1
|
Kacar M, Al-Hakim A, Savic S. Sequelae of B-Cell Depleting Therapy: An Immunologist's Perspective. BioDrugs 2025; 39:103-130. [PMID: 39680306 DOI: 10.1007/s40259-024-00696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
B-cell depleting therapy (BCDT) has revolutionised the treatment of B-cell malignancies and autoimmune diseases by targeting specific B-cell surface antigens, receptors, ligands, and signalling pathways. This narrative review explores the mechanisms, applications, and complications of BCDT, focusing on the therapeutic advancements since the introduction of rituximab in 1997. Various monoclonal antibodies and kinase inhibitors are examined for their roles in depleting B cells through antibody-dependent and independent mechanisms. The off-target effects, such as hypogammaglobulinemia, infections, and cytokine release syndrome, are discussed, emphasising the need for immunologists to identify and help manage these complications. The increasing prevalence of BCDT has necessitated the involvement of clinical immunologists in addressing treatment-associated immunological abnormalities, including persistent hypogammaglobulinemia and neutropenia. We highlight the importance of considering underlying inborn errors of immunity (IEI) in patients presenting with these complications. Furthermore, we discuss the impact of BCDT on other immune cell populations and the challenges in predicting and managing long-term immunological sequelae. The potential for novel BCDT agents targeting the BAFF/APRIL-TACI/BCMA axis and B-cell receptor signalling pathways to treat autoimmune disorders is also explored, underscoring the rapidly evolving landscape of B-cell targeted therapies.
Collapse
Affiliation(s)
- Mark Kacar
- Department of Allergy, University Clinic Golnik, Golnik, Slovenia
- Department of Allergy and Clinical Immunology, St James' University Hospital, Leeds, UK
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Adam Al-Hakim
- Department of Allergy and Clinical Immunology, St James' University Hospital, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Sinisa Savic
- Department of Allergy and Clinical Immunology, St James' University Hospital, Leeds, UK.
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
- NIHR Leeds Biomedical Research Centre, Leeds, UK.
| |
Collapse
|
2
|
Liu X, Chen X, Yang C, Li R, Chen X, Li Q. Biologicals for the treatment of lupus nephritis: a Bayesian network meta-regression analysis. Front Immunol 2024; 15:1445814. [PMID: 39281677 PMCID: PMC11392858 DOI: 10.3389/fimmu.2024.1445814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Background Previous studies comparing the efficacy and safety of different treatment regimens for lupus nephritis are scarce. Moreover, confounding factors such as the duration of follow-up were hardly adjusted in those studies, potentially compromising the results and their extents to clinical settings. Objective To rigorously investigate the efficacy and safety of biologics in patients with lupus nephritis using Bayesian network meta-regression analyses that adjust for the follow-up period, in order to provide more robust evidence for clinicians. Methods Databases comprising PubMed, Embase, MedlinePlus, Cochrane Library, Google Scholars, and Scopus were retrieved for eligible articles from inception to February 29, 2024. The primary endpoint was the complete response rate, the secondary endpoint was the partial response rate, the tertiary endpoints were the adverse events, and infection-related adverse events. Napierian Logarithm of hazard ratio (lnHR) and the standard error of lnHR (selnHR) were generated for dichotomous variants by STATA 18.0 MP and then put into Rstudio 4.3.2 to conduct Bayesian network meta-analysis as well as network meta-regression analysis to yield hazard ratio (HR) as pairwise effect size. Results Ten studies involving 2138 patients and 11 treatment regimens were ultimately included. In the original analysis, for the primary endpoint, compared to the control group, obinutuzumab (22.6 months), abatacept-30mg (20.5 months), abatacept-10mg (17.8 months), and belimumab (23.3 months) demonstrated significant superiority (HR ranged from 1.6 to 2.5), more ever, their significance regarding relative efficacy was correlated with follow up period, namely "time window" (shown in parentheses above). For the secondary endpoint, compared to the control group, obinutuzumab and abatacept-30mg showed conspicuous preponderance (HR ranged from 1.6 to 2.4), "time window" was also detected in abatacept-30mg (20.5 months), whereas obinutuzumab remained consistently obviously effective regardless of the follow-up period (shown in parentheses above). For the tertiary endpoint, there were no differences among active regimens and control. Conclusions Considering the efficacy and safety and "time window" phenomenon, we recommend obinutuzumab as the preferred treatment for LN. Certainly, more rigorous head-to-head clinical trials are warranted to validate those findings.
Collapse
Affiliation(s)
- Xi Liu
- Nephrology Department, The People’s Hospital of Yubei District of Chongqing, Chongqing, China
| | - Xiaoli Chen
- Nephrology Department, The People’s Hospital of Yubei District of Chongqing, Chongqing, China
| | - Chengyin Yang
- Nephrology Department, The People’s Hospital of Yubei District of Chongqing, Chongqing, China
| | - Ruixue Li
- Nephrology Department, The People’s Hospital of Yubei District of Chongqing, Chongqing, China
| | - Xi Chen
- Zhejiang University, Department of Epidemiology and Statistics, School of Public Health, Medical College, Hangzhou, Zhejiang, China
| | - Qiaoli Li
- Stomatology Department, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
3
|
Mak JWY, Law AWH, Law KWT, Ho R, Cheung CKM, Law MF. Prevention and management of hepatitis B virus reactivation in patients with hematological malignancies in the targeted therapy era. World J Gastroenterol 2023; 29:4942-4961. [PMID: 37731995 PMCID: PMC10507505 DOI: 10.3748/wjg.v29.i33.4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatitis due to hepatitis B virus (HBV) reactivation can be serious and potentially fatal, but is preventable. HBV reactivation is most commonly reported in patients receiving chemotherapy, especially rituximab-containing therapy for hematological malignancies and those receiving stem cell transplantation. Patients with inactive and even resolved HBV infection still have persistence of HBV genomes in the liver. The expression of these silent genomes is controlled by the immune system. Suppression or ablation of immune cells, most importantly B cells, may lead to reactivation of seemingly resolved HBV infection. Thus, all patients with hematological malignancies receiving anticancer therapy should be screened for active or resolved HBV infection by blood tests for hepatitis B surface antigen (HBsAg) and antibody to hepatitis B core antigen. Patients found to be positive for HBsAg should be given prophylactic antiviral therapy. For patients with resolved HBV infection, there are two approaches. The first is pre-emptive therapy guided by serial HBV DNA monitoring, and treatment with antiviral therapy as soon as HBV DNA becomes detectable. The second approach is prophylactic antiviral therapy, particularly for patients receiving high-risk therapy, especially anti-CD20 monoclonal antibody or hematopoietic stem cell transplantation. Entecavir and tenofovir are the preferred antiviral choices. Many new effective therapies for hematological malignancies have been introduced in the past decade, for example, chimeric antigen receptor (CAR)-T cell therapy, novel monoclonal antibodies, bispecific antibody drug conjugates, and small molecule inhibitors, which may be associated with HBV reactivation. Although there is limited evidence to guide the optimal preventive measures, we recommend antiviral prophylaxis in HBsAg-positive patients receiving novel treatments, including Bruton's tyrosine kinase inhibitors, B-cell lymphoma 2 inhibitors, and CAR-T cell therapy. Further studies are needed to determine the risk of HBV reactivation with these agents and the best prophylactic strategy.
