1
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
2
|
Grosso RA, Caldarone PVS, Sánchez MC, Chiabrando GA, Colombo MI, Fader CM. Hemin induces autophagy in a leukemic erythroblast cell line through the LRP1 receptor. Biosci Rep 2019; 39:BSR20181156. [PMID: 30523204 PMCID: PMC6328880 DOI: 10.1042/bsr20181156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023] Open
Abstract
Hemin is an erythropoietic inductor capable of inducing autophagy in erythroid-like cell lines. Low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane receptor involved in a wide range of cellular processes, such as proliferation, differentiation, and metabolism. Our aim was to evaluate whether LRP1 is responsible for hemin activity in K562 cells, with the results demonstrating a three-fold increase in LRP1 gene expression levels (P-values <0.001) when assessed by quantitative real-time RT-PCR (qRT-PCR). Moreover, a 70% higher protein amount was observed compared with control condition (P-values <0.01) by Western blot (WB). Time kinetic assays demonstrated a peak in light chain 3 (LC3) II (LC3II) levels after 8 h of hemin stimulation and the localization of LRP1 in the autophagosome structures. Silencing LRP1 by siRNA decreased drastically the hemin-induced autophagy activity by almost 80% compared with control cells (P-values <0.01). Confocal localization and biochemical analysis indicated a significant redistribution of LRP1 from early endosomes and recycling compartments to late endosomes and autophagolysosomes, where the receptor is degraded. We conclude that LRP1 is responsible for hemin-induced autophagy activity in the erythroblastic cell line and that hemin-LRP1 complex activation promotes a self-regulation of the receptor. Our results suggest that hemin, via the LRP1 receptor, favors erythroid maturation by inducing an autophagic response, making it a possible therapeutic candidate to help in the treatment of hematological disorders.
Collapse
Affiliation(s)
- Ruben Adrian Grosso
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paula Virginia Subirada Caldarone
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - María Cecilia Sánchez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Gustavo Alberto Chiabrando
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - María Isabel Colombo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudio Marcelo Fader
- Universidad Nacional de Cuyo, Facultad de Odontología, Mendoza, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Afantitis A, Leonis G, Gambari R, Melagraki G. Consensus Predictive Model for Human K562 Cell Growth Inhibition through Enalos Cloud Platform. ChemMedChem 2018; 13:555-563. [PMID: 29195008 DOI: 10.1002/cmdc.201700675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 12/27/2022]
Abstract
β-Thalassemia is an inherited hematologic disorder caused by various mutations of the β-globin gene, thus resulting in a significant decrease in adult hemoglobin (HbA) production. An increase in fetal hemoglobin (HbF) levels by drug molecules is considered of great potential in β-thalassemia treatment and is expected to counterbalance the impaired production of HbA. In this work, based on a set of 129 experimentally tested biological inhibitors, we developed and validated a computational model for the prediction of K562 functional inhibition, possibly associated with HbF induction. To facilitate future advancements in the field, we incorporated our model into Enalos Cloud Platform, which enabled online access to our computational scheme (http://enalos.insilicotox.com/K562) through a user-friendly interface. This web service is offered to the wider community to promote in silico drug discovery through fast and reliable predictions.
Collapse
Affiliation(s)
| | | | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara n.74, 44121, Ferrara, Italy
| | - Georgia Melagraki
- Department of Military Sciences, Division of Physical Sciences and Applications, Hellenic Army Academy Vari, Greece
| |
Collapse
|
4
|
Farashi S, Harteveld CL. Molecular basis of α-thalassemia. Blood Cells Mol Dis 2017; 70:43-53. [PMID: 29032940 DOI: 10.1016/j.bcmd.2017.09.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 02/05/2023]
Abstract
α-Thalassemia is an inherited, autosomal recessive, disorder characterized by a microcytic hypochromic anemia. It is one of the most common monogenic gene disorders in the world population. The clinical severity varies from almost asymptomatic, to mild microcytic hypochromic, and to a lethal hemolytic condition, called Hb Bart's Hydrops Foetalis Syndrome. The molecular basis are usually deletions and less frequently, point mutations affecting the expression of one or more of the duplicated α-genes. The clinical variation and increase in disease severity is directly related to the decreased expression of one, two, three or four copies of the α-globin genes. Deletions and point mutations in the α-globin genes and their regulatory elements have been studied extensively in carriers and patients and these studies have given insight into the α-globin genes are regulated. By looking at naturally occurring deletions and point mutations, our knowledge of globin-gene regulation and expression will continue to increase and will lead to new targets of therapy.
