1
|
Effect of Prolonged-Release Pirfenidone on Renal Function in Septic Acute Kidney Injury Patients: A Double-Blind Placebo-Controlled Clinical Trial. Int J Nephrol 2021; 2021:8833278. [PMID: 33520317 PMCID: PMC7817311 DOI: 10.1155/2021/8833278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022] Open
Abstract
Background There is no treatment for septic acute kidney injury (sAKI). The anti-inflammatory activity of prolonged-release pirfenidone (PR-PFD) could be beneficial in this clinical setting. Methods This study was a double-blind randomized clinical trial in sAKI patients with nephrology consultation at the Civil Hospital of Guadalajara, in addition to the usual treatment of AKI associated with sepsis; patients were randomized to receive either PR-PFD at 1,200 mg/day (group A) or 600 mg/day (group B) or a matched placebo for 7 consecutive days. The primary objective was the decrease in serum creatinine (sCr) and increase in urinary volume (UV); the secondary objectives were changes in serum electrolytes, acid-base status, and mortality. Results Between August 2016 and August 2017, 88 patients were randomized. The mean age was 54 (17 ± SD) years, and 47% were male. The main site of infection was the lung (39.8%), septic shock was present in 39.1% of the cases, and the mean SOFA score was 8.8 points. 28 patients received PFD 1,200 mg, 30 patients received PFD 600 mg, and 30 patients received placebo. During the study, sCr did not differ among the groups. The reversion rate of sCr, UV, and mortality was not different among the groups (p=0.70, p=0.47, and p=0.38, respectively). Mild adverse events were not different among the groups. Conclusion PR-PFD did not improve the clinical course of sAKI and seemed to be safe in terms of adverse events. This trial is registered with NCT02530359.
Collapse
|
2
|
Zhang Y, Dai Y, Raman A, Daniel E, Metcalf J, Reif G, Pierucci-Alves F, Wallace DP. Overexpression of TGF-β1 induces renal fibrosis and accelerates the decline in kidney function in polycystic kidney disease. Am J Physiol Renal Physiol 2020; 319:F1135-F1148. [PMID: 33166182 DOI: 10.1152/ajprenal.00366.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the presence of numerous fluid-filled cysts, extensive fibrosis, and the progressive decline in kidney function. Transforming growth factor-β1 (TGF-β1), an important mediator for renal fibrosis and chronic kidney disease, is overexpressed by cystic cells compared with normal kidney cells; however, its role in PKD pathogenesis remains undefined. To investigate the effect of TGF-β1 on cyst growth, fibrosis, and disease progression, we overexpressed active TGF-β1 specifically in collecting ducts (CDs) of phenotypic normal (Pkd1RC/+) and Pkd1RC/RC mice. In normal mice, CD-specific TGF-β1 overexpression caused tubule dilations by 5 wk of age that were accompanied by increased levels of phosphorylated SMAD3, α-smooth muscle actin, vimentin, and periostin; however, it did not induce overt cyst formation by 20 wk. In Pkd1RC/RC mice, CD overexpression of TGF-β1 increased cyst epithelial cell proliferation. However, extensive fibrosis limited cyst enlargement and caused contraction of the kidneys, leading to a loss of renal function and a shortened lifespan of the mice. These data demonstrate that TGF-β1-induced fibrosis constrains cyst growth and kidney enlargement and accelerates the decline of renal function, supporting the hypothesis that a combined therapy that inhibits renal cyst growth and fibrosis will be required to effectively treat ADPKD.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Yuqiao Dai
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Archana Raman
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Emily Daniel
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - July Metcalf
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Gail Reif
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Darren P Wallace
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas.,Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
3
|
