu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Chen Tang
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Ting Xue
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jie Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai, China
| | - Guo-Qing Zheng
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Internal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Drew KL, Wells M, McGee R, Ross AP, Kelleher-Andersson J. Arctic ground squirrel neuronal progenitor cells resist oxygen and glucose deprivation-induced death. World J Biol Chem 2016; 7:168-177. [PMID: 26981205 PMCID: PMC4768121 DOI: 10.4331/wjbc.v7.i1.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/26/2015] [Accepted: 01/11/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the influence of ischemia/reperfusion on arctic ground squirrel (AGS) neuronal progenitor cells (NPCs), we subjected these cultured cells to oxygen and glucose deprivation.
METHODS: AGS NPCs were expanded and differentiated into NPCs and as an ischemia vulnerable control, commercially available human NPCs (hNPCs) were seeded from thawed NPCs. NPCs, identified by expression of TUJ1 were seen at 14-21 d in vitro (DIV). Cultures were exposed to control conditions, hypoxia, oxygen and glucose deprivation or glucose deprivation alone or following return to normal conditions to model reperfusion. Cell viability and death were assessed from loss of ATP as well as from measures of alamarBlue® and lactate dehydrogenase in the media and from counts of TUJ1 positive cells using immunocytochemistry. Dividing cells were identified by expression of Ki67 and phenotyped by double labeling with GFAP, MAP2ab or TUJ1.
RESULTS: We report that when cultured in NeuraLife™, AGS cells remain viable out to 21 DIV, continue to express TUJ1 and begin to express MAP2ab. Viability of hNPCs assessed by fluorescence alamarBlue (arbitrary units) depends on both glucose and oxygen availability [viability of hNPCs after 24 h oxygen glucose deprivation (OGD) with return of oxygen and glucose decreased from 48151 ± 4551 in control cultures to 43481 ± 2413 after OGD, P < 0.05]. By contrast, when AGS NPCs are exposed to the same OGD with reperfusion at 14 DIV, cell viability assessed by alamarBlue increased from 165305 ± 11719 in control cultures to 196054 ± 13977 after OGD. Likewise AGS NPCs recovered ATP (92766 ± 6089 in control and 92907 ± 4290 after modeled reperfusion; arbitrary luminescence units), and doubled in the ratio of TUJ1 expressing neurons to total dividing cells (0.11 ± 0.04 in control cultures vs 0.22 ± 0.2 after modeled reperfusion, P < 0.05). Maintaining AGS NPCs for a longer time in culture lowered resistance to injury, however, did not impair proliferation of NPCs relative to other cell lineages after oxygen deprivation followed by re-oxygenation.
CONCLUSION: Ischemic-like insults decrease viability and increase cell death in cultures of human NPCs. Similar conditions have less affect on cell death and promote proliferation in AGS NPCs.
Collapse
|
6
|
Janowski M, Wagner DC, Boltze J. Stem Cell-Based Tissue Replacement After Stroke: Factual Necessity or Notorious Fiction? Stroke 2015; 46:2354-63. [PMID: 26106118 DOI: 10.1161/strokeaha.114.007803] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/28/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Miroslaw Janowski
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research (M.J.) and Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering (M.J.), The Johns Hopkins University School of Medicine, Baltimore, MD; NeuroRepair Department (M.J.) and Department of Neurosurgery (M.J.), Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland; Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology, Translational Centre for Regenerative Medicine, Leipzig, Germany (D.-C.W., J.B.); and Stroke and Neurovascular Regulation Laboratory, Neuroscience Center at Massachussets General Hospital, Harvard Medical School, Stroke and Neurovascular Regulation Laboratory, Charlestown, MA (J.B.)
| | - Daniel-Christoph Wagner
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research (M.J.) and Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering (M.J.), The Johns Hopkins University School of Medicine, Baltimore, MD; NeuroRepair Department (M.J.) and Department of Neurosurgery (M.J.), Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland; Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology, Translational Centre for Regenerative Medicine, Leipzig, Germany (D.-C.W., J.B.); and Stroke and Neurovascular Regulation Laboratory, Neuroscience Center at Massachussets General Hospital, Harvard Medical School, Stroke and Neurovascular Regulation Laboratory, Charlestown, MA (J.B.)
| | - Johannes Boltze
- From the Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research (M.J.) and Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering (M.J.), The Johns Hopkins University School of Medicine, Baltimore, MD; NeuroRepair Department (M.J.) and Department of Neurosurgery (M.J.), Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland; Department of Cell Therapy, Fraunhofer-Institute for Cell Therapy and Immunology, Translational Centre for Regenerative Medicine, Leipzig, Germany (D.-C.W., J.B.); and Stroke and Neurovascular Regulation Laboratory, Neuroscience Center at Massachussets General Hospital, Harvard Medical School, Stroke and Neurovascular Regulation Laboratory, Charlestown, MA (J.B.).
| |
Collapse
|
7
|
Evidence for fibroblast growth factor-2 as a mediator of amphetamine-enhanced motor improvement following stroke. PLoS One 2014; 9:e108031. [PMID: 25229819 PMCID: PMC4168218 DOI: 10.1371/journal.pone.0108031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
Previously we have shown that addition of amphetamine to physical therapy results in enhanced motor improvement following stroke in rats, which was associated with the formation of new motor pathways from cortical projection neurons of the contralesional cortex. It is unclear what mechanisms are involved, but amphetamine is known to induce the neuronal release of catecholamines as well as upregulate fibroblast growth factor-2 (FGF-2) expression in the brain. Since FGF-2 has been widely documented to stimulate neurite outgrowth, the present studies were undertaken to provide evidence for FGF-2 as a neurobiological mechanism underlying amphetamine-induced neuroplasticity. In the present study rats that received amphetamine plus physical therapy following permanent middle cerebral artery occlusion exhibited significantly greater motor improvement over animals receiving physical therapy alone. Amphetamine plus physical therapy also significantly increased the number of FGF-2 expressing pyramidal neurons of the contralesional cortex at 2 weeks post-stroke and resulted in significant axonal outgrowth from these neurons at 8 weeks post-stroke. Since amphetamine is a known releaser of norepinephrine, in vitro analyses focused on whether noradrenergic stimulation could lead to neurite outgrowth in a manner requiring FGF-2 activity. Primary cortical neurons did not respond to direct stimulation by norepinephrine or amphetamine with increased neurite outgrowth. However, conditioned media from astrocytes exposed to norepinephrine or isoproterenol (a beta adrenergic agonist) significantly increased neurite outgrowth when applied to neuronal cultures. Adrenergic agonists also upregulated FGF-2 expression in astrocytes. Pharmacological analysis indicated that beta receptors and alpha1, but not alpha2, receptors were involved in both effects. Antibody neutralization studies demonstrated that FGF-2 was a critical contributor to neurite outgrowth induced by astrocyte-conditioned media. Taken together the present results suggest that noradrenergic activation, when combined with physical therapy, can improve motor recovery following ischemic damage by stimulating the formation of new neural pathways in an FGF-2-dependent manner.
Collapse
|