1
|
Chow MYT, Chang RYK, Chan HK. Inhalation delivery technology for genome-editing of respiratory diseases. Adv Drug Deliv Rev 2021; 168:217-228. [PMID: 32512029 PMCID: PMC7274121 DOI: 10.1016/j.addr.2020.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system has significant therapeutic potentials for lung congenital diseases such as cystic fibrosis, as well as other pulmonary disorders like lung cancer and obstructive diseases. Local administration of CRISPR/Cas9 therapeutics through inhalation can achieve high drug concentration and minimise systemic exposure. While the field is advancing with better understanding on the biological functions achieved by CRISPR/Cas9 systems, the lack of progress in inhalation formulation and delivery of the molecule may impede their clinical translation efficiently. This forward-looking review discussed the current status of formulations and delivery for inhalation of relevant biologics such as genes (plasmids and mRNAs) and proteins, emphasising on their design strategies and preparation methods. By adapting and optimising formulation strategies used for genes and proteins, we envisage that development of inhalable CRISPR/Cas9 liquid or powder formulations for inhalation administration can potentially be fast-tracked in near future.
Collapse
Affiliation(s)
- Michael Y T Chow
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Delivery of genome-editing biomacromolecules for treatment of lung genetic disorders. Adv Drug Deliv Rev 2021; 168:196-216. [PMID: 32416111 DOI: 10.1016/j.addr.2020.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Genome-editing systems based on clustered, regularly interspaced, short palindromic repeat (CRISPR)/associated protein (CRISPR/Cas), are emerging as a revolutionary technology for the treatment of various genetic diseases. To date, the delivery of genome-editing biomacromolecules by viral or non-viral vectors have been proposed as new therapeutic options for lung genetic disorders, such as cystic fibrosis (CF) and α-1 antitrypsin deficiency (AATD), and it has been accepted that these delivery vectors can introduce CRISPR/Cas9 machineries into target cells or tissues in vitro, ex vivo and in vivo. However, the efficient local or systemic delivery of CRISPR/Cas9 elements to the lung, enabled by either viral or by non-viral carriers, still remains elusive. Herein, we first introduce lung genetic disorders and their current treatment options, and then summarize CRISPR/Cas9-based strategies for the therapeutic genome editing of these disorders. We further summarize the pros and cons of different routes of administration for lung genetic disorders. In particular, the potentials of aerosol delivery for therapeutic CRISPR/Cas9 biomacromolecules for lung genome editing are discussed and highlighted. Finally, current challenges and future outlooks in this emerging area are briefly discussed.
Collapse
|
3
|
Aerosol Inhalation-mediated Delivery of an Adeno-associated Virus 5-expressed Antagonistic Interleukin-4 Mutant Ameliorates Experimental Murine Asthma. Arch Med Res 2019; 50:384-392. [PMID: 31678897 DOI: 10.1016/j.arcmed.2019.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/19/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND T helper 2 (Th2) lymphocytes and associated interleukin (IL) 4 and IL-13 play crucial roles in asthma pathogenesis. In this study, we explored an adeno-associated virus 5 (AAV5) based gene therapy by delivering truncated IL-4 protein to antagonize IL-4 receptor α chain and interrupt asthmatic signal pathway. RESULTS A recombinant adeno-associated virus 5 (AAV5) vector harboring a truncated mouse IL-4 gene (AAV5-mIL-4ΔC22) was prepared. Western blotting showed that the IL-4 mutant protein lacking the C-terminal 22 amino acids was expressed well in AAV5-mIL-4ΔC22 infected 16HBE and BEAS-2B cells. AAV5-drivn green fluorescent protein (AAV5-GFP) served as a control. The biodistribution of vector DNA after AAV5 vector aerosol inhalation was examined by PCR and the result showed that foreign DNA was detectable in the lungs but not in other organs including gonads. The aerosol inhalation-mediated delivery of AAV5-expressed antagonistic IL-4 mutant protein improved the lung function of ovalbumin-induced asthma mice. CONCLUSIONS The inhalation of aerosolized AAV5-mIL-4ΔC22 significantly improved the lung function and modulated the immune cell infiltration and associated cytokine expression in the bronchoalveolar lavage fluid (BALF) of ovalbumin-induced asthma mice.