Zhou P, Wan X, Zou Y, Chen Z, Zhong A. Transforming growth factor beta (TGF-β) is activated by the CtBP2-p300-AP1 transcriptional complex in chronic renal failure. Int J Biol Sci 2020; 16:204-215. [PMID: 31929749 PMCID: PMC6949151 DOI: 10.7150/ijbs.38841] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic renal failure (CRF), also known as chronic kidney disease (CKD), is a common renal disorder characterized by gradual kidney dysfunction. Molecular dissection reveals that transforming growth factor beta (TGF-β) plays a central role in the pathogenesis of CRF. However, the mechanism underlying TGF-β upregulation has not been demonstrated. Here, we verified that the elevated level of TGF-β was associated with the severity of CRF stages and the activation of TGF-β-mediated signaling in 120 renal biopsies from CRF patients. By analyzing the promoter region of the TGFB1 gene, we identified one AP-1 (activator protein 1) and four NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) binding sites. Knockdown of two AP-1 subunits (c-Jun and c-FOS) or blockage of AP-1 signaling with two inhibitors T-5224 and SR11302 could cause the downregulation of TGFB1, whereas knockdown of two NF-κB subunits (p65 and p50) or blockage of NF-κB signaling with two inhibitors TPCA1 and BOT-64 could not change the expression of TGFB1. Using mass spectrometry and coimmunoprecipitation analyses, we found that both c-Jun and c-FOS formed a complex with CtBP2 (C-terminal binding protein 2) and histone acetyltransferase p300. Our in vitro data demonstrated that induction of CtBP2 by recombinant IL-1β (interleukin-1 beta) led to the upregulation of TGFB1 and the activation of TGF-β downstream signaling, while knockdown of CtBP2 resulted in the reversed effects. Using chromatin immunoprecipitation assays, we revealed that the CtBP2-p300-AP1 complex specifically bound to the promoter of TGFB and that knockdown or blockage of CtBP2 significantly decreased the occupancies of the p300 and AP-1 subunits. Our results support a model in which the CtBP2-p300-AP1 transcriptional complex activates the expression of TGFB1, increasing its production and extracellular secretion. The secreted TGF-β binds to its receptors and initiates downstream signaling.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Nephrology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Xiaoxiao Wan
- Department of Nephrology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yan Zou
- Department of Nephrology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhi Chen
- Department of Critical Care Medicine, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Aimin Zhong
- Department of Nephrology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
4
|
Sen Z, Weida W, Li Y, Zhaojun L, Nina X, Xiaoguang C. Nicousamide attenuates renal dysfunction and glomerular injury in remnant kidneys by inhibiting TGF-β1 internalisation and renin activity. Eur J Pharmacol 2018; 845:74-84. [PMID: 30586551 DOI: 10.1016/j.ejphar.2018.12.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/28/2022]
Abstract
Nicousamide has been shown to exert renal protective effects against diabetic nephropathy and has moved to a phase II clinical trial in China for diabetic nephropathy indication. To expand its clinical indications, 5/6-nephrectomised rats were used to mimic glomerular and vascular sclerosis and tubulointerstitial scarring, with subsequent progression towards end-stage renal disease. Adult Wistar rats underwent 5/6 nephrectomy to induce the development of chronic kidney disease, with a sham operation performed as a control. The nephrectomised animals were treated orally with either saline, nicousamide (7.5,15, or 45 mg/kg), benazepril (4 mg/kg), or losartan (10 mg/kg) daily for 20 weeks. At 8, 16, and 20 weeks of treatment, blood pressure was measured in each animal, and blood and urine samples were collected for biochemical analysis, while kidney remnants were collected for histological examination. Levels of fibronectin and transforming growth factor beta 1 (TGF-β1) were measured in kidneys by immunohistochemistry. Renin activity in the plasma was measured by an enzyme-linked immunosorbent assay. The results showed that nicousamide treatment significantly reduced systemic hypertension, proteinuria, and blood urea nitrogen (P < 0.05), effectively alleviated glomerular sclerosis scores and tubulointerstitial injuries in a dose-dependent manner (P < 0.01), and markedly decreased fibronectin and TGF-β1 levels in kidney tissues of the 5/6-nephrectomised animals. In vitro studies suggested that nicousamide could moderately inhibit the renin activity and strongly block the TGF-β1 internalisation into fibroblast cells. In summary, nicousamide may protect from renal failure through dual targeting, which involves a TGF-β1-dependent mechanism and inhibition of renin activity.
