1
|
Yoon J, Oh DY. HER2-targeted therapies beyond breast cancer - an update. Nat Rev Clin Oncol 2024; 21:675-700. [PMID: 39039196 DOI: 10.1038/s41571-024-00924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
The receptor tyrosine-kinase HER2 (also known as ErbB2) is a well-established therapeutic target in patients with breast or gastric cancer selected on the basis of HER2 overexpression on immunohistochemistry and/or ERBB2 amplification on in situ hybridization. With advances in cancer molecular profiling and increased implementation of precision medicine approaches into oncology practice, actionable HER2 alterations in solid tumours have expanded to include ERBB2 mutations in addition to traditional HER2 overexpression and ERBB2 amplification. These various HER2 alterations can be found in solid tumour types beyond breast and gastric cancer, although few HER2-targeted therapeutic options have been established for the other tumour types. Nevertheless, during the 5 years since our previous Review on this topic was published in this journal, obvious and fruitful progress in the development of HER2-targeted therapies has been made, including new disease indications, innovative drugs with diverse mechanisms of action and novel frameworks for approval by regulatory authorities. These advances have culminated in the recent histology-agnostic approval of the anti-HER2 antibody-drug conjugate trastuzumab deruxtecan for patients with HER2-overexpressing solid tumours. In this new Review, we provide an update on the current development landscape of HER2-targeted therapies beyond breast cancer, as well as anticipated future HER2-directed treatment strategies to overcome resistance and thereby improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Jeesun Yoon
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Youn Oh
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Malla RR, Nellipudi HR, Srilatha M, Nagaraju GP. HER-2 positive gastric cancer: Current targeted treatments. Int J Biol Macromol 2024; 274:133247. [PMID: 38906351 DOI: 10.1016/j.ijbiomac.2024.133247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Gastric cancer (GC) is highly metastatic and characterized by HER2 amplification. Aberrant HER2 expression drives metastasis, therapy resistance, and tumor recurrence. HER2 amplification contributes to drug resistance by upregulating DNA repair enzymes and drug afflux proteins, reducing drug efficacy. HER2 modulates transcription factors critical for cancer stem cell properties, further impacting drug resistance. HER2 activity is influenced by HER-family ligands, promoting oncogenic signaling. These features point to HER2 as a targetable driver in GC. This review outlines recent advances in HER2-mediated mechanisms and their upstream and downstream signaling pathways in GC. Additionally, it discusses preclinical research investigation that comprehends trastuzumab-sensitizing phytochemicals, chemotherapeutics, and nanoparticles as adjunct therapies. These developments hold promise for improving outcomes and enhancing the management of HER2-positive GC.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, AP 530045, India
| | | | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517502, AP, India
| | | |
Collapse
|
3
|
Ma C, Wang X, Guo J, Yang B, Li Y. Challenges and future of HER2-positive gastric cancer therapy. Front Oncol 2023; 13:1080990. [PMID: 36793592 PMCID: PMC9924067 DOI: 10.3389/fonc.2023.1080990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Gastric cancer is the fifth most common cancer worldwide, and the treatment of advanced gastric cancer has relatively little progress. With the continuous development of molecularly targeted therapy for tumors, it has been discovered that human epidermal growth factor receptor 2 (HER2) contributes to the poor prognosis and pathogenesis of various cancers. In order to treat HER2-positive advanced gastric cancer, Trastuzumab has emerged as the first first-line targeted medication used in conjunction with chemotherapy. The consequent trastuzumab resistance has become an important issue, and various new HER2-targeted gastric cancer drugs are emerging to address this challenge. This review's primary concern is the drug mechanism of various HER2-positive gastric cancer targeted therapy and fresh techniques of detection.