Collapse
|
4
|
Caballero I, Riou M, Hacquin O, Chevaleyre C, Barc C, Pezant J, Pinard A, Fassy J, Rezzonico R, Mari B, Heuzé-Vourc'h N, Pitard B, Vassaux G. Tetrafunctional Block Copolymers Promote Lung Gene Transfer in Newborn Piglets. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:186-193. [PMID: 30897407 PMCID: PMC6426709 DOI: 10.1016/j.omtn.2019.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/21/2022]
Abstract
Tetrafunctional block copolymers are molecules capable of complexing DNA. Although ineffective in vitro, studies in mice have shown that the tetrafunctional block copolymer 704 is a more efficient lung gene transfer agent than the cationic liposome GL67A, previously used in a phase II clinical trial in cystic fibrosis patients. In the present study, we compared the gene transfer capacity of the 704-DNA formulation and a cationic liposome-DNA formulation equivalent to GL67A in a larger-animal model, the newborn piglet. Our results indicate an efficacy of the 704-DNA formulation well above one order of magnitude higher than that of the cationic liposome-DNA formulation, with no elevated levels of interleukin-6 (IL-6), taken as a marker of inflammation. Transgene expression was heterogeneous within lung lobes, with expression levels that were below the detection threshold in some samples, while high in other samples. This heterogeneity is likely to be due to the bolus injection procedure as well as to the small volume of injection. The present study highlights the potential of tetrafunctional block copolymers as non-viral vectors for lung gene therapy.
Collapse
Affiliation(s)
- Ignacio Caballero
- INRA Centre Val de Loire - Université de Tours, UMR-1282 Infectiologie et Santé Publique (ISP), 37380 Nouzilly, France
| | - Mickaël Riou
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), 37380 Nouzilly, France
| | - Océane Hacquin
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France; FHU-OncoAge, Nice, France
| | - Claire Chevaleyre
- INRA Centre Val de Loire - Université de Tours, UMR-1282 Infectiologie et Santé Publique (ISP), 37380 Nouzilly, France
| | - Céline Barc
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), 37380 Nouzilly, France
| | - Jérémy Pezant
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), 37380 Nouzilly, France
| | - Anne Pinard
- INRA Centre Val de Loire, UE-1277 Plateforme d'Infectiologie expérimentale (PFIE), 37380 Nouzilly, France
| | - Julien Fassy
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France; FHU-OncoAge, Nice, France
| | - Roger Rezzonico
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France; FHU-OncoAge, Nice, France
| | - Bernard Mari
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France; FHU-OncoAge, Nice, France
| | | | - Bruno Pitard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Georges Vassaux
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France; FHU-OncoAge, Nice, France.
| |
Collapse
|
5
|
Santos-Carballal B, Fernández Fernández E, Goycoolea FM. Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies. Polymers (Basel) 2018; 10:E444. [PMID: 30966479 PMCID: PMC6415274 DOI: 10.3390/polym10040444] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/04/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Non-viral gene delivery vectors have lagged far behind viral ones in the current pipeline of clinical trials of gene therapy nanomedicines. Even when non-viral nanovectors pose less safety risks than do viruses, their efficacy is much lower. Since the early studies to deliver pDNA, chitosan has been regarded as a highly attractive biopolymer to deliver nucleic acids intracellularly and induce a transgenic response resulting in either upregulation of protein expression (for pDNA, mRNA) or its downregulation (for siRNA or microRNA). This is explained as the consequence of a multi-step process involving condensation of nucleic acids, protection against degradation, stabilization in physiological conditions, cellular internalization, release from the endolysosome ("proton sponge" effect), unpacking and enabling the trafficking of pDNA to the nucleus or the siRNA to the RNA interference silencing complex (RISC). Given the multiple steps and complexity involved in the gene transfection process, there is a dearth of understanding of the role of chitosan's structural features (Mw and degree of acetylation, DA%) on each step that dictates the net transfection efficiency and its kinetics. The use of fully characterized chitosan samples along with the utilization of complementary biophysical and biological techniques is key to bridging this gap of knowledge and identifying the optimal chitosans for delivering a specific gene. Other aspects such as cell type and administration route are also at play. At the same time, the role of chitosan structural features on the morphology, size and surface composition of synthetic virus-like particles has barely been addressed. The ongoing revolution brought about by the recent discovery of CRISPR-Cas9 technology will undoubtedly be a game changer in this field in the short term. In the field of rare diseases, gene therapy is perhaps where the greatest potential lies and we anticipate that chitosans will be key players in the translation of research to the clinic.