Collapse
Affiliation(s)
- Joyce Wing Yan Mak
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| | | | | | - Rita Ho
- Department of Medicine, North District Hospital, Hong Kong 852, China
| | - Carmen Ka Man Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| | - Man Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| |
Collapse
|
4
|
Scialdone A, Khazaei S, Hasni MS, Lennartsson A, Gullberg U, Drott K. Depletion of the transcriptional coactivators CREB-binding protein or EP300 downregulates CD20 in diffuse large B-cell lymphoma cells and impairs the cytotoxic effects of anti-CD20 antibodies. Exp Hematol 2019; 79:35-46.e1. [DOI: 10.1016/j.exphem.2019.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
|
5
|
Galimberti S, Genuardi E, Mazziotta F, Iovino L, Morabito F, Grassi S, Ciabatti E, Guerrini F, Petrini M. The Minimal Residual Disease in Non-Hodgkin's Lymphomas: From the Laboratory to the Clinical Practice. Front Oncol 2019; 9:528. [PMID: 31293969 PMCID: PMC6606710 DOI: 10.3389/fonc.2019.00528] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/31/2019] [Indexed: 01/05/2023] Open
Abstract
Minimal residual disease (MRD) in non-Hodgkin's lymphomas (NHLs) still represents matter of interest and debate: indeed, the new available treatments offer higher rates of complete responses and MRD negativity than in the past, with a positive impact on the long-term survival. Furthermore, the introduction of more sensitive and accurate molecular techniques, such as digital PCR (ddPCR) and the next generation sequencing techniques (NGS), increased the possibility of identifying molecular targets to be followed after therapy (such as rearrangement of immunoglobulins, fusion genes, or mutations). This review focused on how molecular biology can help to detect MRD in different types of NHLs and how MRD can change the clinical practice in 2019. In follicular lymphoma (FL), contamination of the grafts and molecular disease persistence after transplantation represent a negative prognostic factors. The combination of Rituximab or Obinutuzumab with Bendamustine seems to be the most effective way to clear MRD in FL patients receiving chemo-immunotherapy (further studies are in progress), and also 90Yttrium-Ibritumomab-Tiuxetan offers a deep clearance of molecular disease. Finally, molecular MRD can further stratify PET-negative cases, with subjects both PET- and MRD-negative presenting the best outcome. In aggressive lymphomas, MRD has a relevant prognostic power and can represent the platform for immunotherapy (such as CAR-T). In diffuse large B-cell lymphoma (DLBCL), the assessment of MRD in the plasma (where cell-free DNA and exosomes circulate) seems to be more predictive than the bone marrow analysis or peripheral blood mononuclear cells. Finally, NGS technologies could be more useful than the classical "patient allele-specific PCR" because they can identify any possible clone emerging during the treatment or follow-up, even if different from that identified at diagnosis, thus predicting relapse. After all, the present available molecular approaches can move MRD from the bench side to the clinical practice.
