1
|
Que H, Mai E, Hu Y, Li H, Zheng W, Jiang Y, Han F, Li X, Gong P, Gu J. Multilineage-differentiating stress-enduring cells: a powerful tool for tissue damage repair. Front Cell Dev Biol 2024; 12:1380785. [PMID: 38872932 PMCID: PMC11169632 DOI: 10.3389/fcell.2024.1380785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are a type of pluripotent cell with unique characteristics such as non-tumorigenic and pluripotent differentiation ability. After homing, Muse cells spontaneously differentiate into tissue component cells and supplement damaged/lost cells to participate in tissue repair. Importantly, Muse cells can survive in injured tissue for an extended period, stabilizing and promoting tissue repair. In addition, it has been confirmed that injection of exogenous Muse cells exerts anti-inflammatory, anti-apoptosis, anti-fibrosis, immunomodulatory, and paracrine protective effects in vivo. The discovery of Muse cells is an important breakthrough in the field of regenerative medicine. The article provides a comprehensive review of the characteristics, sources, and potential mechanisms of Muse cells for tissue repair and regeneration. This review serves as a foundation for the further utilization of Muse cells as a key clinical tool in regenerative medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
2
|
Ossanna R, Veronese S, Quintero Sierra LA, Conti A, Conti G, Sbarbati A. Multilineage-Differentiating Stress-Enduring Cells (Muse Cells): An Easily Accessible, Pluripotent Stem Cell Niche with Unique and Powerful Properties for Multiple Regenerative Medicine Applications. Biomedicines 2023; 11:1587. [PMID: 37371682 DOI: 10.3390/biomedicines11061587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Cell-based therapy in regenerative medicine is a powerful tool that can be used both to restore various cells lost in a wide range of human disorders and in renewal processes. Stem cells show promise for universal use in clinical medicine, potentially enabling the regeneration of numerous organs and tissues in the human body. This is possible due to their self-renewal, mature cell differentiation, and factors release. To date, pluripotent stem cells seem to be the most promising. Recently, a novel stem cell niche, called multilineage-differentiating stress-enduring (Muse) cells, is emerging. These cells are of particular interest because they are pluripotent and are found in adult human mesenchymal tissues. Thanks to this, they can produce cells representative of all three germ layers. Furthermore, they can be easily harvested from fat and isolated from the mesenchymal stem cells. This makes them very promising, allowing autologous treatments and avoiding the problems of rejection typical of transplants. Muse cells have recently been employed, with encouraging results, in numerous preclinical studies performed to test their efficacy in the treatment of various pathologies. This review aimed to (1) highlight the specific potential of Muse cells and provide a better understanding of this niche and (2) originate the first organized review of already tested applications of Muse cells in regenerative medicine. The obtained results could be useful to extend the possible therapeutic applications of disease healing.
Collapse
Affiliation(s)
- Riccardo Ossanna
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Sheila Veronese
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | | | - Anita Conti
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Giamaica Conti
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine, and Movement Sciences, University of Verona, 37124 Verona, Italy
| |
Collapse
|
3
|
Topical Application of Conditioned Medium from Hypoxically Cultured Amnion-Derived Mesenchymal Stem Cells Promotes Wound Healing in Diabetic Mice. Plast Reconstr Surg 2022; 150:232e-233e. [PMID: 35594414 DOI: 10.1097/prs.0000000000009214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Zhou JF, Xiong Y, Kang X, Pan Z, Zhu Q, Goldbrunner R, Stavrinou L, Lin S, Hu W, Zheng F, Stavrinou P. Application of stem cells and exosomes in the treatment of intracerebral hemorrhage: an update. Stem Cell Res Ther 2022; 13:281. [PMID: 35765072 PMCID: PMC9241288 DOI: 10.1186/s13287-022-02965-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/19/2022] [Indexed: 12/14/2022] Open
Abstract
Non-traumatic intracerebral hemorrhage is a highly destructive intracranial disease with high mortality and morbidity rates. The main risk factors for cerebral hemorrhage include hypertension, amyloidosis, vasculitis, drug abuse, coagulation dysfunction, and genetic factors. Clinically, surviving patients with intracerebral hemorrhage exhibit different degrees of neurological deficits after discharge. In recent years, with the development of regenerative medicine, an increasing number of researchers have begun to pay attention to stem cell and exosome therapy as a new method for the treatment of intracerebral hemorrhage, owing to their intrinsic potential in neuroprotection and neurorestoration. Many animal studies have shown that stem cells can directly or indirectly participate in the treatment of intracerebral hemorrhage through regeneration, differentiation, or secretion. However, considering the uncertainty of its safety and efficacy, clinical studies are still lacking. This article reviews the treatment of intracerebral hemorrhage using stem cells and exosomes from both preclinical and clinical studies and summarizes the possible mechanisms of stem cell therapy. This review aims to provide a reference for future research and new strategies for clinical treatment.