Collapse
Affiliation(s)
| | - Elena Fernández Fernández
- Lung Biology Group, Department Clinical Microbiology, RCSI, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.
| | | |
Collapse
|
6
|
Cmielewski P, Farrow N, Devereux S, Parsons D, Donnelley M. Gene therapy for Cystic Fibrosis: Improved delivery techniques and conditioning with lysophosphatidylcholine enhance lentiviral gene transfer in mouse lung airways. Exp Lung Res 2017; 43:426-433. [PMID: 29236544 DOI: 10.1080/01902148.2017.1395931] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Purpose/Aim: Cystic fibrosis (CF) is the most common, fatal recessive genetic disease among the Caucasian population. Gene therapy has the potential to treat CF long term, however physiological barriers can prevent VSV-G pseudotyped lentiviral (LV) vectors from efficiently accessing the relevant receptors on the basolateral membrane of airway epithelial cells. The aims of this experiment were to use our new dose delivery techniques to determine whether conditioning the mouse lung conducting airways with lysophosphatidylcholine (LPC) improves the level of airway gene expression. MATERIALS AND METHODS Anaesthetised normal C57Bl/6 mice were intubated with an endotracheal cannula to non-invasively facilitate airway access. The airways were conditioned with 0.1% LPC, 0.3% LPC, or PBS (control) instilled via the ET tube. One hour later a VSV-G pseudotyped LV vector carrying the LacZ transgene was delivered. LacZ expression was measured by X-gal staining of the excised lungs 3 months after gene delivery. RESULTS Endotracheal intubation enabled precise dose delivery to the trachea and conducting airways. The cartilaginous airways of the groups conditioned with 0.1% and 0.3% LPC contained significantly larger numbers of LacZ positive cells compared to the PBS control group. In the LPC conditioned groups the majority of cell transduction was in ciliated epithelial cells. CONCLUSION LPC conditioning prior to LV vector delivery, substantially enhanced the level of conducting airway gene expression after a single gene vector delivery. These results extend the previously established effectiveness of this protocol for producing gene expression in the nasal airways to the lung airways, the primary site of deleterious pathophysiology in CF individuals.