Collapse
Affiliation(s)
- Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elisa Genuardi
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Turin, Italy
| | - Francesco Mazziotta
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GeNOMEC School of Doctorate, University of Siena, Siena, Italy
| | - Lorenzo Iovino
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Clinical and Translational Sciences School of Doctorate, University of Pisa, Pisa, Italy
| | - Fortunato Morabito
- Hematology Oncology Department, Augusta Victoria Hospital, East Jerusalem, Israel.,Biotechnology Research Unit, Cosenza, Italy
| | - Susanna Grassi
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,GeNOMEC School of Doctorate, University of Siena, Siena, Italy
| | - Elena Ciabatti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Guerrini
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Petrini
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Cuesta-Mateos C, Alcaraz-Serna A, Somovilla-Crespo B, Muñoz-Calleja C. Monoclonal Antibody Therapies for Hematological Malignancies: Not Just Lineage-Specific Targets. Front Immunol 2018; 8:1936. [PMID: 29387053 PMCID: PMC5776327 DOI: 10.3389/fimmu.2017.01936] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022] Open
Abstract
Today, monoclonal antibodies (mAbs) are a widespread and necessary tool for biomedical science. In the hematological cancer field, since rituximab became the first mAb approved by the Food and Drug Administration for the treatment of B-cell malignancies, a number of effective mAbs targeting lineage-specific antigens (LSAs) have been successfully developed. Non-LSAs (NLSAs) are molecules that are not restricted to specific leukocyte subsets or tissues but play relevant pathogenic roles in blood cancers including the development, proliferation, survival, and refractoriness to therapy of tumor cells. In consequence, efforts to target NLSAs have resulted in a plethora of mAbs-marketed or in development-to achieve different goals like neutralizing oncogenic pathways, blocking tumor-related chemotactic pathways, mobilizing malignant cells from tumor microenvironment to peripheral blood, modulating immune-checkpoints, or delivering cytotoxic drugs into tumor cells. Here, we extensively review several novel mAbs directed against NLSAs undergoing clinical evaluation for treating hematological malignancies. The review focuses on the structure of these antibodies, proposed mechanisms of action, efficacy and safety profile in clinical studies, and their potential applications in the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
- IMMED S.L., Immunological and Medicinal Products, Madrid, Spain
| | - Ana Alcaraz-Serna
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
7
|
Corraliza-Gorjón I, Somovilla-Crespo B, Santamaria S, Garcia-Sanz JA, Kremer L. New Strategies Using Antibody Combinations to Increase Cancer Treatment Effectiveness. Front Immunol 2017; 8:1804. [PMID: 29312320 PMCID: PMC5742572 DOI: 10.3389/fimmu.2017.01804] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/30/2017] [Indexed: 12/14/2022] Open
Abstract
Antibodies have proven their high value in antitumor therapy over the last two decades. They are currently being used as the first-choice to treat some of the most frequent metastatic cancers, like HER2+ breast cancers or colorectal cancers, currently treated with trastuzumab (Herceptin) and bevacizumab (Avastin), respectively. The impressive therapeutic success of antibodies inhibiting immune checkpoints has extended the use of therapeutic antibodies to previously unanticipated tumor types. These anti-immune checkpoint antibodies allowed the cure of patients devoid of other therapeutic options, through the recovery of the patient’s own immune response against the tumor. In this review, we describe how the antibody-based therapies will evolve, including the use of antibodies in combinations, their main characteristics, advantages, and how they could contribute to significantly increase the chances of success in cancer therapy. Indeed, novel combinations will consist of mixtures of antibodies against either different epitopes of the same molecule or different targets on the same tumor cell; bispecific or multispecific antibodies able of simultaneously binding tumor cells, immune cells or extracellular molecules; immunomodulatory antibodies; antibody-based molecules, including fusion proteins between a ligand or a receptor domain and the IgG Fab or Fc fragments; autologous or heterologous cells; and different formats of vaccines. Through complementary mechanisms of action, these combinations could contribute to elude the current limitations of a single antibody which recognizes only one particular epitope. These combinations may allow the simultaneous attack of the cancer cells by using the help of the own immune cells and exerting wider therapeutic effects, based on a more specific, fast, and robust response, trying to mimic the action of the immune system.
Collapse
Affiliation(s)
- Isabel Corraliza-Gorjón
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Beatriz Somovilla-Crespo
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| | - Silvia Santamaria
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Jose A Garcia-Sanz
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biologicas (CIB-CSIC), Madrid, Spain
| | - Leonor Kremer
- Department of Immunology and Oncology, Centro Nacional de Biotecnologia (CNB-CSIC), Madrid, Spain
| |
Collapse
|
8
|
Bohra C, Sokol L, Dalia S. Progressive Multifocal Leukoencephalopathy and Monoclonal Antibodies: A Review. Cancer Control 2017; 24:1073274817729901. [PMID: 28975841 PMCID: PMC5937251 DOI: 10.1177/1073274817729901] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/03/2017] [Indexed: 11/27/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a viral infection predominantly seen in patients with HIV infection. However, with the increased use of monoclonal antibodies (MAB) for various lymphoproliferative disorders, we are now seeing this infection in non-HIV patients on drugs such as natalizumab, rituximab, and so on. The aim of this article is to review the relationship between the occurrence of PML and MAB used in the treatment of hematological malignancies and autoimmune diseases. Review of articles from PubMed-indexed journals which study PML in relation to the use of MAB. Relevant literature demonstrated an increased risk of reactivation of latent John Cunningham polyomavirus (JCV) resulting in development of PML in patients on long-term therapy with MAB. The highest incidence of 1 PML case per 1000 treated patients and 1 case per 32 000 was observed in patients treated with natalizumab and rituximab, respectively. Serological and polymerase chain reaction tests for the detection of JCV can be helpful in risk stratification of patients for the development of PML before and during therapy with MAB. Treatment with MAB can result in development of PML. Clinicians should include PML in differential diagnosis in patients treated with these agents if they manifest central nervous system symptoms.
Collapse
Affiliation(s)
- Chandrashekar Bohra
- Internal Medicine Program, University of South Florida, Tampa, FL, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center &
Research Institute, Tampa, FL, USA
- Mercy Oncology and Hematology–Joplin, Joplin, MO, USA
| | - Lubomir Sokol
- Internal Medicine Program, University of South Florida, Tampa, FL, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center &
Research Institute, Tampa, FL, USA
- Mercy Oncology and Hematology–Joplin, Joplin, MO, USA
| | - Samir Dalia
- Internal Medicine Program, University of South Florida, Tampa, FL, USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center &
Research Institute, Tampa, FL, USA
- Mercy Oncology and Hematology–Joplin, Joplin, MO, USA
| |
Collapse
|
9
|
Coluccio C, Begini P, Marzano A, Pellicelli A, Imperatrice B, Anania G, Delle Fave G, Marignani M. Hepatitis B in patients with hematological diseases: An update. World J Hepatol 2017; 9:1043-1053. [PMID: 28951776 PMCID: PMC5596311 DOI: 10.4254/wjh.v9.i25.1043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/13/2017] [Accepted: 08/04/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) reactivation (HBVr) in patients undergoing immunosuppressive therapy is still a hot topic worldwide. Its prevention and management still represents a challenge for specialists dealing with immunosuppressed patients. Aim of this paper is to provide a critical review of the relevant information emerged in the recent literature regarding HBV reactivation following immunosuppressive treatments for oncohematological tumors. A computerized literature search in MEDLINE was performed using appropriate terms arrangement, including English-written literature only or additional relevant articles. Articles published only in abstract form and case reports not giving considerable news were excluded. Clinical manifestation of HBVr can be manifold, ranging from asymptomatic self-limiting anicteric hepatitis to life-threatening fulminant liver failure. In clusters of patients adverse outcomes are potentially predictable. Clinicians should be aware of the inherent risk of HBVr among the different virological categories (active carriers, occult HBV carriers and inactive carriers, the most intriguing category), and classes of immunosuppressive drugs. We recommend that patients undergoing immunosuppressive treatments for hematological malignancies should undergo HBV screening. In case of serological sign(s) of current or past infection with the virus, appropriate therapeutic or preventive strategies are suggested, according to both virological categories, risk of HBVr by immunosuppressive drugs and liver status. Either antiviral drug management and surveillance and pre-emptive approach are examined, commenting the current international recommendations about this debated issue.