Collapse
Affiliation(s)
- Jian-Feng Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yu Xiong
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Xiaodong Kang
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Zhigang Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Qiangbin Zhu
- Department of Neurosurgery, Hui'an County Hospital of Fujian Province, Quanzhou, Fujian, China
| | - Roland Goldbrunner
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany
| | - Lampis Stavrinou
- 2nd Department of Neurosurgery, Athens Medical School, "Attikon" University Hospital, National and Kapodistrian University, Athens, Greece
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Weipeng Hu
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| | - Pantelis Stavrinou
- Department of Neurosurgery, Faculty of Medicine and University Hospital, Center for Neurosurgery, University of Cologne, Cologne, Germany.,Neurosurgery, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
5
|
Mitani K, Ito Y, Takene Y, Hatoya S, Sugiura K, Inaba T. Long-Term Trypsin Treatment Promotes Stem Cell Potency of Canine Adipose-Derived Mesenchymal Stem Cells. Stem Cells Dev 2021; 30:337-349. [PMID: 33528297 DOI: 10.1089/scd.2020.0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from adipose tissue (adipose-derived stem cells [ADSCs]) are considered one of the most promising cell types for applications in regenerative medicine. However, the regenerative potency of ADSCs may vary because of heterogeneity. Long-term trypsin treatment (LTT) is known to significantly concentrate multilineage-differentiating stress-enduring (Muse) cells from human MSCs. In this study, we aimed to generate cells with high stem cell potency from canine ADSCs using LTT. After 16 h of treatment with trypsin, surviving ADSCs (LTT-tolerant cells) had significantly enhanced expression of stage-specific embryonic antigen (SSEA)-1, a mouse embryonic stem cell marker, and fucosyltransferase 9, one of several fucosyltransferases for SSEA-1 biosynthesis. However, LTT-tolerant cells did not enhance the expression of SSEA-3, a known human Muse cell marker. LTT-tolerant cells, however, showed significantly higher self-renewal capacity in the colony-forming unit fibroblast assay than ADSCs. In addition, the LTT-tolerant cells formed cell clusters similar to embryoid bodies and expressed undifferentiated markers. Moreover, these cells differentiated into cells of all three germ layers and showed significantly higher levels of α 2-6 sialic acid (Sia)-specific lectins, known as differentiation potential markers of human MSCs, than ADSCs. LTT-tolerant cells had a normal karyotype and had low telomerase activity, showing little carcinogenetic potency. LTT-tolerant cells also showed significantly increased activity of transmigration in the presence of chemoattractants and had increased expression of migration-related genes compared with ADSCs. In addition, LTT-tolerant cells had stronger suppressive activity against mitogen-stimulated lymphocyte proliferation than ADSCs. Overall, these results indicated that the LTT-tolerant cells in canine ADSCs have similar properties as human Muse cells (although one of the undifferentiated markers is different) and are expected to be a promising tool for regenerative therapy in dogs.