Collapse
Affiliation(s)
- Chenzhe Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao Wang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiwu Guo
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Bo Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yumin Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
4
|
Wang S, Zhang Z, Miao L, Zhang J, Tang F, Teng M, Li Y. Construction of targeted 10B delivery agents and their uptake in gastric and pancreatic cancer cells. Front Oncol 2023; 13:1105472. [PMID: 36845737 PMCID: PMC9947830 DOI: 10.3389/fonc.2023.1105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Boron Neutron Capture Therapy (BNCT) is a new binary radiation therapy for tumor tissue, which kills tumor cells with neutron capture reaction. Boron neutron capture therapy has become a technical means for glioma, melanoma, and other diseases has been included in the clinical backup program. However, BNCT is faced with the key problem of developing and innovating more efficient boron delivery agents to solve the targeting and selectivity. We constructed a tyrosine kinase inhibitor-L-p-boronophenylalanine (TKI-BPA) molecule, aiming to improve the selectivity of boron delivery agents by conjugating targeted drugs while increasing the molecular solubility by adding hydrophilic groups. It shows excellent selectivity in differential uptake of cells, and its solubility is more than 6 times higher than BPA, leading to the saving of boron delivery agents. This modification method is effective for improving the efficiency of the boron delivery agent and is expected to become a potential alternative with high clinical application value.
Collapse
Affiliation(s)
- Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Jiaxing Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Futian Tang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Muzhou Teng
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China,*Correspondence: Yumin Li, ; Muzhou Teng,
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China,*Correspondence: Yumin Li, ; Muzhou Teng,
| |
Collapse
|
5
|
Zhao H, Huang C, Lin M, Zhou M, Huang C. Dynamic detection of HER2 of circulating tumor cells in patients with gastric carcinoma and its clinical application. Mol Med Rep 2022; 25:187. [PMID: 35348186 DOI: 10.3892/mmr.2022.12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/09/2021] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to construct and characterize human epidermal growth factor receptor 2 (HER2) lipid magnetic ball (H‑LMB) for separating circulating tumor cells (CTCs) in patients with gastric carcinoma (GC) and to compare the result of separated CTC counts with that of next‑generation sequencing (NGS) for single‑gene analysis to verify the consistency for evaluating the association between the detection results and the progress of clinical treatment, so as to facilitate early diagnosis and dynamic monitoring of GC. A lipid magnetic ball (LMB), coated with Fe3O4 nanoparticles, was synthesized by microemulsion technique and an anti‑HER2 antibody was conjugated to the surface of LMB to form H‑LMB, followed by the characterization of the prepared H‑LMB. The detection of capture efficiency of LMBs in GC cells was tested by MTT and expression of HER2 mRNA was determined by reverse transcription‑quantitative PCR. The positive detection rate of HER2 was verified by HER2‑fluorescence in situ hybridization (FISH) test on the separated CTCs from GC. Further verification was performed based on the consistency between the result of separated CTCs and that of single‑gene NGS assay of HER2, associated with the determination of clinical consistency. The constructed H‑LMB exhibited good stability and specificity. The mutation rate of HER2 by the FISH test was 14% in the blood samples of 50 patients with GC and was 14% by NGS assay. The mutation rate of HER2 was 12% in H‑LMB and the positive detection rate was 85.7% compared with the results of the FISH test, indicating consistency with the clinical diagnosis and pathological examination results. In conclusion, the anti‑HER2 antibody‑modified LMB can separate CTCs with HER2 abnormal expression, which exhibits an application potential in GC diagnosis and treatment and is of great clinical significance for the diagnosis and evaluation of its therapeutic effect on GC.