Collapse
Affiliation(s)
- Chiara Coluccio
- Digestive and Liver Diseases Department, Sant’Andrea Hospital, School of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Paola Begini
- Digestive and Liver Diseases Department, Sant’Andrea Hospital, School of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Alfredo Marzano
- Division of Gastroenterology and Hepatology, San Giovanni Battista Hospital, 10126 Turin, Italy
| | | | - Barbara Imperatrice
- Digestive and Liver Diseases Department, Sant’Andrea Hospital, School of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Giulia Anania
- Digestive and Liver Diseases Department, Sant’Andrea Hospital, School of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Gianfranco Delle Fave
- Digestive and Liver Diseases Department, Sant’Andrea Hospital, School of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Massimo Marignani
- Digestive and Liver Diseases Department, Sant’Andrea Hospital, School of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| |
Collapse
|
10
|
Ku M, Chong G, Hawkes EA. Tumour cell surface antigen targeted therapies in B-cell lymphomas: Beyond rituximab. Blood Rev 2017; 31:23-35. [DOI: 10.1016/j.blre.2016.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/26/2016] [Accepted: 08/02/2016] [Indexed: 01/16/2023]
|
11
|
Law MF, Ho R, Cheung CKM, Tam LHP, Ma K, So KCY, Ip B, So J, Lai J, Ng J, Tam THC. Prevention and management of hepatitis B virus reactivation in patients with hematological malignancies treated with anticancer therapy. World J Gastroenterol 2016; 22:6484-6500. [PMID: 27605883 PMCID: PMC4968128 DOI: 10.3748/wjg.v22.i28.6484] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/24/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis due to hepatitis B virus (HBV) reactivation can be severe and potentially fatal, but is preventable. HBV reactivation is most commonly reported in patients receiving cancer chemotherapy, especially rituximab-containing therapy for hematological malignancies and those receiving stem cell transplantation. All patients with hematological malignancies receiving anticancer therapy should be screened for active or resolved HBV infection by blood tests for hepatitis B surface antigen (HBsAg) and antibody to hepatitis B core antigen (anti-HBc). Patients found to be positive for HBsAg should be given prophylactic antiviral therapy to prevent HBV reactivation. For patients with resolved HBV infection, no standard strategy has yet been established to prevent HBV reactivation. There are usually two options. One is pre-emptive therapy guided by serial HBV DNA monitoring, whereby antiviral therapy is given as soon as HBV DNA becomes detectable. However, there is little evidence regarding the optimal interval and period of monitoring. An alternative approach is prophylactic antiviral therapy, especially for patients receiving high-risk therapy such as rituximab, newer generation of anti-CD20 monoclonal antibody, obinutuzumab or hematopoietic stem cell transplantation. This strategy may effectively prevent HBV reactivation and avoid the inconvenience of repeated HBV DNA monitoring. Entecavir or tenofovir are preferred over lamivudine as prophylactic therapy. Although there is no well-defined guideline on the optimal duration of prophylactic therapy, there is growing evidence to recommend continuing prophylactic antiviral therapy for at least 12 mo after cessation of chemotherapy, and even longer for those who receive rituximab or who had high serum HBV DNA levels before the start of immunosuppressive therapy. Many novel agents have recently become available for the treatment of hematological malignancies, and these agents may be associated with HBV reactivation. Although there is currently limited evidence to guide the optimal preventive measures, we recommend antiviral prophylaxis in HBsAg-positive patients receiving novel treatments, especially the Bruton tyrosine kinase inhibitors and the phosphatidylinositol 3-kinase inhibitors, which are B-cell receptor signaling modulators and reduce proliferation of malignant B-cells. Further studies are needed to clarify the risk of HBV reactivation with these agents and the best prophylactic strategy in the era of targeted therapy for hematological malignancies.
Collapse
|
12
|
Frustaci AM, Tedeschi A, Picardi P, Mazzucchelli M, Cairoli R, Montillo M. Ofatumumab plus chlorambucil as a first-line therapy in less fit patients with chronic lymphocytic leukemia: analysis of COMPLEMENT1 and other monoclonal antibodies association data. Ther Adv Hematol 2016; 7:222-30. [PMID: 27493712 DOI: 10.1177/2040620716648567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The management of patients with chronic lymphocytic leukemia (CLL) has radically improved over the last few years with the addition of anti-CD20 monoclonal antibodies (MoAbs) to chemotherapy. Chlorambucil has been considered for decades as a suitable therapeutic option for frail patients. Taking into account the advantage offered by the addition of MoAbs to chemotherapy, different studies up to now have explored the feasibility of chlorambucil-based chemoimmunotherapies in treatment-naïve CLL. COMPLEMENT1 is a prospective, randomized, open-label trial evaluating the efficacy and safety of ofatumumab added to chlorambucil, compared with chlorambucil in monotherapy, in the setting of untreated patients with CLL considered unsuitable for a fludarabine-based approach. Progression-free survival was significantly longer in the chemoimmunotherapy arm when compared with the single-agent chlorambucil (22.4 months versus 13.1 months). Response rate and quality were also improved in the combination arm. Furthermore, the addition of ofatumumab did not lead to an unmanageable toxicity. While the employment of anti-CD20 antibodies represents an advantage in the treatment of the CLL symptomatic population, at present different patient selection and treatment schedules do not allow a reliable comparison between chlorambucil-based regimens. The addition of ofatumumab to chlorambucil represents a further therapeutic gain in CLL. Longer follow up and direct comparison with other MoAbs are warranted to establish the preferred first-line treatment in elderly and unfit patients.