Collapse
Affiliation(s)
- Kosuke Mitani
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan.,Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yuki Ito
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yukio Takene
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Toshio Inaba
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
6
|
Angeloni C, Gatti M, Prata C, Hrelia S, Maraldi T. Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress-Related Neurodegeneration. Int J Mol Sci 2020; 21:ijms21093299. [PMID: 32392722 PMCID: PMC7246730 DOI: 10.3390/ijms21093299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases include a variety of pathologies such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer’s and Parkinson’s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Martina Gatti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
- Correspondence:
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| | - Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| |
Collapse
|
7
|
Labusca L, Mashayekhi K. Human adult pluripotency: Facts and questions. World J Stem Cells 2019; 11:1-12. [PMID: 30705711 PMCID: PMC6354101 DOI: 10.4252/wjsc.v11.i1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/16/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Cellular reprogramming and induced pluripotent stem cell (IPSC) technology demonstrated the plasticity of adult cell fate, opening a new era of cellular modelling and introducing a versatile therapeutic tool for regenerative medicine. While IPSCs are already involved in clinical trials for various regenerative purposes, critical questions concerning their medium- and long-term genetic and epigenetic stability still need to be answered. Pluripotent stem cells have been described in the last decades in various mammalian and human tissues (such as bone marrow, blood and adipose tissue). We briefly describe the characteristics of human-derived adult stem cells displaying in vitro and/or in vivo pluripotency while highlighting that the common denominators of their isolation or occurrence within tissue are represented by extreme cellular stress. Spontaneous cellular reprogramming as a survival mechanism favoured by senescence and cellular scarcity could represent an adaptative mechanism. Reprogrammed cells could initiate tissue regeneration or tumour formation dependent on the microenvironment characteristics. Systems biology approaches and lineage tracing within living tissues can be used to clarify the origin of adult pluripotent stem cells and their significance for regeneration and disease.
Collapse
Affiliation(s)
- Luminita Labusca
- National Institute of Research and Development for Advanced Technical Physics Iasi, Iasi 700349, Romania
| | - Kaveh Mashayekhi
- Systems Biomedical Informatics and Modeling, Frankfurt D-45367, Germany
| |
Collapse
|
8
|
Kishimoto N, Honda Y, Momota Y, Tran SD. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering. Oral Dis 2018; 24:1161-1167. [PMID: 29356251 DOI: 10.1111/odi.12832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
Tissue engineering is a promising method for the regeneration of oral and maxillofacial tissues. Proper selection of a cell source is important for the desired application. This review describes the discovery and usefulness of dedifferentiated fat (DFAT) cells as a cell source for tissue engineering. Dedifferentiated Fat cells are a highly homogeneous cell population (high purity), highly proliferative, and possess a multilineage potential for differentiation into various cell types under proper in vitro inducing conditions and in vivo. Moreover, DFAT cells have a higher differentiation capability of becoming osteoblasts, chondrocytes, and adipocytes than do bone marrow-derived mesenchymal stem cells and/or adipose tissue-derived stem cells. The usefulness of DFAT cells in vivo for periodontal tissue, bone, peripheral nerve, muscle, cartilage, and fat tissue regeneration was reported. Dedifferentiated Fat cells obtained from the human buccal fat pad (BFP) are a minimally invasive procedure with limited esthetic complications for patients. The BFP is a convenient and accessible anatomical site to harvest DFAT cells for dentists and oral surgeons, and thus is a promising cell source for oral and maxillofacial tissue engineering.
Collapse
Affiliation(s)
- N Kishimoto
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Y Honda
- Institute of Dental Research, Osaka Dental University, Osaka, Japan
| | - Y Momota
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | - S D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Kokai LE, Traktuev DO, Zhang L, Merfeld-Clauss S, DiBernardo G, Lu H, Marra KG, Donnenberg A, Donnenberg V, Meyer EM, Fodor PB, March KL, Rubin JP. Adipose Stem Cell Function Maintained with Age: An Intra-Subject Study of Long-Term Cryopreserved Cells. Aesthet Surg J 2017; 37:454-463. [PMID: 28364523 DOI: 10.1093/asj/sjw197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background The progressive decline in tissue mechanical strength that occurs with aging is hypothesized to be due to a loss of resident stem cell number and function. As such, there is concern regarding use of autologous adult stem cell therapy in older patients. To abrogate this, many patients elect to cryopreserve the adipose stromal-vascular fraction (SVF) of lipoaspirate, which contains resident adipose stem cells (ASC). However, it is not clear yet if there is any clinical benefit from banking cells at a younger age. Objectives We performed a comparative analysis of SVF composition and ASC function from cells obtained under GMP conditions from the same three patients with time gap of 7 to 12 years. Methods SVF, cryobanked under good manufacturing practice (GMP) conditions, was thawed and cell yield, viability, and cellular composition were assessed. In parallel, ASC proliferation and efficiency of tri-lineage differentiation were evaluated. Results The results showed no significant differences existed in cell yield and SVF subpopulation composition within the same patient between harvest procedures 7 to 12 years apart. Further, no change in proliferation rates of cultured ASCs was found, and expanded cells from all patients were capable of tri-lineage differentiation. Conclusions By harvesting fat from the same patient at two time points, we have shown that despite the natural human aging process, the prevalence and functional activity of ASCs in an adult mesenchymal stem cell, is highly preserved. Level of Evidence 5.