Collapse
Affiliation(s)
- Patricia Cmielewski
- a Department of Respiratory and Sleep Medicine , Women's and Children's Hospital Network , North Adelaide , SA , Australia.,b Robinson Research Institute, University of Adelaide , Adelaide , SA , Australia.,c Discipline of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences , University of Adelaide , Adelaide , SA , Australia
| | - Nigel Farrow
- a Department of Respiratory and Sleep Medicine , Women's and Children's Hospital Network , North Adelaide , SA , Australia.,b Robinson Research Institute, University of Adelaide , Adelaide , SA , Australia.,c Discipline of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences , University of Adelaide , Adelaide , SA , Australia
| | - Sharnna Devereux
- c Discipline of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences , University of Adelaide , Adelaide , SA , Australia
| | - David Parsons
- a Department of Respiratory and Sleep Medicine , Women's and Children's Hospital Network , North Adelaide , SA , Australia.,b Robinson Research Institute, University of Adelaide , Adelaide , SA , Australia.,c Discipline of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences , University of Adelaide , Adelaide , SA , Australia
| | - Martin Donnelley
- a Department of Respiratory and Sleep Medicine , Women's and Children's Hospital Network , North Adelaide , SA , Australia.,b Robinson Research Institute, University of Adelaide , Adelaide , SA , Australia.,c Discipline of Paediatrics, Adelaide Medical School, Faculty of Health and Medical Sciences , University of Adelaide , Adelaide , SA , Australia
| |
Collapse
|
7
|
Conese M, Beccia E, Castellani S, Di Gioia S, Colombo C, Angiolillo A, Carbone A. The long and winding road: stem cells for cystic fibrosis. Expert Opin Biol Ther 2017; 18:281-292. [PMID: 29216777 DOI: 10.1080/14712598.2018.1413087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic syndrome with a high mortality rate due to severe lung disease. Despite having several drugs targeting specific mutated CFTR proteins already in clinical trials, new therapies, based on stem cells, are also emerging to treat those patients. AREAS COVERED The authors review the main sources of stem cells, including embryonic stem cells (ESCs), induced-pluripotent stem cells (iPSCs), gestational stem cells, and adult stem cells, such as mesenchymal stem cells (MSCs) in the context of CF. Furthermore, they describe the main animal and human models of lung physiology and pathology, involved in the optimization of these stem cell-applied therapies in CF. EXPERT OPINION ESCs and iPSCs are emerging sources for disease modeling and drug discovery purposes. The allogeneic transplant of healthy MSCs, that acts independently to specific mutations, is under intense scrutiny due to their secretory, immunomodulatory, anti-inflammatory and anti-bacterial properties. The main challenge for future developments will be to get exogenous stem cells into the appropriate lung location, where they can regenerate endogenous stem cells and act as inflammatory modulators. The clinical application of stem cells for the treatment of CF certainly warrants further insight into pre-clinical models, including large animals, organoids, decellularized organs and lung bioengineering.
Collapse
Affiliation(s)
- Massimo Conese
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Elisa Beccia
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy.,b Department of Medicine and Health Sciences 'V. Tiberio' , University of Molise , Campobasso , Italy
| | - Stefano Castellani
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Sante Di Gioia
- a Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences , University of Foggia , Foggia , Italy
| | - Carla Colombo
- c Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation , University of Milan , Milan , Italy
| | - Antonella Angiolillo
- b Department of Medicine and Health Sciences 'V. Tiberio' , University of Molise , Campobasso , Italy
| | - Annalucia Carbone
- d Division of Internal Medicine and Chronobiology Unit , IRCCS 'Casa Sollievo della Sofferenza' , San Giovanni Rotondo (FG) , Italy
| |
Collapse
|
8
|
Kim N, Duncan GA, Hanes J, Suk JS. Barriers to inhaled gene therapy of obstructive lung diseases: A review. J Control Release 2016; 240:465-488. [PMID: 27196742 DOI: 10.1016/j.jconrel.2016.05.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/29/2022]
Abstract
Knowledge of genetic origins of obstructive lung diseases has made inhaled gene therapy an attractive alternative to the current standards of care that are limited to managing disease symptoms. Initial lung gene therapy clinical trials occurred in the early 1990s following the discovery of the genetic defect responsible for cystic fibrosis (CF), a monogenic disorder. However, despite over two decades of intensive effort, gene therapy has yet to help patients with CF or any other obstructive lung disease. The slow progress is due in part to poor understanding of the biological barriers to inhaled gene therapy. Encouragingly, clinical trials have shown that inhaled gene therapy with various viral vectors and non-viral gene vectors is well tolerated by patients, and continued research has provided valuable lessons and resources that may lead to future success of this therapeutic strategy. In this review, we first introduce representative obstructive lung diseases and examine limitations of currently available therapeutic options. We then review key components for successful execution of inhaled gene therapy, including gene delivery systems, primary physiological barriers and strategies to overcome them, and advances in preclinical disease models with which the most promising systems may be identified for human clinical trials.