Collapse
Affiliation(s)
- Samaneh Farashi
- Dept. of Clinical Genetics, Hemoglobinopathy Expert Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis L Harteveld
- Dept. of Clinical Genetics, Hemoglobinopathy Expert Center, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
An Aγ-globin G->A gene polymorphism associated with β 039 thalassemia globin gene and high fetal hemoglobin production. BMC MEDICAL GENETICS 2017; 18:93. [PMID: 28851297 PMCID: PMC5575872 DOI: 10.1186/s12881-017-0450-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increase of the expression of γ-globin gene and high production of fetal hemoglobin (HbF) in β-thalassemia patients is widely accepted as associated with a milder or even asymptomatic disease. The search for HbF-associated polymorphisms (such as the XmnI, BCL11A and MYB polymorphisms) has recently gained great attention, in order to stratify β-thalassemia patients with respect to expectancy of the first transfusion, need for annual intake of blood, response to HbF inducers (the most studied of which is hydroxyurea). METHODS Aγ-globin gene sequencing was performed on genomic DNA isolated from a total of 75 β-thalassemia patients, including 31 β039/β039, 33 β039/β+IVSI-110, 9 β+IVSI-110/β+IVSI-110, one β0IVSI-1/β+IVSI-6 and one β039/β+IVSI-6. RESULTS The results show that the rs368698783 polymorphism is present in β-thalassemia patients in the 5'UTR sequence (+25) of the Aγ-globin gene, known to affect the LYAR (human homologue of mouse Ly-1 antibody reactive clone) binding site 5'-GGTTAT-3'. This Aγ(+25 G->A) polymorphism is associated with the Gγ-globin-XmnI polymorphism and both are linked with the β039-globin gene, but not with the β+IVSI-110-globin gene. In agreement with the expectation that this mutation alters the LYAR binding activity, we found that the Aγ(+25 G->A) and Gγ-globin-XmnI polymorphisms are associated with high HbF in erythroid precursor cells isolated from β039/β039 thalassemia patients. CONCLUSIONS As a potential explanation of our findings, we hypothesize that in β-thalassemia the Gγ-globin-XmnI/Aγ-globin-(G->A) genotype is frequently under genetic linkage with β0-thalassemia mutations, but not with the β+-thalassemia mutation here studied (i.e. β+IVSI-110) and that this genetic combination has been selected within the population of β0-thalassemia patients, due to functional association with high HbF. Here we describe the characterization of the rs368698783 (+25 G->A) polymorphism of the Aγ-globin gene associated in β039 thalassemia patients with high HbF in erythroid precursor cells.
Collapse
|
6
|
Bianchi N, Cosenza LC, Lampronti I, Finotti A, Breveglieri G, Zuccato C, Fabbri E, Marzaro G, Chilin A, De Angelis G, Borgatti M, Gallucci C, Alfieri C, Ribersani M, Isgrò A, Marziali M, Gaziev J, Morrone A, Sodani P, Lucarelli G, Gambari R, Paciaroni K. Structural and Functional Insights on an Uncharacterized Aγ-Globin-Gene Polymorphism Present in Four β0-Thalassemia Families with High Fetal Hemoglobin Levels. Mol Diagn Ther 2016; 20:161-73. [PMID: 26897028 DOI: 10.1007/s40291-016-0187-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Several DNA polymorphisms have been associated with high production of fetal hemoglobin (HbF), although the molecular basis is not completely understood. In order to identify and characterize novel HbF-associated elements, we focused on five probands and their four families (from Egypt, Iraq and Iran) with thalassemia major (either β(0)-IVSII-1 or β(0)-IVSI-1) and unusual HbF elevation (>98 %), congenital or acquired after rejection of bone marrow transplantation, suggesting an anticipated favorable genetic background to high HbF expression. METHODS Patient recruitment, genomic DNA sequencing, western blotting, electrophoretic mobility shift assays, surface plasmon resonance (SPR) biospecific interaction analysis, bioinformatics analyses based on docking experiments. RESULTS A polymorphism of the Aγ-globin gene is here studied in four families with β(0)-thalassemia (β(0)-IVSII-1 and β(0)-IVSI-1) and expressing unusual high HbF levels, congenital or acquired after rejection of bone marrow transplantation. This (G→A) polymorphism is present at position +25 of the Aγ-globin genes, corresponding to a 5'-UTR region of the Aγ-globin mRNA and, when present, is physically linked in chromosomes 11 of all the familiar members studied to the XmnI polymorphism and to the β(0)-thalassemia mutations. The region corresponding to the +25(G→A) polymorphism of the Aγ-globin gene belongs to a sequence recognized by DNA-binding protein complexes, including LYAR (Ly-1 antibody reactive clone), a zinc-finger transcription factor previously proposed to be involved in down-regulation of the expression of γ-globin genes in erythroid cells. CONCLUSION We found a novel polymorphism of the Aγ-globin gene in four families with β(0)-thalassemia and high levels of HbF expression. Additionally, we report evidence suggesting that the Aγ-globin gene +25(G→A) polymorphism decreases the efficiency of the interaction between this sequence and specific DNA binding protein complexes.
