1
|
Tian Y, Han W, Yeung KL. Magnetic Microsphere Scaffold-Based Soft Microbots for Targeted Mesenchymal Stem Cell Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300430. [PMID: 37058085 DOI: 10.1002/smll.202300430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/18/2023] [Indexed: 06/19/2023]
Abstract
A soft microbot assembled from individual magnetic microsphere scaffold (MMS) beads carrying mesenchymal stem cells (MSC) is navigated under magnetic actuation, where an oscillating field induces mechanical flexion to propel the microbot toward the target site. A seven-bead microbot attained a top translational speed of 205.6 µm s-1 (0.068 body length s-1 ) under 10 mT and 2 Hz field oscillation. The shallow flexion angle (10-24.5°) allows precision movements required to navigate narrow spaces. Upon arrival at the target site, the MMS beads unload their MSC cargo following exposure to a phosphate-buffered saline (PBS) solution, mimicking the extracellular fluid's sodium concentration. The released stem cells have excellent viability and vitality, promoting rapid healing (i.e., 83.2% vs 49%) in a scratch-wound assay. When paired with minimally invasive surgical methods, such as laparoscopy and endoscopic surgery, the microbot can provide precise stem cell delivery to hard-to-reach injury sites in the body to promote healing. Moreover, the microbot is designed to be highly versatile, with individual MMS beads customizable for cargoes of live cells, biomolecules, bionanomaterials, and pharmaceutical compounds for various therapeutic requirements.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, Guangdong, 518040, China
| | - King Lun Yeung
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, Guangdong, 518040, China
| |
Collapse
|
2
|
F. V, V. D. P, C. M, M. LI, C. D, G. P, D. C, A. T, M. G, S. DF, M. T, V. V, G. S. Targeting epigenetic alterations in cancer stem cells. FRONTIERS IN MOLECULAR MEDICINE 2022; 2:1011882. [PMID: 39086963 PMCID: PMC11285701 DOI: 10.3389/fmmed.2022.1011882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 08/02/2024]
Abstract
Oncogenes or tumor suppressor genes are rarely mutated in several pediatric tumors and some early stage adult cancers. This suggests that an aberrant epigenetic reprogramming may crucially affect the tumorigenesis of these tumors. Compelling evidence support the hypothesis that cancer stem cells (CSCs), a cell subpopulation within the tumor bulk characterized by self-renewal capacity, metastatic potential and chemo-resistance, may derive from normal stem cells (NSCs) upon an epigenetic deregulation. Thus, a better understanding of the specific epigenetic alterations driving the transformation from NSCs into CSCs may help to identify efficacious treatments to target this aggressive subpopulation. Moreover, deepening the knowledge about these alterations may represent the framework to design novel therapeutic approaches also in the field of regenerative medicine in which bioengineering of NSCs has been evaluated. Here, we provide a broad overview about: 1) the role of aberrant epigenetic modifications contributing to CSC initiation, formation and maintenance, 2) the epigenetic inhibitors in clinical trial able to specifically target the CSC subpopulation, and 3) epigenetic drugs and stem cells used in regenerative medicine for cancer and diseases.
Collapse
Affiliation(s)
- Verona F.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Pantina V. D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Modica C.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Lo Iacono M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - D’Accardo C.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Porcelli G.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cricchio D.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Turdo A.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Gaggianesi M.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Di Franco S.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Todaro M.
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Veschi V.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Stassi G.