Collapse
Affiliation(s)
- Lauren E Kokai
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dmitry O Traktuev
- Division of Cardiology, Indiana School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Liyong Zhang
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Hongyan Lu
- Division of Cardiology, Indiana School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Albert Donnenberg
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vera Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Michael Meyer
- Flow Cytometry Facility, University of Pittsburgh Cancer Center, Pittsburgh, PA, USA
| | - Peter B Fodor
- Plastic surgeon in private practice in Santa Monica, CA, USA
| | - Keith L March
- Division of Cardiology, Indiana School of Medicine, Indiana University, Indianapolis, IN, USA
| | - J Peter Rubin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Abstract
The role of p53 as “a guardian of the genome” has been well established in somatic cells. However, its role in pluripotent stem cells remains much more elusive. Here, we discuss research progress in understanding the role of p53 in pluripotent stem cells and in pluripotent stem cell-like cancer stem cells. The p53 protein, which plays a key role in embryonic stem cells, was first discovered in 2005. Landmark studies of p53-related reprogramming elucidated this protein’s importance in induced pluripotent stem cells in 2009. The p53-related safety concerns in pluripotent stem cells have been raised in stem cell-based therapy although the use of iPSCs in therapeutic application is promising. Because cancer stem cells have profiles similar to those of pluripotent stem cells, we also describe potential strategies for studies in cancer stem cells and cancer treatments. The new discoveries of p53 family proteins in pluripotent stem cells have made possible stable progress in stem cell transplantation efficiency and safety, as well as treatment strategies targeting cancer stem cells based on pluripotent stem cell technology.
Collapse
Affiliation(s)
- Tongxiang Lin
- Stem Cell Research Center, College of Bee Science, Fujian Agriculture and Forestry University, 15 ShangXiaDian Rd, Fuzhou, Fujian, 350002, China. .,Center for Regenerative and Translational Medicine, The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, 111 Dade Rd, Guangzhou, Guangdong, 510120, China.
| | - Yi Lin
- Stem Cell Research Center, College of Bee Science, Fujian Agriculture and Forestry University, 15 ShangXiaDian Rd, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
11
|
Tian T, Zhang RZ, Yang YH, Liu Q, Li D, Pan XR. Muse Cells Derived from Dermal Tissues Can Differentiate into Melanocytes. Cell Reprogram 2017; 19:116-122. [PMID: 28170296 DOI: 10.1089/cell.2016.0032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The objective of the authors has been to obtain multilineage-differentiating stress-enduring cells (Muse cells) from primary cultures of dermal fibroblasts, identify their pluripotency, and detect their ability to differentiate into melanocytes. The distribution of SSEA-3-positive cells in human scalp skin was assessed by immunohistochemistry, and the distribution of Oct4, Sox2, Nanog, and SSEA-3-positive cells was determined by immunofluorescence staining. The expression levels of Sox2, Oct4, hKlf4, and Nanog mRNAs and proteins in Muse cells were determined by reverse transcription polymerase chain reaction (RT-PCR) analyses and Western blots, respectively. These Muse cells differentiated into melanocytes in differentiation medium. The SSEA-3-positive cells were scattered in the basement membrane zone and the dermis, with comparatively more in the sebaceous glands, vascular and sweat glands, as well as the outer root sheath of hair follicles, the dermal papillae, and the hair bulbs. Muse cells, which have the ability to self-renew, were obtained from scalp dermal fibroblasts by flow cytometry sorting with an anti-SSEA-3 antibody. The results of RT-PCR, Western blot, and immunofluorescence staining showed that the expression levels of Oct4, Nanog, Sox2, and Klf4 mRNAs and proteins in Muse cells were significantly different from their parental dermal fibroblasts. Muse cells differentiated into melanocytes when cultured in melanocyte differentiation medium, and the Muse cell-derived melanocytes expressed the melanocyte-specific marker HMB45. Muse cells could be obtained by flow cytometry from primary cultures of scalp dermal fibroblasts, which possessed the ability of pluripotency and self-renewal, and could differentiate into melanocytes in vitro.