Collapse
Affiliation(s)
- Hongjian Zhao
- Department of General Surgery, Zhabei District Central Hospital of Shanghai, Shanghai 200070, P.R. China
| | - Chunyan Huang
- Department of Anesthesia, Zhabei District Central Hospital of Shanghai, Shanghai 200070, P.R. China
| | - Mei Lin
- Department of Anesthesia, The People's Hospital of Suzhou New District, Suzhou, Jiangsu 215163, P.R. China
| | - Mingqing Zhou
- Department of General Surgery, Zhabei District Central Hospital of Shanghai, Shanghai 200070, P.R. China
| | - Chunjin Huang
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
6
|
Comparison between Heat-Clearing Medicine and Antirheumatic Medicine in Treatment of Gastric Cancer Based on Network Pharmacology, Molecular Docking, and Tumor Immune Infiltration Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7490279. [PMID: 35069767 PMCID: PMC8767399 DOI: 10.1155/2022/7490279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
Background Clinical research found that TCM is therapeutic in treating gastric cancer. Clearing heat is the most common method, while some antirheumatic medicines are widely used in treatment as well. To explore the pharmacological mechanism, we researched the comparison between heat-clearing medicine and antirheumatic medicine in treating gastric cancer. Methods First, related ingredients and targets were searched, respectively, and are shown in an active ingredient-target network. Combining the relevant targets of gastric cancer, we constructed a PPI network and MCODE network. Then, GO and KEGG enrichment analyses were conducted. Molecular docking experiments were performed to verify the affinity of targets and ligands. Finally, we analyzed the tumor immune infiltration on gene expression, somatic CNA, and clinical outcome. Results A total of 31 ingredients and 90 targets of heat-clearing medicine, 31 ingredients and 186 targets of antirheumatic medicine, and 12,155 targets of gastric cancer were collected. Antirheumatic medicine ranked the top in all the enrichment analyses. In the KEGG pathway, both types of medicines were related to pathways in cancer. In the KEGG map, AR, MMP2, ERBB2, and TP53 were the most crucial targets. Key targets and ligands were docked with low binding energy. Analysis of tumor immune infiltration showed that the expressions of AR and ERBB2 were correlated with the abundance of immune infiltration and made a difference in clinical outcomes. Conclusions Quercetin is an important ingredient in both heat-clearing medicine and antirheumatic medicine. AR signaling pathway exists in both types of medicines. The mechanism of the antitumor effect in antirheumatic medicine was similar to trastuzumab, a targeted drug aimed at ERBB2. Both types of medicines were significant in tumor immune infiltration. The immunology of gastric tumor deserves further research.
Collapse
|
7
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer—Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
|
8
|
Kubota T, Kuroda S, Kanaya N, Morihiro T, Aoyama K, Kakiuchi Y, Kikuchi S, Nishizaki M, Kagawa S, Tazawa H, Fujiwara T. HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1919-1929. [PMID: 29885899 DOI: 10.1016/j.nano.2018.05.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/07/2018] [Accepted: 05/29/2018] [Indexed: 01/17/2023]
Abstract
An issue of concern is that no current HER2-targeted therapeutic agent is effective against Trastuzumab (Tmab)-resistant gastric cancer. Gold nanoparticles (AuNPs) are promising drug carriers with unique characteristics of a large surface area available for attachment of materials such as antibodies. Here, we created HER2-targeted AuNPs (T-AuNPs) and examined their therapeutic efficacy and cytotoxic mechanisms using HER2-postive Tmab-resistant (MKN7) or Tmab-sensitive (NCI-N87) gastric cancer cell lines. In vitro, T-AuNPs showed stronger cytotoxic effects than controls against MKN7 and NCI-N87 cells although Tmab had no effect on MKN7 cells. Autophagy played an important role in T-AuNP cytotoxic mechanisms, which was considered to be driven by internalization of T-AuNPs. Finally, T-AuNPs displayed potent antitumor effects against NCI-N87 and MKN7 subcutaneous tumors in in vivo mouse models. In conclusion, HER2-targeted AuNPs with conjugated Tmab is a promising strategy for the development of novel therapeutic agents to overcome Tmab resistance in gastric cancer.