Collapse
Affiliation(s)
- Anna Maria Frustaci
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Milan, Italy
| | - Alessandra Tedeschi
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Milan, Italy
| | - Paola Picardi
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Milan, Italy
| | | | - Roberto Cairoli
- Department of Hematology, Niguarda Cancer Center, Niguarda Hospital, Milan, Italy
| | - Marco Montillo
- Department of Hematology, Niguarda Cancer Center, Niguarda Ca' Granda Hospital, Piazza Ospedale Maggiore 3, 20162 Milan, Italy
| |
Collapse
|
13
|
Taking up Cancer Immunotherapy Challenges: Bispecific Antibodies, the Path Forward? Antibodies (Basel) 2015; 5:antib5010001. [PMID: 31557983 PMCID: PMC6698871 DOI: 10.3390/antib5010001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 02/07/2023] Open
Abstract
As evidenced by the recent approvals of Removab (EU, Trion Pharma) in 2009 and of Blincyto (US, Amgen) in 2014, the high potential of bispecific antibodies in the field of immuno-oncology is eliciting a renewed interest from pharmaceutical companies. Supported by rapid advances in antibody engineering and the development of several technological platforms such as Triomab or bispecific T cell engagers (BiTEs), the “bispecifics” market has increased significantly over the past decade and may occupy a pivotal space in the future. Over 30 bispecific molecules are currently in different stages of clinical trials and more than 70 in preclinical phase. This review focuses on the clinical potential of bispecific antibodies as immune effector cell engagers in the onco-immunotherapy field. We summarize current strategies targeting various immune cells and their clinical interests. Furthermore, perspectives of bispecific antibodies in future clinical developments are addressed.
Collapse
|
14
|
Abstract
The majority of patients with chronic lymphocytic leukemia (CLL) respond to chemo-immunotherapy. However, long-term remission remains elusive and the majority of patients will die of complications related to CLL. In this review we discuss the recent developments in targeted therapy for CLL. Targeted therapy has evolved beyond the cell surface targeting of CD20 with rituximab. Our review focuses on the evolution of antibody therapy in CLL, strategies to target effector T cells to the tumor, inhibition of the B-cell receptor signaling pathway, and finally targeting the mediators of apoptosis. With our improved understanding of the biology of CLL, the evolution of targeted therapy has resulted in significant clinical responses in patients who are refractory to traditional treatment options and holds the potential for a future where we can manage this disease without chemotherapy.
Collapse
|
15
|
Doubek M, Šmída M. Treatment of chronic lymphocytic leukemia with monoclonal antibodies, where are we heading? Expert Rev Hematol 2015; 8:743-64. [PMID: 26306923 DOI: 10.1586/17474086.2015.1079123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is the most prevalent leukemia in the western world and monoclonal antibodies (mAbs) are important part of CLL treatment. The goal of this article was to summarize current literature on the position of mAbs in CLL treatment and to mention factors influencing effectiveness of mAbs in CLL. Several new mAbs have been developed and investigated in CLL over the past few years. Mainly anti-CD20 monoclonal antibodies are still used routinely in CLL therapy. Unfortunately, the clinical application of mAbs needs to be further improved. Novel combinations and sequences of mAbs with other compounds need to be studied in clinical trials in order to increase overall response rate and prolong remission duration. Mechanisms of action of mAbs or mechanisms of resistance to mAbs have to be also investigated to predict effectiveness of mAb in particular patient.
Collapse
Affiliation(s)
- Michael Doubek
- a 1 Department of Internal Medicine - Hematology and Oncology, University Hospital and Faculty of Medicine, Brno, Czech Republic.,b 2 Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Michal Šmída
- b 2 Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| |
Collapse
|
16
|
Deng G, Zheng X, Zhou J, Wei H, Tian Z, Sun R. Generation and preclinical characterization of an NKp80-Fc fusion protein for redirected cytolysis of natural killer (NK) cells against leukemia. J Biol Chem 2015. [PMID: 26198633 DOI: 10.1074/jbc.m115.678912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The capacity of natural killer (NK) cells to mediate Fc receptor-dependent effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), largely contributes to their clinical application. Given that activation-induced C-type lectin (AICL), an identified ligand for the NK-activating receptor NKp80, is frequently highly expressed on leukemia cells, the lack of therapeutic AICL-specific antibodies limits clinical application. Here we explore a strategy to reinforce NK anti-leukemia reactivity by combining targeting AICL-expressing leukemia cells with the induction of NK cell ADCC using NKp80-Fc fusion proteins. The NKp80-Fc fusion protein we generated bound specifically to leukemia cells in an AICL-specific manner. Cell binding assays between NK and leukemia cells showed that NKp80-Fc significantly increased NK target cell conjugation. In functional analyses, treatment with NKp80-Fc clearly induced the ADCC effect of NK cells. NKp80-Fc not only promoted NK-mediated leukemia cell apoptosis in the early stage of cell conjugation but also enhanced NK cell degranulation and cytotoxicity activity in the late stage. The bifunctional NKp80-Fc could redirect NK cells toward leukemia cells and triggered NK cell killing in vitro. Moreover, NKp80-Fc enhanced the lysis of NK cells against tumors in leukemia xenograft non-obese diabetic/severe combined immunodeficiency mice. Taken together, our results demonstrate that NKp80-Fc potently amplifies NK cell anti-leukemia effects in vitro and in vivo through induction of the NK cell ADCC effect. This method could potentially be useful for molecular targeted therapy, and the fusion proteins may be a promising drug for immunotherapy of leukemia.