Collapse
Affiliation(s)
- Zhang Sen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Wang Weida
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yan Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Li Zhaojun
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Xue Nina
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Chen Xiaoguang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
5
|
Yuan J, Shen Y, Yang X, Xie Y, Lin X, Zeng W, Zhao Y, Tian M, Zha Y. Thymosin β4 alleviates renal fibrosis and tubular cell apoptosis through TGF-β pathway inhibition in UUO rat models. BMC Nephrol 2017; 18:314. [PMID: 29047363 PMCID: PMC5648500 DOI: 10.1186/s12882-017-0708-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Thymosin β4 (Tβ4) is closely associated with the cytoskeleton, inflammation, wound healing, angiogenesis, apoptosis, and myocardial regeneration, but the effects of Tβ4 treatment on chronic renal tubular interstitial fibrosis (CRTIF) are poorly known. This study aimed to examine the effects of Tβ4 on the renal apoptosis and the expression of transforming growth factor (TGF-β), E-cadherin, and α-smooth muscle actin (α-SMA) in CRTIF rat models. METHODS Male SD rats were randomized into four groups (sham group, unilateral ureteral obstruction (UUO) group, UUO + low-dose Tβ4 group, and UUO + high-dose Tβ4 group). The pathological changes of kidney tissue and its function were assessed two weeks after UUO. In renal interstitial tissue,TGF-β, E-cadherin and α-SMA expression was detected by western blot. In tubular epithelial cells, E-cadherin and α-SMA expression was detected using Real-time qPCR and western blot. Cell apoptosis of rat renal interstitial tissue and tubular epithelial cells was evaluated by immunofluorescence and western blot. RESULTS Two weeks after UUO, no differences in blood urea nitrogen and creatinine were observed between the four groups (P > 0.05). Compared to the UUO group, Tβ4 treatment decreased the 24-h proteinuria (P < 0.001) and reduced the area of pathological change (P < 0.01); this effect was more apparent in the UUO + high-dose Tβ4 group. Compared to the UUO group, a significant decrease in TGF-β and α-SMA protein expression was observed in the high-dose Tβ4 group. The level of E-cadherin protein was lower in the UUO group than the Tβ4 groups, and high-dose Tβ4 treatment further increased E-cadherin expression and improved cell apoptosis in the renal interstitial tissue. Analysis of in vitro tubular epithelial cells showed that α-SMA mRNA and protein expression decreased, while E-cadherin mRNA and protein expression increased by Tβ4 treatment. Similarly, these changes were more significant in the UUO + high-dose Tβ4 group. Tβ4 treatment improved the apoptosis of In vitro tubular epithelial cells compared with pure TGF-β stimulation, and equally, the decrease of apoptosis was more apparent in the TGF-β + high-dose Tβ4 group. CONCLUSIONS Tβ4 treatment might alleviate the renal fibrosis and apoptosis of tubular epithelial cells through TGF-β pathway inhibition in UUO rats with CRTIF.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Nephrology Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Yan Shen
- Department of Nephrology Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Xia Yang
- Department of Nephrology Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Ying Xie
- Department of Nephrology Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Xin Lin
- Department of Nephrology Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Wen Zeng
- Department of Nephrology Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Yingting Zhao
- Department of Nephrology Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Maolu Tian
- Department of Nephrology Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Yan Zha