Collapse
Affiliation(s)
- Tetsushi Kubota
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan.
| | - Nobuhiko Kanaya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiaki Morihiro
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Aoyama
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Masahiko Nishizaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Wang X, Liu Y, Diao Y, Gao N, Wan Y, Zhong J, Zheng H, Wang Z, Jin G. Gastric cancer vaccines synthesized using a TLR7 agonist and their synergistic antitumor effects with 5-fluorouracil. J Transl Med 2018; 16:120. [PMID: 29739434 PMCID: PMC5941430 DOI: 10.1186/s12967-018-1501-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Background Vaccines play increasingly important roles in cancer treatment due to their advantages of effective targeting and few side effects. Our laboratory has attempted to construct vaccines by conjugating TLR7 agonists with tumor-associated antigens. Furthermore, immunochemotherapy has recently become an appealing approach to cancer therapy. 5-fluorouracil (5-FU), a commonly used chemotherapeutic agent, can reportedly potently and selectively kill tumor-associated MDSCs in vivo. Methods Gastric cancer vaccines were synthesized by the covalent attachment of our TLR7 agonist with the gastric cancer antigen MG7-Ag tetra-epitope, leading to T7 − ML (linear tetra-epitope) and T7 − MB (branched tetra-epitope). Cytokines induced by the vaccines in vitro were assessed by ELISA. A tumor challenge model was created by treating BALB/c mice on either a prophylactic or therapeutic vaccination schedule. 5-FU was simultaneously applied to mice in the combination treatment group. CTL and ADCC activities were determined by the LDH method, while CD3+/CD8+, CD3+/CD4+ T cells and MDSCs were evaluated by flow cytometry. Results In vitro, rapid TNF-α and IL-12 inductions occurred in BMDCs treated with the vaccines. In vivo, among all the vaccines tested, T7 − MB most effectively reduced EAC tumor burdens and induced CTLs, antibodies and ADCC activity in BALB/c mice. Immunization with T7 − MB in combination with 5-FU chemotherapy reduced tumor sizes and extended long-term survival rates, mainly by improving T cell responses, including CTLs, CD3+/CD8+ and CD3+/CD4+ T cells. 5-FU also enhanced the T7 − MB efficiency by reversing immunosuppressive factors, i.e., MDSCs, which could not be validly inhibited by the vaccines alone. In addition, T7 − MB repressed tumor growth and immune tolerance when the therapeutic schedule was used, although the effects were weaker than those achieved with either T7 − MB alone or in combination with 5-FU on the prophylactic schedule. Conclusions A novel effective gastric cancer vaccine was constructed, and the importance of branched multiple antigen peptides and chemical conjugation to vaccine design were confirmed. The synergistic effects and mechanisms of T7 − MB and 5-FU were also established, observing mainly T cell activation and MDSC inhibition. Electronic supplementary material The online version of this article (10.1186/s12967-018-1501-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaodong Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, China
| | - Yu Liu
- The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, China
| | - Yuwen Diao
- Department of Biology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Ningning Gao
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, China
| | - Yanyan Wan
- The 3rd Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, China
| | - Jingjing Zhong
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, China
| | - Huali Zheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, China
| | - Zhulin Wang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, China
| | - Guangyi Jin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, China. .,Cancer Research Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
10
|
Lopez A, Harada K, Mizrak Kaya D, Ajani JA. Current therapeutic landscape for advanced gastroesophageal cancers. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:78. [PMID: 29666801 PMCID: PMC5890037 DOI: 10.21037/atm.2017.10.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
Abstract
Treatment of advanced gastroesophageal cancers remains challenging for clinicians, patients, and caregivers alike. Despite considerable research, the therapeutic armamentarium is restricted and hardly personalized. In the first-line setting, trastuzumab with a fluoropyrimidine and platinum agent is the standard-of-care in patients with HER2-positive tumor. For the others, a platinum-based doublet (preferably with oxaliplatin) is recommended. Three-drug cytotoxic regimens should be reserved for exceptional cases where patients have good performance status. Triple combinations produce higher toxicity and provide marginal advantage. In the second line setting, the combination of paclitaxel and ramucirumab is preferred over all others. Currently, nothing is approved in the 3rd or later line. Nivolumab has resulted in an improved benefit in an Asian trial. Early trials of TAS-102, STAT3 inhibitors, anti-claudin 18.2 and other immune checkpoint inhibitors (alone or in combination) are ongoing. However, development of reproducible biomarkers for patient enrichment is critical for future progress.