Collapse
Affiliation(s)
- Gang Deng
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaodong Zheng
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China,
| | - Jing Zhou
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Zhigang Tian
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China
| | - Rui Sun
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China, and
| |
Collapse
|
17
|
Arnason JE, Brown JR. Obinutuzumab: its use in the management of chronic lymphocytic leukemia. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1045488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Cerquozzi S, Owen C. Clinical role of obinutuzumab in the treatment of naive patients with chronic lymphocytic leukemia. Biologics 2015; 9:13-22. [PMID: 25733804 PMCID: PMC4337412 DOI: 10.2147/btt.s61600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The introduction of targeted therapy against CD20+ with the monoclonal antibody rituximab has dramatically improved the survival of B-cell non-Hodgkin lymphoma including chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma. Unfortunately, CLL remains incurable with chemoimmunotherapy, with many patients having refractory or relapsing disease after rituximab-containing therapy. Obinutuzumab (GA101) is a novel humanized Type II anti-CD20 monoclonal antibody that has been investigated and compared to rituximab. Here, we provide an overview of obinutuzumab, including its mechanisms of action, preclinical data, and Phase I to III clinical studies. Preclinical data illustrate obinutuzumab’s higher potency compared to rituximab through antibody-dependent cellular cytotoxicity and direct cell death. Recently, the CLL11 study presented a significant benefit from obinutuzumab chemoimmunotherapy and supports its use for treatment-naive unfit CLL patients. Herein, we review that obinutuzumab is both a safe and effective alternative to rituximab.
Collapse
Affiliation(s)
- Sonia Cerquozzi
- Department of Hematology, University of Calgary, Calgary, AB, Canada
| | - Carolyn Owen
- Department of Hematology, Tom Baker Cancer Centre, Calgary, AB, Canada
| |
Collapse
|
19
|
Sachdeva M, Dhingra S. Obinutuzumab: A FDA approved monoclonal antibody in the treatment of untreated chronic lymphocytic leukemia. Int J Appl Basic Med Res 2015; 5:54-7. [PMID: 25664270 PMCID: PMC4318103 DOI: 10.4103/2229-516x.149245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 07/18/2014] [Indexed: 11/05/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an adult lymphoid malignancy with a variable clinical course. There is considerable interest in the identification of new treatments, as most current approaches are not curative. While most patients respond to initial chemotherapy, relapsed disease is often resistant to the drugs commonly used in CLL and patients are left with limited therapeutic options. Obinutuzumab is recently approved in combination with chlorambucil for people with previously untreated CLL and is additionally being investigated in a large clinical program, including multiple head-to-head phase III studies compared with Rituxan in indolent non-Hodgkin's lymphoma and diffuse large B-cell lymphoma. In this article, author has made an attempt to review the therapeutic profile of this newly approved monoclonal antibody in the treatment of CLL.
Collapse
Affiliation(s)
- Mamta Sachdeva
- University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study (UGC-CAS) in Pharmaceutical Sciences, Panjab University, Chandigarh - 160 014, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, School of Pharmacy, The University of the West Indies, St. Augustine, Eric Williams Medical Sciences Complex, Uriah Butler Highway, Champ Fleurs, Trinidad and Tobago, West Indies
| |
Collapse
|
20
|
Vacchelli E, Pol J, Bloy N, Eggermont A, Cremer I, Fridman WH, Galon J, Marabelle A, Kohrt H, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology 2015; 4:e985940. [PMID: 25949870 DOI: 10.4161/2162402x.2014.985940] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/11/2014] [Indexed: 12/31/2022] Open
Abstract
An expanding panel of monoclonal antibodies (mAbs) that specifically target malignant cells or intercept trophic factors delivered by the tumor stroma is now available for cancer therapy. These mAbs can exert direct antiproliferative/cytotoxic effects as they inhibit pro-survival signal transduction cascades or activate lethal receptors at the plasma membrane of cancer cells, they can opsonize neoplastic cells to initiate a tumor-targeting immune response, or they can be harnessed to specifically deliver toxins or radionuclides to transformed cells. As an indication of the success of this immunotherapeutic paradigm, international regulatory agencies approve new tumor-targeting mAbs for use in cancer patients every year. Moreover, the list of indications for previously licensed molecules is frequently expanded to other neoplastic disorders as the results of large, randomized clinical trials become available. Here, we discuss recent advances in the preclinical and clinical development of tumor-targeting mAbs for oncological indications.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | - Norma Bloy
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | | | - Isabelle Cremer
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Wolf Hervé Fridman
- INSERM; U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jérôme Galon
- INSERM; U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Aurélien Marabelle
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM ; U1015 , Villejuif, France
| | - Holbrook Kohrt
- Department of Medicine; Division of Oncology; Stanford University ; Stanford, CA, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM ; U1015 , Villejuif, France
| | - Guido Kroemer
- INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou ; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM; U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
21
|