Collapse
Affiliation(s)
- Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | | | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Cristina Zuccato
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Gioia De Angelis
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Cristiano Gallucci
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Cecilia Alfieri
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Michela Ribersani
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Antonella Isgrò
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Marco Marziali
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Javid Gaziev
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Aldo Morrone
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Pietro Sodani
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Guido Lucarelli
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy.
- Biotechnology Center, Ferrara University, Ferrara, Italy.
| | - Katia Paciaroni
- International Centre for Transplantation in Thalassemia and Sickle Cell Anaemia, Mediterranean Institute of Haematology, Policlinic of "Tor Vergata" University, Rome, Italy
| |
Collapse
|
7
|
Finotti A, Borgatti M, Bianchi N, Zuccato C, Lampronti I, Gambari R. Orphan Drugs and Potential Novel Approaches for Therapies of β-Thalassemia: Current Status and Future Expectations. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1135793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Fader CM, Salassa BN, Grosso RA, Vergara AN, Colombo MI. Hemin induces mitophagy in a leukemic erythroblast cell line. Biol Cell 2016; 108:77-95. [PMID: 26773440 DOI: 10.1111/boc.201500058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 01/11/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND INFORMATION In eukaryotic cells, autophagy is considered a lysosomal catabolic process which participates in the degradation of intracellular components in a vacuolar structure termed autolysosome. This pathway plays a significant role in the erythropoiesis process, contributing to the clearance of some organelles (such as mitochondria) that are not necessary in the mature red blood cells. Nevertheless, the role of autophagy in erythrocyte maturation has not been fully established. RESULTS Here, we have demonstrated that hemin (a physiological erythroid maturation stimulator) is able to induce the expression of critical autophagic genes (i.e., Map1a1b (LC3), Beclin-1 gen, Atg5) in an erythroleukemia cell type. We have also shown that hemin increased the size of autophagic vacuoles which were labelled with LC3 and the degradative lysosomal marker dye quenched-bovine serum albumin. In addition, we have determined by Western blot a rise in the lipidated form of the autophagic protein LC3 (i.e., LC3-II) upon hemin treatment. Moreover, we provide evidence that hemin induces mitochondrial membrane depolarisation and that mitochondria sequestration by autophagy requires the active form of the NIX protein. CONCLUSIONS We have found that the physiological erythroid maturation stimulator hemin is able to induce mitophagy in K562 cells, and that the autophagy adaptor NIX is necessary for mitophagy progression. K562 cells have been used as a relevant model to determine the possible therapeutic role of new differentiating compounds. SIGNIFICANCE It has been proposed that autophagy induction is a feasible new therapeutic key in fighting cancer. Our results suggest that hemin is favoring erythroid maturation by inducing an autophagic response in K562 cells, being a possible therapeutic candidate that may help in the chronic myelogenous leukemia (CML) treatment.