Collapse
Affiliation(s)
- Namho Kim
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg A Duncan
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Justin Hanes
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Environmental and Health Sciences, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jung Soo Suk
- The Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
9
|
Bazzani RP, Pringle IA, Connolly MM, Davies LA, Sumner-Jones SG, Schleef M, Hyde SC, Gill DR. Transgene sequences free of CG dinucleotides lead to high level, long-term expression in the lung independent of plasmid backbone design. Biomaterials 2016; 93:20-26. [PMID: 27061267 DOI: 10.1016/j.biomaterials.2016.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 12/13/2022]
Abstract
Non-viral aerosol gene therapy offers great potential for treating chronic lung diseases of the airways such as cystic fibrosis (CF). Early clinical trials showed that transgene expression in the airways was transient whereas maximal duration of transgene expression is essential in order to minimise the frequency of aerosol treatments. Improved vector design, such as careful selection of the promoter/enhancer, can lead to more persistent levels of transgene expression, but multiple factors affect expression in vivo. Following aerosol delivery to the lungs of mice, we measured reporter gene expression from a CpG-free luciferase transgene cassette in the context of both a plasmid and minicircle vector configuration and showed that the vector backbone had no effect on expression. Transgene activity was affected by the vector backbone however, when a similar, but sub-optimal CpG-containing transgene was used, suggesting that aspects of the plasmid backbone had a negative impact on transgene expression. Similar studies were performed in Toll-like receptor-9 (TLR9) knockout mice to investigate a potential role for the TLR9 signalling pathway in detecting CpGs in the vector sequence. Even in the absence of TLR9, persistent expression could only be achieved with a CpG-free transgene. Together, these data indicate that in order to achieve high levels of persistent expression in vivo, a CpG-free transgene cassette is required.
Collapse
Affiliation(s)
- Reto P Bazzani
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Ian A Pringle
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Mary M Connolly
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Lee A Davies
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Stephanie G Sumner-Jones
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Martin Schleef
- PlasmidFactory, Meisenstraße 96, D-33607 Bielefeld, Germany
| | - Stephen C Hyde
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK
| | - Deborah R Gill
- Gene Medicine Research Group, NDCLS, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, OX3 9DU, UK; The UK Cystic Fibrosis Gene Therapy Consortium, UK.
| |
Collapse
|
10
|
Munye MM, Tagalakis AD, Barnes JL, Brown RE, McAnulty RJ, Howe SJ, Hart SL. Minicircle DNA Provides Enhanced and Prolonged Transgene Expression Following Airway Gene Transfer. Sci Rep 2016; 6:23125. [PMID: 26975732 PMCID: PMC4792149 DOI: 10.1038/srep23125] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/01/2016] [Indexed: 02/07/2023] Open
Abstract
Gene therapy for cystic fibrosis using non-viral, plasmid-based formulations has been the subject of intensive research for over two decades but a clinically viable product has yet to materialise in large part due to inefficient transgene expression. Minicircle DNA give enhanced and more persistent transgene expression compared to plasmid DNA in a number of organ systems but has not been assessed in the lung. In this study we compared minicircle DNA with plasmid DNA in transfections of airway epithelial cells. In vitro, luciferase gene expression from minicircles was 5–10-fold higher than with plasmid DNA. In eGFP transfections in vitro both the mean fluorescence intensity and percentage of cells transfected was 2–4-fold higher with minicircle DNA. Administration of equimolar amounts of DNA to mouse lungs resulted in a reduced inflammatory response and more persistent transgene expression, with luciferase activity persisting for 2 weeks from minicircle DNA compared to plasmid formulations. Transfection of equal mass amounts of DNA in mouse lungs resulted in a 6-fold increase in transgene expression in addition to more persistent transgene expression. Our findings have clear implications for gene therapy of airway disorders where plasmid DNA transfections have so far proven inefficient in clinical trials.