Raab S, Steinbacher J, Schmiedel BJ, Kousis PC, Steinle A, Jung G, Grosse-Hovest L, Salih HR. Fc-Optimized NKG2D–Fc Constructs Induce NK Cell Antibody-Dependent Cellular Cytotoxicity against Breast Cancer Cells Independently of HER2/neu Expression Status. THE JOURNAL OF IMMUNOLOGY 2014; 193:4261-72. [DOI: 10.4049/jimmunol.1400872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Steinbacher J, Baltz-Ghahremanpour K, Schmiedel BJ, Steinle A, Jung G, Kübler A, André MC, Grosse-Hovest L, Salih HR. An Fc-optimized NKG2D-immunoglobulin G fusion protein for induction of natural killer cell reactivity against leukemia. Int J Cancer 2014; 136:1073-84. [DOI: 10.1002/ijc.29083] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/30/2014] [Indexed: 01/16/2023]
Affiliation(s)
- Julia Steinbacher
- Department of Hematology and Oncology; Eberhard Karls University; Tuebingen Germany
| | | | | | - Alexander Steinle
- Institute for Molecular Medicine, Goethe University; Frankfurt am Main Germany
| | - Gundram Jung
- Department of Immunology; Eberhard Karls University; Tuebingen Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Ayline Kübler
- Department of Pediatric Hematology and Oncology; University Children's Hospital, Eberhard Karls University; Tuebingen Germany
| | - Maya Caroline André
- Department of Pediatric Hematology and Oncology; University Children's Hospital, Eberhard Karls University; Tuebingen Germany
- Department of Pediatric Intensive Care; University Children's Hospital; Basel Switzerland
| | | | - Helmut Rainer Salih
- Department of Hematology and Oncology; Eberhard Karls University; Tuebingen Germany
- Clinical Collaboration Unit Translational Immunology; German Cancer Consortium (DKTK); Heidelberg Germany
| |
Collapse
|
23
|
Abstract
INTRODUCTION We analyse data for the use of obinutuzumab in the treatment of CD20(+) lymphoproliferative disorders with a focus on chronic lymphocytic leukaemia (CLL). Targeted therapy against CD20 with the mAb rituximab led to significant improvements in survival for patients with B-cell non-Hodgkin lymphoma (NHL) and is the current mainstay of treatment for CD20(+) malignancies. Despite this, many patients relapse or become refractory after rituximab-containing therapies, so efforts have been made to develop better anti-CD20 mAbs. Obinutuzumab recently demonstrated superiority over rituximab in the only published Phase III study comparing the two antibodies. AREAS COVERED Obinutuzumab is a humanised, anti-CD20 mAb being compared to rituximab in several Phase III studies. An overview of obinutuzumab, its mechanisms of action and results of Phase I-III studies are presented. EXPERT OPINION The demonstration of superiority of obinutuzumab over rituximab in the CLL11 Phase III study is potentially practice-changing. Obinutuzumab has also proven safe and efficacious in CD20(+) NHL in Phase I/II studies and results of Phase III studies in NHL are eagerly awaited. The potential implications of improved outcomes for CLL and NHL with the introduction of this more potent anti-CD20 antibody are tremendous given the impressive results obtained after the introduction of rituximab over a decade ago.
Collapse
Affiliation(s)
- Carolyn J Owen
- University of Calgary, Tom Baker Cancer Centre, Division of Hematology and Hematological Malignancies , 603 South Tower, Foothills Medical Centre, 1403-29th St NW, Calgary, Alberta, T2N 2T9 , Canada
| | | |
Collapse
|
24
|
Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chagorova T, de la Serna J, Dilhuydy MS, Illmer T, Opat S, Owen CJ, Samoylova O, Kreuzer KA, Stilgenbauer S, Döhner H, Langerak AW, Ritgen M, Kneba M, Asikanius E, Humphrey K, Wenger M, Hallek M. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med 2014; 370:1101-10. [PMID: 24401022 DOI: 10.1056/nejmoa1313984] [Citation(s) in RCA: 1117] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The monoclonal anti-CD20 antibody rituximab, combined with chemotherapeutic agents, has been shown to prolong overall survival in physically fit patients with previously untreated chronic lymphocytic leukemia (CLL) but not in those with coexisting conditions. We investigated the benefit of the type 2, glycoengineered antibody obinutuzumab (also known as GA101) as compared with that of rituximab, each combined with chlorambucil, in patients with previously untreated CLL and coexisting conditions. METHODS We randomly assigned 781 patients with previously untreated CLL and a score higher than 6 on the Cumulative Illness Rating Scale (CIRS) (range, 0 to 56, with higher scores indicating worse health status) or an estimated creatinine clearance of 30 to 69 ml per minute to receive chlorambucil, obinutuzumab plus chlorambucil, or rituximab plus chlorambucil. The primary end point was investigator-assessed progression-free survival. RESULTS The patients had a median age of 73 years, creatinine clearance of 62 ml per minute, and CIRS score of 8 at baseline. Treatment with obinutuzumab-chlorambucil or rituximab-chlorambucil, as compared with chlorambucil monotherapy, increased response rates and prolonged progression-free survival (median progression-free survival, 26.7 months with obinutuzumab-chlorambucil vs. 11.1 months with chlorambucil alone; hazard ratio for progression or death, 0.18; 95% confidence interval [CI], 0.13 to 0.24; P<0.001; and 16.3 months with rituximab-chlorambucil vs. 11.1 months with chlorambucil alone; hazard ratio, 0.44; 95% CI, 0.34 to 0.57; P<0.001). Treatment with obinutuzumab-chlorambucil, as compared with chlorambucil alone, prolonged overall survival (hazard ratio for death, 0.41; 95% CI, 0.23 to 0.74; P=0.002). Treatment with obinutuzumab-chlorambucil, as compared with rituximab-chlorambucil, resulted in prolongation of progression-free survival (hazard ratio, 0.39; 95% CI, 0.31 to 0.49; P<0.001) and higher rates of complete response (20.7% vs. 7.0%) and molecular response. Infusion-related reactions and neutropenia were more common with obinutuzumab-chlorambucil than with rituximab-chlorambucil, but the risk of infection was not increased. CONCLUSIONS Combining an anti-CD20 antibody with chemotherapy improved outcomes in patients with CLL and coexisting conditions. In this patient population, obinutuzumab was superior to rituximab when each was combined with chlorambucil. (Funded by F. Hoffmann-La Roche; ClinicalTrials.gov number, NCT01010061.).