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Hamid Q, Wang C, Snyder J, Sun W. Surface modification of SU-8 for enhanced cell attachment and proliferation within microfluidic chips. J Biomed Mater Res B Appl Biomater 2014; 103:473-84. [PMID: 24919697 DOI: 10.1002/jbm.b.33223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/09/2014] [Accepted: 05/17/2014] [Indexed: 11/06/2022]
Abstract
Advances in micro-electro-mechanical systems (MEMS) have led to an increased fabrication of micro-channels. Microfabrication techniques are utilized to develop microfluidic channels for continuous nutrition supply to cells inside a micro-environment. The ability of cells to build tissues and maintain tissue-specific functions depends on the interaction between cells and the extracellular matrix (ECM). SU-8 is a popular photosensitive epoxy-based polymer in MEMS. The patterning of bare SU-8 alone does not provide the appropriate ECM necessary to develop microsystems for biological applications. Manipulating the chemical composition of SU-8 will enhance the biological compatibility, giving the fabricated constructs the appropriate ECM needed to promote a functional tissue array. This article investigates three frequently used surface treatment techniques: (1) plasma treatment, (2) chemical reaction, and (3) deposition treatment to determine which surface treatment is the most beneficial for enhancing the biological properties of SU-8. The investigations presented in this article demonstrated that the plasma, gelatin, and sulfuric acid treatments have a potential to enhance SU-8's surface for biological application. Of course each treatment has their advantages and disadvantages (application dependent). Cell proliferation was studied with the use of the dye Almar Blue, and a micro-plate reader. After 14 days, cell proliferation to plasma treated surfaces was statistically significantly enhanced (p < 0.00001), compared to untreated surfaces. The plasma treated surface is suggested to be the better of the three treatments for biological enhancement followed by gelatin and sulfuric acid treatments, respectively.
Collapse
Affiliation(s)
- Qudus Hamid
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
4
|
Enzymatically Synthesized Inorganic Polymers as Morphogenetically Active Bone Scaffolds. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 313:27-77. [DOI: 10.1016/b978-0-12-800177-6.00002-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Zhang C, Wang ZJ, Lok KH, Yin M. β-amyloid42 induces desensitization of CXC chemokine receptor-4 via formyl peptide receptor in neural stem/progenitor cells. Biol Pharm Bull 2012; 35:131-8. [PMID: 22293341 DOI: 10.1248/bpb.35.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The deposition of β-amyloid (Aβ) plaques and progressive loss of neurons are two main characteristics of Alzheimer's disease (AD). Supplement of neural stem/progenitor cells (NSPCs) is a promising strategy for repair of the neurodegenerative diseases. However, hostile microenvironment of neurodegenerative brain is harmful for the neuroregeneration. Aβ(42) promoted the proliferation of NSPCs. Moreover, Aβ(42) (10-1000 nM) promoted the migration of NSPCs in a dose-dependent manner. The attraction of NSPCs toward Aβ(42) was significantly offset by 10 μM cyclosporin H, a potent and selective formyl peptide receptor antagonist. After incubation with Aβ(42) for 9 d, the migration ability of NSPCs was significantly decreased (p<0.05). The expression of formyl peptide receptor (FPR) and CXC chemokine receptor-4 (CXCR4) were significantly decreased in NSPCs. The expression of G protein-coupled receptor kinase 2 (GRK2) was up-regulated on the membrane of NSPCs correspondingly. Our results suggested that Aβ(42) decreases the migratory capacity of NSPCs by FPR heterologous desensitization after long time incubation, and GRK2 in NSPCs may be responsible for the damaged migratory capacity.
Collapse
Affiliation(s)
- Can Zhang
- School of Pharmacy, Shanghai Jiaotong University, China
| | | | | | | |
Collapse
|
6
|
Wang TY, Sen A, Behie LA, Kallos MS. Dynamic behavior of cells within neurospheres in expanding populations of neural precursors. Brain Res 2006; 1107:82-96. [PMID: 16859652 DOI: 10.1016/j.brainres.2006.05.110] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 12/31/2022]
Abstract
Large-scale expansion of neural stem and progenitor cells will be essential for clinically treating the large number of patients suffering from neurodegenerative disorders such as Parkinson's disease. Other applications of neural stem cell technology include further research in areas such as neural development or drug testing. Neural stem cells can be grown in vitro as tissue aggregates known as neurospheres, and in the current study, experiments were performed to determine the spatial arrangement and behavior of the cells within the neurosphere structure. A protocol utilizing sulfonated lipophilic fluorescent dyes was developed to effectively label populations of neural stem and progenitor cells without compromising cell density during culture. Cells retained the labels for at least 7 days. Using the labeling protocol, we discovered that the cells within the neurospheres were mobile and, moreover, the cells on the periphery of the neurospheres could migrate into the center of the neurospheres. Most important, the mixing time of two merging neurospheres was observed to be the same order of magnitude as the neural stem cell doubling time (approximately 20 h). This study is the first to show that the neurosphere system is dynamic, and these results will serve as a stepping stone to more in-depth studies of the neurosphere microenvironment.