Collapse
Affiliation(s)
- Ting Tian
- 1 The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University , Changzhou, China
| | - Ru-Zhi Zhang
- 1 The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University , Changzhou, China
| | - Yu-Hua Yang
- 1 The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University , Changzhou, China
| | - Qi Liu
- 1 The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University , Changzhou, China
| | - Di Li
- 1 The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University , Changzhou, China
| | - Xiao-Ru Pan
- 2 The Dermal and Venereal Department, Bengbu Medical College , Bengbu, China
| |
Collapse
|
12
|
Kusuma I, Hadi RS, Kiranadi B, Boediono A. Trehalose preincubation increases mesenchymal (CD271<sup>+</sup>) stem cells post-cryopreservation viability. MEDICAL JOURNAL OF INDONESIA 2016. [DOI: 10.13181/mji.v25i3.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Background: Dimethyl sulfoxide (Me2SO) is a common cryoprotective agent widely used in cell preservation system. Me2SO is currently known to cause epigenetic changes which are critical in stem cells development and cellular differentiation. Therefore, it is imperative to develop cryopreservation techniques that protect cellular functions and avert Me2SO adverse effect. Trehalose was able to protect organism in extreme condition such as dehydration and cold. This study aimed to verify the protective effect of trehalose preincubation procedure in cryopreservation.Methods: The study was conducted using experimental design. Thawed mesenchymal (CD271+) stem cells from YARSI biorepository were used for the experiment. Trehalose preincubation was performed for 1 hour, internalized trehalose was confirmed by FTIR-ATR measurement. Three groups consisted of (1) cryopreserved without trehalose preincubation, (2) cryopreserved with trehalose preincubation, and (3) did not undergo cryopreservation were evaluated after 24 hours in LN2 for viability in culture. The absorbance from each group was measured at 450 nm. The analysis performed using paired student t test.Results: Viability of thawed mesenchymal (CD271+) stem cells that undergo trehalose preincubation prior cryopreservation was significantly higher (p<0.05) compared to group without trehalose preincubation. Higher viability observed between group with trehalose preincubation compared with controlled group suggests protection to trypsinization. Mesenchymal (CD271+) stem cells incubated for 1 hour in 100 mM trehalose supplemented medium results in 15% trehalose loading efficiency.Conclusion: These findings confirm the protective effect of trehalose preincubation in cryopreservation. Future research should be directed to elucidate the trehalose internalization mechanism and eventually the protective mechanism of trehalose in mammalian cell cryopreservation.
Collapse
|
13
|
Abstract
Immunomodulators regulate stem cell activity at all stages of development as well as during adulthood. Embryonic stem cell (ESC) proliferation as well as neurogenic processes during embryonic development are controlled by factors of the immune system. We review here immunophenotypic expression patterns of different stem cell types, including ESC, neural (NSC) and tissue-specific mesenchymal stem cells (MSC), and focus on immunodulatory properties of these cells. Immune and inflammatory responses, involving actions of cytokines as well as toll-like receptor (TLR) signaling are known to affect the differentiation capacity of NSC and MSC. Secretion of pro- and anti-inflammatory messengers by MSC have been observed as the consequence of TLR and cytokine activation and promotion of differentiation into specified phenotypes. As result of augmented differentiation capacity, stem cells secrete angiogenic factors including vascular endothelial growth factor, resulting in multifactorial actions in tissue repair. Immunoregulatory properties of tissue specific adult stem cells are put into the context of possible clinical applications.