Collapse
Affiliation(s)
- Mustafa M Munye
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | | | - Josephine L Barnes
- UCL Respiratory Centre for Inflammation and Tissue Repair, 5 University Street, London, WC1E 6JF, United Kingdom
| | - Rachel E Brown
- UCL MRC Laboratory for Molecular Cell Biology, Gower Street, London WC1E 6BT, United Kingdom
| | - Robin J McAnulty
- UCL Respiratory Centre for Inflammation and Tissue Repair, 5 University Street, London, WC1E 6JF, United Kingdom
| | - Steven J Howe
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Stephen L Hart
- UCL Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| |
Collapse
|
11
|
Strobel B, Duechs MJ, Schmid R, Stierstorfer BE, Bucher H, Quast K, Stiller D, Hildebrandt T, Mennerich D, Gantner F, Erb KJ, Kreuz S. Modeling Pulmonary Disease Pathways Using Recombinant Adeno-Associated Virus 6.2. Am J Respir Cell Mol Biol 2015; 53:291-302. [PMID: 25845025 DOI: 10.1165/rcmb.2014-0338ma] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Viral vectors have been applied successfully to generate disease-related animal models and to functionally characterize target genes in vivo. However, broader application is still limited by complex vector production, biosafety requirements, and vector-mediated immunogenic responses, possibly interfering with disease-relevant pathways. Here, we describe adeno-associated virus (AAV) variant 6.2 as an ideal vector for lung delivery in mice, overcoming most of the aforementioned limitations. In a proof-of-concept study using AAV6.2 vectors expressing IL-13 and transforming growth factor-β1 (TGF-β1), we were able to induce hallmarks of severe asthma and pulmonary fibrosis, respectively. Phenotypic characterization and deep sequencing analysis of the AAV-IL-13 asthma model revealed a characteristic disease signature. Furthermore, suitability of the model for compound testing was also demonstrated by pharmacological intervention studies using an anti-IL-13 antibody and dexamethasone. Similarly, the AAV-TGF-β1 fibrosis model showed several disease-like pathophenotypes monitored by micro-computed tomography imaging and lung function measurement. Most importantly, analyses using stuffer control vectors demonstrated that in contrast to a common adenovirus-5 vector, AAV6.2 vectors did not induce any measurable inflammation and therefore carry a lower risk of altering relevant readouts. In conclusion, we propose AAV6.2 as an ideal vector system for the functional characterization of target genes in the context of pulmonary diseases in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Florian Gantner
- 4 Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH and Co. KG, Biberach an der Riss, Germany
| | | | | |
Collapse
|
12
|
Richard-Fiardo P, Hervouet C, Marsault R, Franken PR, Cambien B, Guglielmi J, Warnez-Soulie J, Darcourt J, Pourcher T, Colombani T, Haudebourg T, Peuziat P, Pitard B, Vassaux G. Evaluation of tetrafunctional block copolymers as synthetic vectors for lung gene transfer. Biomaterials 2015; 45:10-7. [DOI: 10.1016/j.biomaterials.2014.12.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/12/2014] [Accepted: 12/20/2014] [Indexed: 12/16/2022]
|
13
|
Mikkelsen JG. Nonviral Gene Therapy—The Challenge of Mobilizing DNA. SOMATIC GENOME MANIPULATION 2015:69-104. [DOI: 10.1007/978-1-4939-2389-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
14
|
Ikawa Y, Hess R, Dorward H, Cullinane AR, Huizing M, Gochuico BR, Gahl WA, Candotti F. In vitro functional correction of Hermansky-Pudlak Syndrome type-1 by lentiviral-mediated gene transfer. Mol Genet Metab 2015; 114:62-5. [PMID: 25468649 PMCID: PMC4279856 DOI: 10.1016/j.ymgme.2014.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 10/25/2022]
Abstract
Hermansky-Pudlak syndrome (HPS) is a genetic disorder characterized by oculocutaneous albinism, bleeding tendency and susceptibility to pulmonary fibrosis. No curative therapy is available. Genetic correction directed to the lungs, bone marrow and/or gastro-intestinal tract might provide alternative forms of treatment for the diseases multi-systemic complications. We demonstrate that lentiviral-mediated gene transfer corrects the expression and function of the HPS1 gene in patient dermal melanocytes, which opens the way to development of gene therapy for HPS.