Collapse
Affiliation(s)
- Claudio Marcelo Fader
- Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza, Argentina.,Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Betiana Nebaí Salassa
- Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza, Argentina
| | - Rubén Adrián Grosso
- Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | | | - María Isabel Colombo
- Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza, Argentina.,Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| |
Collapse
|
9
|
Finotti A, Gasparello J, Breveglieri G, Cosenza LC, Montagner G, Bresciani A, Altamura S, Bianchi N, Martini E, Gallerani E, Borgatti M, Gambari R. Development and characterization of K562 cell clones expressing BCL11A-XL: Decreased hemoglobin production with fetal hemoglobin inducers and its rescue with mithramycin. Exp Hematol 2015; 43:1062-1071.e3. [PMID: 26342260 PMCID: PMC4670904 DOI: 10.1016/j.exphem.2015.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 08/07/2015] [Accepted: 08/26/2015] [Indexed: 12/27/2022]
Abstract
Induction of fetal hemoglobin (HbF) is considered a promising strategy in the treatment of β-thalassemia, in which production of adult hemoglobin (HbA) is impaired by mutations affecting the β-globin gene. Recent results indicate that B-cell lymphoma/leukemia 11A (BCL11A) is a major repressor of γ-globin gene expression. Therefore, disrupting the binding of the BCL11A transcriptional repressor complex to the γ-globin gene promoter provides a novel approach for inducing expression of the γ-globin genes. To develop a cellular screening system for the identification of BCL11A inhibitors, we produced K562 cell clones with integrated copies of a BCL11A-XL expressing vector. We characterized 12 K562 clones expressing different levels of BCL11A-XL and found that a clear inverse relationship does exist between the levels of BCL11A-XL and the extent of hemoglobinization induced by a panel of HbF inducers. Using mithramycin as an inducer, we found that this molecule was the only HbF inducer efficient in rescuing the ability to differentiate along the erythroid program, even in K562 cell clones expressing high levels of BCL11A-XL, suggesting that BCL11A-XL activity is counteracted by mithramycin. K562 clones were described with integrated copies of a BCL11A-XL expressing vector. B-Cell lymphoma/leukemia 11A-XL (BCL11A-XL) levels inversely correlate with the extent of hemoglobin induction. Mithramycin induces γ-globin genes even in K562 clones expressing high levels of BCL11A-XL. K562(BCL11A-XL) clones might be useful in identifying fetal hemoglobin inducers acting on BCL11A.
Collapse
Affiliation(s)
- Alessia Finotti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy; Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Giulia Breveglieri
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy; Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Lucia Carmela Cosenza
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy; Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Giulia Montagner
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | | | | | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Elisa Martini
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Eleonora Gallerani
- Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Monica Borgatti
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy; Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy
| | - Roberto Gambari
- Laboratory for the Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, Ferrara University, Ferrara, Italy; Department of Life Sciences and Biotechnology, Ferrara University, Ferrara, Italy.
| |
Collapse
|
10
|
Blobel GA, Bodine D, Brand M, Crispino J, de Bruijn MFTR, Nathan D, Papayannopoulou T, Porcher C, Strouboulis J, Zon L, Higgs DR, Stamatoyannopoulos G, Engel JD. An international effort to cure a global health problem: A report on the 19th Hemoglobin Switching Conference. Exp Hematol 2015; 43:821-37. [PMID: 26143582 DOI: 10.1016/j.exphem.2015.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 12/24/2022]
Abstract
Every 2 years since 1978, an international group of scientists, physicians, and other researchers meet to discuss the latest developments in the underlying etiology, mechanisms of action, and developmental acquisition of cellular and systemic defects exhibited and elicited by the most common inherited human disorders, the hemoglobinopathies. The 19th Hemoglobin Switching Conference, held in September 2014 at St. John's College in Oxford, once again exceeded all expectations by describing cutting edge research in cellular, molecular, developmental, and genomic advances focused on these diseases. The conference comprised about 60 short talks over 3 days by leading investigators in the field. This meeting report describes the highlights of the conference.
Collapse
Affiliation(s)
- Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Bodine
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - John Crispino
- Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital University of Oxford, Oxford, UK; BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - David Nathan
- Division of Hematology and Oncology, Boston Children's Hospital, Departments of Pediatrics and Medicine, Harvard Medical School, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Catherine Porcher
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital University of Oxford, Oxford, UK; BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | - John Strouboulis
- Division of Molecular Oncology, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Len Zon
- Boston Children's Hospital/HHMI, Boston, MA, USA
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital University of Oxford, Oxford, UK; BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford University Hospital, Oxford, UK
| | | | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β -Globin Gene with the IVSI-6 Thalassemia Mutation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:687635. [PMID: 26097845 PMCID: PMC4434229 DOI: 10.1155/2015/687635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022]
Abstract
Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece) are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6) carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a) the transgenic integration region is located in mouse chromosome 7; (b) the expression of the transgene is tissue specific; (c) as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin muα-globin2/huβ-globin2 and, more importantly, (d) the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia.