- Department of Nephrology Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| |
Collapse
|
6
|
Wu WP, Tsai YG, Lin TY, Wu MJ, Lin CY. The attenuation of renal fibrosis by histone deacetylase inhibitors is associated with the plasticity of FOXP3 +IL-17 + T cells. BMC Nephrol 2017; 18:225. [PMID: 28693431 PMCID: PMC5504832 DOI: 10.1186/s12882-017-0630-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/21/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The histone deacetylase (HDAC) inhibitor, which has potential effects on epigenetic modifications, had been reported to attenuate renal fibrosis. CD4+ forkhead box P3 (FOXP3)+ T regulatory (Treg) cells may be converted to inflammation-associated T helper 17 cells (Th17) with tissue fibrosis properties. The association between FOXP3+IL-17+ T cells and the attenuation of renal fibrosis by the HDAC inhibitor is not clear. METHODS This study evaluated the roles of the HDAC inhibitor, Treg cells and their differentiation into Th17 cells, which aggravate chronic inflammation and renal fibrosis in a unilateral ureteral obstruction (UUO) mouse model. The study groups included control and UUO mice that were monitored for 7, 14 or 21 days. RESULTS Juxtaglomerular (JG) hyperplasia, angiotensin II type 1 receptor (AT1R) expression and lymphocyte infiltration were observed in renal tissues after UUO but were decreased after trichostatin A (TSA) treatment, a HDAC inhibitor. The number of CD4+FOXP3+ T cells increased progressively, along with the number of FOXP3+interleukin (IL)-17+ T cells, after 14 days, and their numbers then progressively decreased with increasing CD4+IL-17+ T cell numbers, as demonstrated by double immunohistochemistry. Progressive renal fibrosis was associated with the loss of CD4+FOXP3+IL-17+ T cells in splenic single-cell suspensions. FOXP3+IL-17+ T cells expressed TGF-β1 both in vitro and in vivo, and TGF-β1 expression was significantly knockdown by IL-17 siRNA in vitro. These cells were found to play a role in converting Tregs into IL-17- and TGF-β1-producing cells. CONCLUSIONS TSA treatment decreased JG hyperplasia, the percentage of FOXP3+IL-17+ cells and the degree of fibrosis, suggesting that therapeutic benefits may result from epigenetic modifications.
Collapse
Affiliation(s)
- Wen-Pyng Wu
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Nephrology, Ching Chyuan Hospital, Taichung, Taiwan
| | - Yi-Giien Tsai
- Department of Pediatrics, Changhua Christian Hospital, Changhua, Taiwan.,School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,School of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Tze-Yi Lin
- Department of pathology, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Ju Wu
- School of Medicine, Chung-Shan Medical University, Taichung, Taiwan. .,Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, No. 1650, Taiwan Boulevard Sect. 4, Taichung, 40705, Taiwan, Republic of China. .,Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan. .,Graduate Institute of Biomedical Science, National Chung Hsing University, Taichung, Taiwan.
| | - Ching-Yuang Lin
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan. .,Clinical Immunological Center, China Medical University Hospital, No. 2, Yude Road, Taichung, 40447, Taiwan, Republic of China.
| |
Collapse
|
7
|
Available and incoming therapies for idiopathic focal and segmental glomerulosclerosis in adults. J Nephrol 2017; 31:37-45. [DOI: 10.1007/s40620-017-0402-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/10/2017] [Indexed: 01/30/2023]
|
8
|
Saliba Y, Karam R, Smayra V, Aftimos G, Abramowitz J, Birnbaumer L, Farès N. Evidence of a Role for Fibroblast Transient Receptor Potential Canonical 3 Ca2+ Channel in Renal Fibrosis. J Am Soc Nephrol 2015; 26:1855-76. [PMID: 25479966 PMCID: PMC4520158 DOI: 10.1681/asn.2014010065] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 09/23/2014] [Indexed: 01/04/2023] Open