Collapse
Affiliation(s)
- Yasuhiro Ikawa
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard Hess
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heidi Dorward
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew R Cullinane
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marjan Huizing
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William A Gahl
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Fabio Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Laube BL. The expanding role of aerosols in systemic drug delivery, gene therapy and vaccination: an update. TRANSLATIONAL RESPIRATORY MEDICINE 2014; 2:3. [PMID: 25505695 PMCID: PMC4215822 DOI: 10.1186/2213-0802-2-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/23/2013] [Indexed: 01/06/2023]
Abstract
Until the late 1990s, aerosol therapy consisted of beta2-adrenergic agonists, anti-cholinergics, steroidal and non-steroidal agents, mucolytics and antibiotics that were used to treat patients with asthma, COPD and cystic fibrosis. Since then, inhalation therapy has matured to include drugs that: (1) are designed to treat diseases outside the lung and whose target is the systemic circulation (systemic drug delivery); (2) deliver nucleic acids that lead to permanent expression of a gene construct, or protein coding sequence, in a population of cells (gene therapy); and (3) provide needle-free immunization against disease (aerosolized vaccination). During the evolution of these advanced applications, it was also necessary to develop new devices that provided increased dosing efficiency and less loss during delivery. This review will present an update on the success of each of these new applications and their devices. The early promise of aerosolized systemic drug delivery and its outlook for future success will be highlighted. In addition, the challenges to aerosolized gene therapy and the need for appropriate gene vectors will be discussed. Finally, progress in the development of aerosolized vaccination will be presented. The continued expansion of the role of aerosol therapy in the future will depend on: (1) improving the bioavailability of systemically delivered drugs; (2) developing gene therapy vectors that can efficiently penetrate the mucus barrier and cell membrane, navigate the cell cytoplasm and efficiently transfer DNA material to the cell nucleus; (3) improving delivery of gene vectors and vaccines to infants; and (4) developing formulations that are safe for acute and chronic administrations.
Collapse
Affiliation(s)
- Beth L Laube
- The Johns Hopkins Medical Institutions, Suite 3015, The David M. Rubenstein Building, 200 North Wolfe Street, Baltimore, MD 21287 USA
| |
Collapse
|
16
|
Abstract
The application of gene therapy to human patients has grown tremendously in recent years. Study findings have allowed scientists to develop newer genomic approaches to managing patients with chronic diseases. Nurse practitioners must be prepared to collaborate with the medical community to provide patients support and essential education about gene therapy treatment.
Collapse
Affiliation(s)
- Sarah E Smith
- Sarah E. Smith is a Clinical Nurse Educator at Lankenau Medical Center, Wynnewood, PA. Sara J. Reeder is an Associate Professor at Villanova University College of Nursing, Villanova, PA
| | | |
Collapse
|
17
|
Toxicology study assessing efficacy and safety of repeated administration of lipid/DNA complexes to mouse lung. Gene Ther 2013; 21:89-95. [DOI: 10.1038/gt.2013.61] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/13/2023]
|
18
|
|
19
|
Abstract
Since cloning of the CFTR gene more than 20 years ago a large number of pre-clinical and clinical CF gene therapy studies have been performed and a vast amount of information and know-how has been generated. Here, we will review key studies with a particular emphasis on clinical findings. We have learnt that the lung is a more difficult target than originally anticipated, and we describe the strength and weaknesses of the most commonly used airway gene transfer agents (GTAs). In our view, one of the most significant developments in recent years is the generation of lentiviral vectors, which efficiently transduce lung tissue. However, focused and co-ordinated efforts assessing lentiviral vector safety and scaling up of production will be required to move this vector into clinical lung gene therapy studies.
Collapse
|