Collapse
|
12
|
α-Globin as a molecular target in the treatment of β-thalassemia. Blood 2015; 125:3694-701. [PMID: 25869286 DOI: 10.1182/blood-2015-03-633594] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022] Open
Abstract
The thalassemias, together with sickle cell anemia and its variants, are the world's most common form of inherited anemia, and in economically undeveloped countries, they still account for tens of thousands of premature deaths every year. In developed countries, treatment of thalassemia is also still far from ideal, requiring lifelong transfusion or allogeneic bone marrow transplantation. Clinical and molecular genetic studies over the course of the last 50 years have demonstrated how coinheritance of modifier genes, which alter the balance of α-like and β-like globin gene expression, may transform severe, transfusion-dependent thalassemia into relatively mild forms of anemia. Most attention has been paid to pathways that increase γ-globin expression, and hence the production of fetal hemoglobin. Here we review the evidence that reduction of α-globin expression may provide an equally plausible approach to ameliorating clinically severe forms of β-thalassemia, and in particular, the very common subgroup of patients with hemoglobin E β-thalassemia that makes up approximately half of all patients born each year with severe β-thalassemia.
Collapse
|
13
|
Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, Rivella S, Gambari R. Recent trends in the gene therapy of β-thalassemia. J Blood Med 2015; 6:69-85. [PMID: 25737641 PMCID: PMC4342371 DOI: 10.2147/jbm.s46256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The β-thalassemias are a group of hereditary hematological diseases caused by over 300 mutations of the adult β-globin gene. Together with sickle cell anemia, thalassemia syndromes are among the most impactful diseases in developing countries, in which the lack of genetic counseling and prenatal diagnosis have contributed to the maintenance of a very high frequency of these genetic diseases in the population. Gene therapy for β-thalassemia has recently seen steadily accelerating progress and has reached a crossroads in its development. Presently, data from past and ongoing clinical trials guide the design of further clinical and preclinical studies based on gene augmentation, while fundamental insights into globin switching and new technology developments have inspired the investigation of novel gene-therapy approaches. Moreover, human erythropoietic stem cells from β-thalassemia patients have been the cellular targets of choice to date whereas future gene-therapy studies might increasingly draw on induced pluripotent stem cells. Herein, we summarize the most significant developments in β-thalassemia gene therapy over the last decade, with a strong emphasis on the most recent findings, for β-thalassemia model systems; for β-, γ-, and anti-sickling β-globin gene addition and combinatorial approaches including the latest results of clinical trials; and for novel approaches, such as transgene-mediated activation of γ-globin and genome editing using designer nucleases.
Collapse
Affiliation(s)
- Alessia Finotti
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Laura Breda
- Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carsten W Lederer
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus ; Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Nicoletta Bianchi
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Cristina Zuccato
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassaemia, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus ; Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Stefano Rivella
- Department of Pediatrics, Division of Haematology/Oncology, Weill Cornell Medical College, New York, NY, USA ; Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY, USA
| | - Roberto Gambari
- Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Centre of Ferrara University, Ferrara, Italy ; Associazione Veneta per la Lotta alla Talassemia, Rovigo, Italy ; Department of Life Sciences and Biotechnology, Section of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| |
Collapse
|
14
|
Gambari R. The Role of OMICS Research in Understanding Phenotype Variation in Thalassaemia: The THALAMOSS Project. THALASSEMIA REPORTS 2014. [DOI: 10.4081/thal.2014.4877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The β-thalassaemias are a group of severe and rare anaemias with monogenic inheritance, a complex systemic phenotype and several treatment-related complications, caused by more than 300 mutations of the β-globin gene. Novel therapeutic protocols, most of which are based on still experimental treatments, show great promise but significant variability of success between patients. These strategies include chemical/molecular induction of the endogenous β-like γ-globin gene or the restoration of clinically relevant β-globin levels by gene therapy. A small number of modifiers with significant impact on disease penetrance, severity and efficacy of treatments are known, but most remain elusive. Improvements of existing treatment regimens and optimization and application of