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Murine-Derived/administration & dosage
- Antigens, CD20/immunology
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Chlorambucil/administration & dosage
- Chlorambucil/adverse effects
- Comorbidity
- Disease-Free Survival
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Middle Aged
- Remission Induction
- Rituximab
Collapse
Affiliation(s)
- Valentin Goede
- From the German CLL Study Group, Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University Hospital Cologne, Cologne (V.G., K.F., A.E., B.E., C.M.W., K.-A.K., M.H.), the Department for Geriatric Medicine and Research, St. Marien Hospital and University of Cologne, Cologne (V.G.), Institute of Medical Statistics and Epidemiology, Technical University Munich, Munich (R.B.), Klinikum Schwabing, Munich (C.M.W.), private oncology practice, Dresden (T.I.), Medical Department II, University of Schleswig-Holstein, City Hospital Kiel, Kiel (M.R., M.K.), the Department of Internal Medicine III, Ulm University, Ulm (S.S., H.D.), and Cluster of Excellence "Cellular Stress Responses in Aging-Associated Diseases" (CECAD), University of Cologne, Cologne (M.H.) - all in Germany; Penza Regional Oncology Dispensary, Penza (T.C.), and Regional Clinical Hospital N.A. Semashko, Nizhny Novgorod (O.S.) - both in Russia; Servicio De Hematologia, Hospital Universitario 12 De Octubre, Madrid (J.S.); Hôpital Haut Lévêque, Bordeaux, Pessac, France (M.-S.D.); the Department of Haematology, Monash Medical Centre, Clayton, Australia (S.O.); University of Calgary, Calgary, AB, Canada (C.J.O.); the Department of Immunology, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands (A.W.L.); F. Hoffmann-La Roche, Basel, Switzerland (E.A.); F. Hoffmann-La Roche, Welwyn, United Kingdom (K.H.); and Genentech, South San Francisco, CA (M.W.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mabashi-Asazuma H, Kuo CW, Khoo KH, Jarvis DL. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells. Glycobiology 2013; 24:325-40. [PMID: 24362443 DOI: 10.1093/glycob/cwt161] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5'-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd(+) baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation.
Collapse
|
26
|
|
27
|
Jain P, O'Brien S. Anti-CD20 monoclonal antibodies in chronic lymphocytic leukemia. Expert Opin Biol Ther 2013; 13:169-82. [PMID: 23256681 DOI: 10.1517/14712598.2012.735655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The last decade has witnesd immense progress in the treatment of chronic lymphocytic leukemia (CLL). Chemoimmunotherapy (CIT) combining rituximab and fludarabine with cyclophosphamide (FCR) in the frontline setting has clearly been shown to improve outcomes in patients with CLL. Building on the success achieved with rituximab, other anti-CD20 monoclonal antibodies (mAbs) are being investigated. Novel bioengineering techniques have helped in the development of anti-CD20 mAbs. One antibody, ofatumumab, was recently approved for the treatment of refractory CLL. A type II anti-CD20 mAb, GA-101 (obinutuzumab), is currently in clinical trials. This short review focuses on ongoing clinical trials of anti-CD20 mAbs in CLL. AREAS COVERED Literature search was performed using PubMed ( www.clinicaltrials.gov (till August 2012)), and recent American Society of Clinical Oncology (ASCO), American Society of Hematology (ASH), European Hematology association (EHA), International workshop on CLL (iwCLL) abstracts, using the primary search terms 'anti-CD20 monoclonal antibody' with/without CLL. Articles were chosen on the basis of relevance of anti-CD20 mAbs to CLL therapy. EXPERT OPINION Rituximab, the prototype anti-CD20 mAb, forms the core of CIT in CLL. The success of rituximab and ofatumumab has led investigators to evaluate other anti-CD20 mAbs in the treatment of CLL.
Collapse
Affiliation(s)
- Preetesh Jain
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
28
|
Bhutani D, Vaishampayan UN. Monoclonal antibodies in oncology therapeutics: present and future indications. Expert Opin Biol Ther 2013; 13:269-82. [PMID: 23286740 DOI: 10.1517/14712598.2012.758705] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Over the last decade, the field of oncology has undergone revolutionary changes. One of the major reasons contributing to this change is the improvement in our understanding of the biology of cancer. Recognition of novel targets on the cancer cell has enabled development of tools to attack those targets. Monoclonal antibodies represent such a therapy that has rapidly been adapted in almost all major cancer subtypes. AREAS COVERED This review intends to give a comprehensive overview of monoclonal antibodies, including mechanism of action, the currently approved agents and future targets. The authors reviewed published data as well as information from the ongoing clinical trials. EXPERT OPINION Monoclonal antibodies represent a major new advance in oncology therapy but there remains significant room for improvement.
Collapse
Affiliation(s)
- Divaya Bhutani
- Wayne State University, Barbara Ann Karmanos Cancer Institute, Department of Oncology, Department of Medicine, 4 Hudson Webber Cancer Research Center, 4100 John R, Detroit, MI 48201, USA
| | | |
Collapse
|
29
|
Robak T. Emerging monoclonal antibodies and related agents for the treatment of chronic lymphocytic leukemia. Future Oncol 2013; 9:69-91. [DOI: 10.2217/fon.12.157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Monoclonal antibodies (mAbs) – rituximab, ofatumumab and alemtuzumab – have been approved for use in the therapy of chronic lymphocytic leukemia (CLL). Recently, a new generation of anti-CD20 mAbs has become available for preclinical studies and clinical trials. These antibodies were engineered to have augmented antitumor activity by increasing complement-dependent cytotoxicity, antibody-dependent cellular cytotoxicity and Fc-binding affinity for the low-affinity variants of the Fcγ receptor IIIa. The most promising mAb directed against CD20 is obinutuzumab (GA-101). mAbs directed against CD22, CD37 and CD40 have also shown some activity in CLL. In addition, small modular immunopharmaceuticals – TRU-015 (anti-CD20) and TRU-016 (anti-CD37) – that retain Fc-mediated effector functions have been developed and investigated in preclinical studies and clinical trials. Antibody–drug conjugates and recombinant immunotoxins are also being evaluated in lymphoid malignancies. Further studies will elucidate the role of these agents in the treatment of CLL.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Ul. Ciolkowskiego 2, Poland and Copernicus Memorial Hospital, 93-510 Lodz, Ul. Ciolkowskiego 2, Poland
| |
Collapse
|
30
|
The future of antibodies as cancer drugs. Drug Discov Today 2012; 17:954-63. [DOI: 10.1016/j.drudis.2012.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/30/2012] [Accepted: 04/19/2012] [Indexed: 01/01/2023]
|