Collapse
|
14
|
Dezawa M. Muse Cells Provide the Pluripotency of Mesenchymal Stem Cells: Direct Contribution of Muse Cells to Tissue Regeneration. Cell Transplant 2016; 25:849-61. [PMID: 26884346 DOI: 10.3727/096368916x690881] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
While mesenchymal stem cells (MSCs) are easily accessible from mesenchymal tissues, such as bone marrow and adipose tissue, they are heterogeneous, and their entire composition is not fully identified. MSCs are not only able to differentiate into osteocytes, chondrocytes, and adipocytes, which belong to the same mesodermal lineage, but they are also able to cross boundaries between mesodermal, ectodermal, and endodermal lineages, and differentiate into neuronal- and hepatocyte-like cells. However, the ratio of such differentiation is not very high, suggesting that only a subpopulation of the MSCs participates in this cross-lineage differentiation phenomenon. We have identified unique cells that we named multilineage-differentiating stress-enduring (Muse) cells that may explain the pluripotent-like properties of MSCs. Muse cells comprise a small percentage of MSCs, are able to generate cells representative of all three germ layers from a single cell, and are nontumorigenic and self-renewable. Importantly, cells other than Muse cells in MSCs do not have these pluripotent-like properties. Muse cells are particularly unique compared with other stem cells in that they efficiently migrate and integrate into damaged tissue when supplied into the bloodstream, and spontaneously differentiate into cells compatible with the homing tissue. Such a repairing action of Muse cells via intravenous injection is recognized in various tissues including the brain, liver, and skin. Therefore, unlike ESCs/iPSCs, Muse cells render induction into the target cell type prior to transplantation unnecessary. They can repair tissues in two simple steps: collection from mesenchymal tissues, such as the bone marrow, and intravenous injection. The impressive regenerative performance of these cells provides a simple, feasible strategy for treating a variety of diseases. This review details the unique characteristics of Muse cells and describes their future application for regenerative medicine.
Collapse
Affiliation(s)
- Mari Dezawa
- Department of Stem Cell Biology and Histology and Department of Anatomy and Anthropology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
15
|
Kim H, Nam K, Nam JP, Kim HS, Kim YM, Joo WS, Kim SW. VEGF therapeutic gene delivery using dendrimer type bio-reducible polymer into human mesenchymal stem cells (hMSCs). J Control Release 2015; 220:222-228. [DOI: 10.1016/j.jconrel.2015.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/02/2015] [Accepted: 09/10/2015] [Indexed: 01/10/2023]
|
16
|
Abstract
Vitiligo is an acquired depigmenting disorder that affects 0.5% to 2% of the world population. Three different forms are classified according to the distribution of lesions; namely non-segmental, segmental and mixed vitiligo. Vitiligo is associated with polymorphisms in genes involved in the immune response and in melanogenesis. However, environmental factors are required for the development of manifest disease. In general, the diagnosis is clinical and no laboratory tests or biopsies are required. Metabolic alterations are central to current concepts in pathophysiology. They induce an increased generation of reactive oxygen species and susceptibility to mild exogenous stimuli in the epidermis. This produces a senescent phenotype of skin cells, leads to the release of innate immune molecules, which trigger autoimmunity, and ultimately causes dysfunction and death of melanocytes. Clinical management aims to halt depigmentation, and to either repigment or depigment the skin, depending on the extent of disease. New therapeutic approaches include stimulation of melanocyte differentiation and proliferation through α-melanocyte-stimulating hormone analogues and through epidermal stem cell engineering. Several questions remain unsolved, including the connection between melanocyte depletion and stem cell exhaustion, the underlying degenerative mechanisms and the biological mediators of cell death. Overall, vitiligo is an excellent model for studying degenerative and autoimmune processes and for testing novel approaches in regenerative medicine. For an illustrated summary of this Primer, visit: http://go.nature.com/vIhFSC.