novel treatments will critically depend on the characterization of additional disease modifiers and the stratification of patients for customized treatment regimens. This requires extensive analyses based on “OMICS”, an English-language neologism which refer to different but connected fields in molecular biology and biochemistry, such as genomics, transcriptomics, exomics, proteomics, metabolomics. The major objective of OMICS is a collective characterization of pools of biological molecules (gene sequences, transcripts, proteins and protein domains) controlling biological structures, functions and dynamics, including several involved in pathological conditions. One of the most interesting observations of genomics in β-thalassaemias is the association between genomic sequences and high fetal haemoglobin (HbF) levels, in consideration of the fact that high HbF levels are usually associated with milder forms of β-thalassaemia. Related to this issue, is the possibility to predict response to different therapeutic protocols on the basis of genomic analyses. For instance, three major loci (Xmn1-HBG2 single nucleotide polymorphism, HBS1L-MYB intergenic region on chromosome 6q, and BCL11A) contribute to high HbF production. Pharmacogenomic analysis of the effects of hydroxyurea (HU) on HbF production in a collection of β-thalassemia and sickle cell disease (SCD) patients allowed the identification of genomic signatures associated with high HbF. Therefore, it can hypothesized that genomic studies might predict the response of patients to treatments based on hydroxyurea, which is at present the most used HbF inducer in pharmacological therapy of β-thalassaemia. Transcriptomic/proteomic studies allowed to identify the zinc finger transcription factor B-cell lymphoma/leukemia 11A (BCL11A) as the major repressor of HbF expression. The field of research on g-globin gene repressors (including BCL11A) is of top interest, since several approaches can lead to pharmacologically-mediated inhibition of the expression of g-globin gene repressors, leading to gglobin gene activation. Among these strategies, we underline direct targeting of the transcription factors by aptamers or decoy molecules, as well as inhibition of the mRNA coding g-globin gene repressors with shRNAs, antisense molecules, peptide nucleic acids (PNAs) and microRNAs. In this respect, the THALAMOSS FP7 Project (THALAssaemia MOdular Stratification System for personalized therapy of β-thalassemia, www.thalamoss.eu) aims develop a universal sets of markers and techniques for stratification of β-thalassaemia patients into treatment subgroups for (a) onset and frequency of blood transfusions, (b) choice of iron chelation, (c) induction of fetal hemoglobin, (d) prospective efficacy of gene-therapy. The impact of THALAMOSS is the provision of novel biomarkers for distinct treatment subgroups in β-thalassaemia (500–1000 samples from participating medical centres), identified by combined genomics, proteomics, transcriptomics and tissue culture assays, the development of new or improved products for the cell isolation, characterization and treatment of β-thalassaemia patients and the establishment of routine techniques for detection of these markers and stratification of patients into treatment groups. Translation of these activities into the product portfolio and R&D methodology of participating SMEs will be a major boost for them as well as for the field. THALAMOSS tools and technologies will (a) facilitate identification of novel diagnostic tests, drugs and treatments specific to patient subgroups and (b) guide conventional and novel therapeutic approaches for β-thalassaemia, including personalized medical treatments.
Collapse
|
15
|
Montagner G, Gemmo C, Fabbri E, Manicardi A, Accardo I, Bianchi N, Finotti A, Breveglieri G, Salvatori F, Borgatti M, Lampronti I, Bresciani A, Altamura S, Corradini R, Gambari R. Peptide nucleic acids targeting β-globin mRNAs selectively inhibit hemoglobin production in murine erythroleukemia cells. Int J Mol Med 2014; 35:51-8. [PMID: 25405921 PMCID: PMC4249754 DOI: 10.3892/ijmm.2014.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
In the treatment of hemoglobinopathies, amending altered hemoglobins and/or globins produced in excess is an important part of therapeutic strategies and the selective inhibition of globin production may be clinically beneficial. Therefore the development of drug-based methods for the selective inhibition of globin accumulation is required. In this study, we employed peptide nucleic acids (PNAs) to alter globin gene expression. The main conclusion of the present study was that PNAs designed to target adult murine β-globin mRNA inhibit hemoglobin accumulation and erythroid differentiation of murine erythroleukemia (MEL) cells with high efficiency and fair selectivity. No major effects were observed on cell proliferation. Our study supports the concept that PNAs may be used to target mRNAs that, similar to globin mRNAs, are expressed at very high levels in differentiating erythroid cells. Our data suggest that PNAs inhibit the excess production of globins involved in the pathophysiology of hemoglobinopathies.