Abstract
Transient receptor potential canonical (TRPC) Ca(2+)-permeant channels, especially TRPC3, are increasingly implicated in cardiorenal diseases. We studied the possible role of fibroblast TRPC3 in the development of renal fibrosis. In vitro, a macromolecular complex formed by TRPC1/TRPC3/TRPC6 existed in isolated cultured rat renal fibroblasts. However, specific blockade of TRPC3 with the pharmacologic inhibitor pyr3 was sufficient to inhibit both angiotensin II- and 1-oleoyl-2-acetyl-sn-glycerol-induced Ca(2+) entry in these cells, which was detected by fura-2 Ca(2+) imaging. TRPC3 blockade or Ca(2+) removal inhibited fibroblast proliferation and myofibroblast differentiation by suppressing the phosphorylation of extracellular signal-regulated kinase (ERK1/2). In addition, pyr3 inhibited fibrosis and inflammation-associated markers in a noncytotoxic manner. Furthermore, TRPC3 knockdown by siRNA confirmed these pharmacologic findings. In adult male Wistar rats or wild-type mice subjected to unilateral ureteral obstruction, TRPC3 expression increased in the fibroblasts of obstructed kidneys and was associated with increased Ca(2+) entry, ERK1/2 phosphorylation, and fibroblast proliferation. Both TRPC3 blockade in rats and TRPC3 knockout in mice inhibited ERK1/2 phosphorylation and fibroblast activation as well as myofibroblast differentiation and extracellular matrix remodeling in obstructed kidneys, thus ameliorating tubulointerstitial damage and renal fibrosis. In conclusion, TRPC3 channels are present in renal fibroblasts and control fibroblast proliferation, differentiation, and activation through Ca(2+)-mediated ERK signaling. TRPC3 channels might constitute important therapeutic targets for improving renal remodeling in kidney disease.
Collapse
Affiliation(s)
- Youakim Saliba
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Ralph Karam
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| | - Viviane Smayra
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Georges Aftimos
- Department of Anatomopathology, National Institute of Pathology, Baabda, Lebanon; and
| | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Nassim Farès
- Physiology and Pathophysiology Research Laboratory, Pole of Technology and Health, Faculty of Medicine and
| |
Collapse
|
9
|
Moll S, Meier M, Formentini I, Pomposiello S, Prunotto M. New renal drug development to face chronic renal disease. Expert Opin Drug Discov 2014; 9:1471-85. [DOI: 10.1517/17460441.2014.956075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Abstract
Transforming growth factor-β (TGF-β) is a multifunctional regulatory cytokine that is implicated in a variety of kidney diseases, including diabetic nephropathy and chronic transplant rejection, where it promotes stimulation of the extracellular matrix deposition, cell proliferation, and migration. TGF-β exerts its biological functions largely via its downstream complex signaling molecules, Smad proteins. Paradoxically, TGF-β also is essential for normal homeostasis and suppression of inflammation through mechanisms that are yet to be fully elucidated. One feasible mechanism by which TGF-β may exert its beneficial properties is through induction of heme oxygenase-1 (HO-1). Induction of this redox-sensitive enzyme is known to be cytoprotective through its potent antioxidant, anti-inflammatory, and anti-apoptotic properties in different conditions including several kidney diseases. In this overview, recent advances in our understanding of the role of TGF-β in kidney disease, its molecular regulation of HO-1 expression, and the potential role of HO-1 induction as a therapeutic modality in TGF-β-mediated kidney diseases are highlighted.