Collapse
Affiliation(s)
- Tony Y Wang
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
7
|
Pan G, Li J, Zhou Y, Zheng H, Pei D. A negative feedback loop of transcription factors that controls stem cell pluripotency and self-renewal. FASEB J 2006; 20:1730-2. [PMID: 16790525 DOI: 10.1096/fj.05-5543fje] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Embryonic stem (ES) cells possess the ability to renew themselves while maintaining the capacity to differentiate into virtually all cell types of the body. Current evidence suggests that ES cells maintain their pluripotent state by expressing a battery of transcription factors including Oct4 and Nanog. However, little is known about how ES cells maintain the expression of these pluripotent factors in ES cells. Here we present evidence that Oct4, Nanog, and FoxD3 form a negative feedback loop to maintain their expression in pluripotent ES cells. First, Oct4 maintains Nanog activity by directly activating its promoter at sub-steady-state concentration but repressing it at or above steady-state levels. On the other hand, FoxD3 behaves as a positive activator of Nanog to counter the repressive effect of Oct4. The expression of Oct4 is activated by FoxD3 and Nanog but repressed by Oct4 itself, thus, exerting an important negative feedback loop to limit its own activity. Indeed, overexpression of either FoxD3 or Nanog in ES cells failed to increase the concentration of Oct4 beyond the steady-state concentration, whereas knocking down either FoxD3 or Nanog reduces the expression of Oct4 in ES cells. Finally, overexpression of Oct4 or Nanog failed to compensate the loss of Nanog or Oct4, respectively, suggesting that both are required for ES self-renewal and pluripotency. Our results suggest the FoxD3-Nanog-Oct4 loop anchors an interdependent network of transcription factors that regulate stem cell pluripotency.
Collapse
Affiliation(s)
- Guangjin Pan
- Institute of Pharmacology, Department of Biological Sciences & Biotechnology, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institutes of Biomedicine, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
8
|
Abstract
A paradigm shift is taking place in medicine from using synthetic implants and tissue grafts to a tissue engineering approach that uses degradable porous material scaffolds integrated with biological cells or molecules to regenerate tissues. This new paradigm requires scaffolds that balance temporary mechanical function with mass transport to aid biological delivery and tissue regeneration. Little is known quantitatively about this balance as early scaffolds were not fabricated with precise porous architecture. Recent advances in both computational topology design (CTD) and solid free-form fabrication (SFF) have made it possible to create scaffolds with controlled architecture. This paper reviews the integration of CTD with SFF to build designer tissue-engineering scaffolds. It also details the mechanical properties and tissue regeneration achieved using designer scaffolds. Finally, future directions are suggested for using designer scaffolds with in vivo experimentation to optimize tissue-engineering treatments, and coupling designer scaffolds with cell printing to create designer material/biofactor hybrids.