Collapse
Affiliation(s)
- Giulia Montagner
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Chiara Gemmo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alex Manicardi
- Department of Chemistry, University of Parma, Parma, Italy
| | - Igea Accardo
- Department of Chemistry, University of Parma, Parma, Italy
| | - Nicoletta Bianchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giulia Breveglieri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Francesca Salvatori
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | | | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Finotti A, Gambari R. Recent trends for novel options in experimental biological therapy of β-thalassemia. Expert Opin Biol Ther 2014; 14:1443-54. [PMID: 24934764 DOI: 10.1517/14712598.2014.927434] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION β-thalassemias are caused by nearly 300 mutations of the β-globin gene, leading to low or absent production of adult hemoglobin. Achievements have been recently obtained on innovative therapeutic strategies for β-thalassemias, based on studies focusing on the transcriptional regulation of the γ-globin genes, epigenetic mechanisms governing erythroid differentiation, gene therapy and genetic correction of the mutations. AREAS COVERED The objective of this review is to describe recently published approaches (the review covers the years 2011 - 2014) useful for the development of novel therapeutic strategies for the treatment of β-thalassemia. EXPERT OPINION Modification of β-globin gene expression in β-thalassemia cells was achieved by gene therapy (eventually in combination with induction of fetal hemoglobin [HbF]) and correction of the mutated β-globin gene. Based on recent areas of progress in understanding the control of γ-globin gene expression, novel strategies for inducing HbF have been proposed. Furthermore, the identification of microRNAs involved in erythroid differentiation and HbF production opens novel options for developing therapeutic approaches for β-thalassemia and sickle-cell anemia.
Collapse
Affiliation(s)
- Alessia Finotti
- Biotechnology Centre of Ferrara University, Laboratory for the Development of Gene and Pharmacogenomic Therapy of Thalassaemia , Ferrara , Italy
| | | |
Collapse
|
17
|
Gambari R. Peptide nucleic acids: a review on recent patents and technology transfer. Expert Opin Ther Pat 2014; 24:267-94. [PMID: 24405414 DOI: 10.1517/13543776.2014.863874] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION DNA/RNA-based drugs are considered of major interest in molecular diagnosis and nonviral gene therapy. In this field, peptide nucleic acids (PNAs, DNA analogs in which the sugar-phosphate backbone is replaced by N-(2-aminoethyl)glycine units or similar building blocks) have been demonstrated to be excellent candidates as diagnostic reagents and biodrugs. AREAS COVERED Recent (2002 - 2013) patents based on studies on development of PNA analogs, delivery systems for PNAs, applications of PNAs in molecular diagnosis, and use of PNA for innovative therapeutic protocols. EXPERT OPINION PNAs are unique reagents in molecular diagnosis and have been proven to be very active and specific for alteration of gene expression, despite the fact that solubility and uptake by target cells can be limiting factors. Accordingly, patents on PNAs have taken in great consideration delivery strategies. PNAs have been proven stable and effective in vivo, despite the fact that possible long-term toxicity should be considered. For possible clinical applications, the use of PNA molecules in combination with drugs already employed in therapy has been suggested. Considering the patents available and the results on in vivo testing on animal models, we expect in the near future relevant PNA-based clinical trials.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section , Via Fossato di Mortara n.74, 44100 Ferrara , Italy +39 532 974443 ; +39 532 974500 ;
| |
Collapse
|
18
|
Salvador A, Brognara E, Vedaldi D, Castagliuolo I, Brun P, Zuccato C, Lampronti I, Gambari R. Induction of erythroid differentiation and increased globin mRNA production with furocoumarins and their photoproducts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 121:57-66. [PMID: 23518160 PMCID: PMC3625112 DOI: 10.1016/j.jphotobiol.2013.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 02/07/2023]
Abstract