Collapse
Affiliation(s)
- Mauro Picardo
- Cutaneous Physiopathology, San Gallicano Dermatologic Institute, IFO IRCCS, via Elio Chianesi 53, 00144 Rome, Italy
| | - Maria L Dell'Anna
- Cutaneous Physiopathology, San Gallicano Dermatologic Institute, IFO IRCCS, via Elio Chianesi 53, 00144 Rome, Italy
| | - Khaled Ezzedine
- Service de Dermatologie et Dermatologie Pédiatrique, Centre de référence pour les maladies rares de la peau, INSERM 1035, Université de Bordeaux, Bordeaux, France
| | - Iltefat Hamzavi
- Multicultural Dermatology Center, Department of Dermatology, Henry Ford Hospital Detroit, Michigan, USA
| | - John E Harris
- Division of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | | | - Alain Taieb
- Service de Dermatologie et Dermatologie Pédiatrique, Centre de référence pour les maladies rares de la peau, INSERM 1035, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
17
|
Cordeiro MF, Horn AP. Stem cell therapy in intracerebral hemorrhage rat model. World J Stem Cells 2015; 7:618-629. [PMID: 25914768 PMCID: PMC4404396 DOI: 10.4252/wjsc.v7.i3.618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/03/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a very complex pathology, with many different not fully elucidated etiologies and prognostics. It is the most severe subtype of stroke, with high mortality and morbidity rates. Unfortunately, despite the numerous promising preclinical assays including neuroprotective, anti-hypertensive, and anti-inflammatory drugs, to this moment only symptomatic treatments are available, motivating the search for new alternatives. In this context, stem cell therapy emerged as a promising tool. However, more than a decade has passed, and there is still much to be learned not only about stem cells, but also about ICH itself, and how these two pieces come together. To date, rats have been the most widely used animal model in this research field, and there is much more to be learned from and about them. In this review, we first summarize ICH epidemiology, risk factors, and pathophysiology. We then present different methods utilized to induce ICH in rats, and examine how accurately they represent the human disease. Next, we discuss the different types of stem cells used in previous ICH studies, also taking into account the tested transplantation sites. Finally, we summarize what has been achieved in assays with stem cells in rat models of ICH, and point out some relevant issues where attention must be given in future efforts.
Collapse
|
18
|
Díaz-Flores L, Gutiérrez R, Lizartza K, Goméz MG, García MDP, Sáez FJ, Díaz-Flores L, Madrid JF. Behavior of in situ human native adipose tissue CD34+ stromal/progenitor cells during different stages of repair. Tissue-resident CD34+ stromal cells as a source of myofibroblasts. Anat Rec (Hoboken) 2014; 298:917-30. [PMID: 25387858 DOI: 10.1002/ar.23086] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/12/2014] [Indexed: 12/22/2022]
Abstract
CD34+ adipose stromal cells are scattered in the adipose tissue and found in the CD34+ population of the stromal vascular fraction (SVF). This fraction includes adipose-derived stromal/stem/progenitor cells (ASCs), which have attracted considerable attention and show great promise for the future of regenerative medicine. Studies in this field have been undertaken mainly in vitro. In this work, however, we assessed the characteristics of human adipose tissue-resident CD34+ stromal cells in normal conditions and when activated in vivo during inflammatory/repair processes at different stages of evolution. In normal adipose tissue, these cells showed a characteristic location (peri/paravascular and between adipocytes), a fusiform or stellate morphology, long and moniliform processes, and scarce organelles. During inflammatory/repair stages, native CD34+ stromal cells increased in size, proliferated, developed numerous organelles of synthesis, lost CD34 expression, and differentiated into myofibroblasts (αSMA expression and typical ultrastructure). In double-stained sections, cells expressing both CD34 and αSMA were observed. CD34 expression correlated positively with a high proliferative capacity (Ki-67 expression). Conversely, CD34 expression was lost with successive mitoses and with increased numbers of macrophages in the granulation tissue. CD34+ stromal cell behavior varied depending on proximity to (with myofibroblast differentiation) or remoteness from (with activated plump cells conserving CD34 expression) injury. In conclusion, our observations point to human adipose tissue-resident CD34+ stromal cells as an important source of myofibroblasts during inflammatory/repair processes. Moreover, stromal cell activation may occur with or without αSMA expression (with or without myofibroblast transformation) and with loss or persistence of CD34 expression, respectively.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Anatomy, Histology, Pathology and Radiology, Faculty of Medicine, University of La Laguna, Tenerife, Spain
| | | | | | | | | | | | | | | |
Collapse
|