Collapse
Affiliation(s)
- Anthony Lopez
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Gastroenterology and Hepatology and Inserm U954, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Kazuto Harada
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dilsa Mizrak Kaya
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Tarazona N, Gambardella V, Huerta M, Roselló S, Cervantes A. Personalised Treatment in Gastric Cancer: Myth or Reality? Curr Oncol Rep 2017; 18:41. [PMID: 27215435 DOI: 10.1007/s11912-016-0525-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite recent diagnostic and therapeutic advances, the survival of patients with gastric cancer is still poor. The majority of patients are diagnosed with advanced disease and chemotherapy represents the only possible therapeutic approach. However, chemotherapy seems to have reached an efficacy plateau in this setting. Gastric cancer is a complex and heterogeneous disease because it emerges from multiple interactions of genetic, environmental and host factors. A better understanding of its molecular characteristics may lead to an improvement of outcomes. The recent molecular classification by The Cancer Genome Atlas project divides gastric cancer into four subtypes that could be taken into consideration in future clinical trials with targeted agents. So far trastuzumab, a monoclonal antibody addressing the HER2 receptor, is the only targeted agent approved in the first-line setting, but only in patients overexpressing HER2. Negative data have been obtained in first-line therapy when antiangiogenics, anti-EGFR or anti-MET monoclonal antibodies have been studied in randomised controlled trials. Ramucirumab, a monoclonal antibody binding to VEGFR2, is the only antiangiogenic agent currently recommended in patients progressing after first-line treatment. In this review, we discuss whether personalised therapy may have a role in gastric cancer.
Collapse
Affiliation(s)
- Noelia Tarazona
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain.,Rio Hortega Contract CM15/00246, Valencia, Spain
| | - Valentina Gambardella
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain.,ESMO Translational Research Fellow, Valencia, Spain
| | - Marisol Huerta
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Susana Roselló
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
| | - Andrés Cervantes
- Department of Medical Oncology, Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain.
| |
Collapse
|
12
|
Xu W, Liu WT, Yang QM, Yan M, Zhu ZG. Current situation and new advances in perioperative treatment of gastric cancer. Shijie Huaren Xiaohua Zazhi 2016; 24:4621-4633. [DOI: 10.11569/wcjd.v24.i35.4621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignant tumors in the world, and radical surgery is still the most effective treatment. Since gastric cancer screening is not popular in China and early cases are usually asymptomatic, advanced gastric cancer accounts for the vast majority. The prognosis of patients with advanced gastric cancer after surgery alone is still poor. With regard to improving the long-term survival of patients with advanced gastric cancer, the importance of multimodality therapy has been gradually recognized. Perioperative treatment is an important part of multimodality therapy. Nowadays, the perioperative treatment for advanced gastric cancer consists of preoperative chemotherapy, preoperative chemoradiotherapy, targeted therapy, and immune therapy.
Collapse
|
13
|
Xu W, Yang Z, Lu N. Molecular targeted therapy for the treatment of gastric cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:1. [PMID: 26728266 PMCID: PMC4700735 DOI: 10.1186/s13046-015-0276-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
Despite the global decline in the incidence and mortality of gastric cancer, it remains one of the most common malignant tumors of the digestive system. Although surgical resection is the preferred treatment for gastric cancer, chemotherapy is the preferred treatment for recurrent and advanced gastric cancer patients who are not candidates for reoperation. The short overall survival and lack of a standard chemotherapy regimen make it important to identify novel treatment modalities for gastric cancer. Within the field of tumor biology, molecular targeted therapy has attracted substantial attention to improve the specificity of anti-cancer efficacy and significantly reduce non-selective resistance and toxicity. Multiple clinical studies have confirmed that molecular targeted therapy acts on various mechanisms of gastric cancer, such as the regulation of epidermal growth factor, angiogenesis, immuno-checkpoint blockade, the cell cycle, cell apoptosis, key enzymes, c-Met, mTOR signaling and insulin-like growth factor receptors, to exert a stronger anti-tumor effect. An in-depth understanding of the mechanisms that underlie molecular targeted therapies will provide new insights into gastric cancer treatment.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|