Differentiation-therapy is an important approach in the treatment of cancer, as in the case of erythroid induction in chronic myelogenous leukemia. Moreover, an important therapeutic strategy for treating beta-thalassemia and sickle-cell anemia could be the use of drugs able to induce erythroid differentiation and fetal hemoglobin (HbF) accumulation: in fact, the increased production of this type of hemoglobin can reduce the clinical symptoms and the frequency of transfusions. An important class of erythroid differentiating compounds and HbF inducers is composed by DNA-binding chemotherapeutics: however, they are not used in most instances considering their possible devastating side effects. In this contest, we approached the study of erythrodifferentiating properties of furocoumarins. In fact, upon UV-A irradiation, they are able to covalently bind DNA. Thus, the erythrodifferentiation activity of some linear and angular furocoumarins was evaluated in the experimental K562 cellular model system. Quantitative real-time reverse transcription polymerase-chain reaction assay was employed to evaluate the accumulation of different globin mRNAs. The results demonstrated that both linear and angular furocoumarins are strong inducers of erythroid differentiation of K562 cells. From a preliminary screening, we selected the most active compounds and investigated the role of DNA photodamage in their erythroid inducing activity and mechanism of action. Moreover, some cytofluorimetric experiments were carried out to better study cell cycle modifications and the mitochondrial involvement. A further development of the work was carried out studying the erythroid differentiation of photolysis products of these molecules. 5,5′-Dimethylpsoralen photoproducts induced an important increase in γ-globin gene transcription in K562 cells.
Collapse
|
19
|
The potential role of cell penetrating peptides in the intracellular delivery of proteins for therapy of erythroid related disorders. Pharmaceuticals (Basel) 2013; 6:32-53. [PMID: 24275786 PMCID: PMC3816679 DOI: 10.3390/ph6010032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/27/2012] [Indexed: 01/08/2023] Open
Abstract
The erythroid related disorders (ERDs) represent a large group of hematological diseases, which in most cases are attributed either to the deficiency or malfunction of biosynthetic enzymes or oxygen transport proteins. Current treatments for these disorders include histo-compatible erythrocyte transfusions or allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy delivered via suitable viral vectors or genetically modified HSCs have been under way. Protein Transduction Domain (PTD) technology has allowed the production and intracellular delivery of recombinant therapeutic proteins, bearing Cell Penetrating Peptides (CPPs), into a variety of mammalian cells. Remarkable progress in the field of protein transduction leads to the development of novel protein therapeutics (CPP-mediated PTs) for the treatment of monogenetic and/or metabolic disorders. The “concept” developed in this paper is the intracellular protein delivery made possible via the PTD technology as a novel therapeutic intervention for treatment of ERDs. This can be achieved via four stages including: (i) the production of genetically engineered human CPP-mediated PT of interest, since the corresponding native protein either is missing or is mutated in the erythroid progenitor cell (ErPCs) or mature erythrocytes of patients; (ii) isolation of target cells from the peripheral blood of the selected patients; (iii) ex vivo transduction of cells with the CPP-mediated PT of interest; and (iv) re-administration of the successfully transduced cells back into the same patients.
Collapse
|
20
|
Current world literature. Curr Opin Pediatr 2012; 24:770-9. [PMID: 23146873 DOI: 10.1097/mop.0b013e32835af8de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Yamada AK, Verlengia R, Bueno Junior CR. Myostatin: genetic variants, therapy and gene doping. BRAZ J PHARM SCI 2012. [DOI: 10.1590/s1984-82502012000300003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since its discovery, myostatin (MSTN) has been at the forefront of muscle therapy research because intrinsic mutations or inhibition of this protein, by either pharmacological or genetic means, result in muscle hypertrophy and hyperplasia. In addition to muscle growth, MSTN inhibition potentially disturbs connective tissue, leads to strength modulation, facilitates myoblast transplantation, promotes tissue regeneration, induces adipose tissue thermogenesis and increases muscle oxidative phenotype. It is also known that current advances in gene therapy have an impact on sports because of the illicit use of such methods. However, the adverse effects of these methods, their impact on athletic performance in humans and the means of detecting gene doping are as yet unknown. The aim of the present review is to discuss biosynthesis, genetic variants, pharmacological/genetic manipulation, doping and athletic performance in relation to the MSTN pathway. As will be concluded from the manuscript, MSTN emerges as a promising molecule for combating muscle wasting diseases and for triggering wide-ranging discussion in view of its possible use in gene doping.
Collapse
|