Collapse
Affiliation(s)
- Scott J Hollister
- Scaffold Tissue Engineering Group, Department of Biomedical Engineering, The University of Michigan, Ann Arbor, Michigan 41809, USA.
| |
Collapse
|
9
|
Abstract
The prevalence of both type 1 and type 2 diabetes mellitus is increasing throughout the world along with the ensuant morbidity and early mortality because of premature microvascular and macrovascular disease. Current insulin and drug therapies control diabetes, but do not cure it. Cell-based therapies offer the possibilities of a permanent cure for diabetes. Recently, success in the transplantation of pancreatic islets in the livers of type 1 diabetics has afforded the opportunity for a potential cure. However, the severe shortage of donor islets for transplantation limits the usefulness of this therapy. One approach is to exploit the use of stem cells, either embryo-derived or adult tissue-derived, as substrates to create islet tissue suitable for transplantation. Cells isolated from embryo blastocysts and from adult pancreas, liver, and bone marrow can be expanded extensively in vitro and differentiated into islet-like clusters that produce insulin, and, in some instances, can achieve glycemic control when transplanted into streptozotocin-induced diabetic mice. It is, now, also possible to envision the direct systemic administration of stem cells that would home in on and regenerate injured islets, or to administer stem cell stimulators that would enhance endogenous pancreatic stem cells to expand and differentiate into functional, insulin-producing beta-cells. This perspective discusses the potential applications of cellular medicines, in the new discipline of regenerative medicine, to achieve a cure for diabetes.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, 55 Fruit Street - WEL 320, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Pan G, Pei D. The Stem Cell Pluripotency Factor NANOG Activates Transcription with Two Unusually Potent Subdomains at Its C Terminus. J Biol Chem 2005; 280:1401-7. [PMID: 15502159 DOI: 10.1074/jbc.m407847200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Embryonic stem cells are pluripotent progenitors for virtually all cell types in our body and thus possess unlimited therapeutic potentials for regenerative medicine. NANOG, an NK-2 type homeodomain gene, has been proposed to play a key role in maintaining stem cell pluripotency presumably by regulating the expression of genes critical to stem cell renewal and differentiation. Here, we provide the evidence that NANOG behaves as a transcription activator with two unusually strong activation domains embedded in its C terminus. First, we identified these two transactivators by employing the Gal4-DNA binding domain fusion and reporter system and named them WR and CD2. Whereas CD2 contains no obvious structural motif, the WR or Trp repeat contains 10 pentapeptide repeats starting with a Trp in each unit. Substitution of Trp with Ala in each repeat completely abolished its activity, whereas mutations at the conserved Ser, Gln, and Asn had relatively minor or no effect on WR activity. We then validated the activities of WR and CD2 in NANOG by constructing a reporter plasmid bearing five NANOG binding sites. Deletion of both WR and CD2 from NANOG completely eliminated its transactivation function. Paradoxically, whereas the removal of CD2 reduced NANOG activity by approximately 30-70%, the removal of WR not only did not diminish but actually enhanced its activity by approximately 50-100% depending on the cell lines analyzed. These data suggest that either WR or CD2 is sufficient for NANOG to function as a transactivator.
Collapse
Affiliation(s)
- Guangjin Pan
- Institute of Pharmacology, Department of Biological Sciences & Biotechnology, Institutes of Biomedicine, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, 100084 Beijing, China
| | | |
Collapse
|
11
|
Abstract
Postnatal stem cells have been isolated from a variety of tissues and they are highly expected to have potentiality to be utilized for cell-based clinical therapies. Bone marrow stromal stem cells (BMSSCs) derived from bone marrow stromal tissue have been identified as a population of multipotent mesenchymal stem cells that are capable of differentiating into osteoblasts, adipocytes, chondrocytes, muscle cells, and neural cells. The most significant tissue regeneration trait of BMSSCs is their in vivo bone regeneration capability, which has been widely studied for understanding molecular and cellular mechanisms of osteogenesis, and, more importantly, developing into a stem-cell-based therapy. Recent studies further demonstrated that BMSSC-mediated bone regeneration is a promising approach for regenerative medicine in clinical trials. However, there are some fundamental questions that remain to be answered prior to successful utilization of BMSSCs in clinical therapy. For instance, how to maintain stemness of BMSSCs will be a critical issue for developing methodologies to propagate multi-potential stem cells in vitro, in order to allow the development of effective clinical therapies.
Collapse
Affiliation(s)
- Wataru Sonoyama
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|