Collapse
Affiliation(s)
- Abolfazl Zarjou
- Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
11
|
Zhang S, Yang J, Li H, Li Y, Liu Y, Zhang D, Zhang F, Zhou W, Chen X. Skimmin, a coumarin, suppresses the streptozotocin-induced diabetic nephropathy in wistar rats. Eur J Pharmacol 2012; 692:78-83. [DOI: 10.1016/j.ejphar.2012.05.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 05/02/2012] [Accepted: 05/15/2012] [Indexed: 11/17/2022]
|
12
|
Takakura K, Tahara A, Sanagi M, Itoh H, Tomura Y. Antifibrotic effects of pirfenidone in rat proximal tubular epithelial cells. Ren Fail 2012; 34:1309-16. [PMID: 23002925 DOI: 10.3109/0886022x.2012.718955] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Renal fibrosis is a common cause of renal dysfunction with chronic kidney disease. We previously investigated the renoprotective effects of the antifibrotic agent pirfenidone in a rat model of subtotal nephrectomy. Here, we further evaluated the antifibrotic effects of pirfenidone in rat proximal tubular epithelial cells. METHODS NRK52E cells were incubated in a medium containing either transforming growth factor (TGF)-β1 (3 ng/mL) or platelet-derived growth factor (PDGF)-BB (5 Ang/mL) or both, with or without pirfenidone (0.1-1 mmol/L), for 24 h to assess mRNA expression, for 48 h to assess protein production, and for 1 h or various time (5-120 min) to assess phosphorylation of signal kinase. RESULTS TGF-β1, a key mediator in renal fibrosis, induced increases in the mRNA expression of various profibrotic factors and extracellular matrix, including plasminogen activator inhibitor type 1 (PAI-1), fibronectin, type 1 collagen, and connective tissue growth factor (CTGF)-increases which pirfenidone significantly inhibited. Specifically, pirfenidone potently inhibited TGF-β1-induced increases in the mRNA expression and protein secretion of PAI-1, an effect mediated, at least in part, via the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. Further, PDGF-BB, which has been implicated in renal interstitial fibrosis, potently activated PAI-1 expression under TGF-β1 stimulation, and pirfenidone significantly inhibited TGF-β1- and PDGF-BB-induced increases in PAI-1 expression. CONCLUSIONS Taken together, these results suggest that TGF-β1 closely correlates with renal fibrosis in cooperation with several fibrosis-promoting molecules, such as PAI-1 and PDGF, in rat proximal tubular epithelial cells, and pirfenidone inhibits TGF-β1-induced fibrosis cascade and will therefore likely exert antifibrotic effects under pathological conditions.
Collapse
Affiliation(s)
- Koji Takakura
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan
| | | | | | | | | |
Collapse
|
13
|
Regenerative Effects of Moxibustion on Skeletal Muscle in Collagen-Induced Arthritic Mice. J Acupunct Meridian Stud 2012; 5:126-35. [DOI: 10.1016/j.jams.2012.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/18/2012] [Accepted: 01/27/2012] [Indexed: 01/22/2023] Open
|
14
|
Ghayur A, Liu L, Kolb M, Chawla A, Lambe S, Kapoor A, Margetts PJ. Adenovirus-mediated gene transfer of TGF-β1 to the renal glomeruli leads to proteinuria. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:940-951. [PMID: 22203053 DOI: 10.1016/j.ajpath.2011.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 11/01/2011] [Accepted: 11/11/2011] [Indexed: 10/14/2022]
Abstract
The mechanism of proteinuria in many common kidney diseases involves glomerular hemodynamic effects and local expression of angiogenic, fibrogenic, and vasoactive factors. Transforming growth factor (TGF)-β has been associated with many diseases involving proteinuria and renal fibrosis. TGF-β has been shown to induce podocyte dedifferentiation in vitro, but its in vivo effects on the glomerular filtration barrier are not well described. In this study, we used an adenovirus vector to transfer active TGF-β1 to the glomeruli of rat kidneys. Transient TGF-β1 overexpression induced significant proteinuria, podocyte foot process effacement, nephrin down-regulation, and nephrinuria. The expression of synaptopodin was also significantly down-regulated by TGF-β1. Increased glomerular expression of Snail, suggestive of an in vivo dedifferentiation process, was associated with a loss of podocyte epithelial markers. The expression of angiopoietin-1 and angiopoietin-2 was significantly increased in TGF-β1-transfected glomeruli, and TGF-β1 increased the expression of the angiopoietin receptor, Tie2, in podocyte cell culture. TGF-β1 down-regulated nephrin and synaptopodin expression in podocytes in cell culture; this effect was reversed by the blockade of both angiopoietin and Tie2 activities. These findings suggest that locally produced TGF-β1 can cause podocyte dedifferentiation marked by a loss of synaptopodin, nephrin, and foot process effacement, partly regulated by angiopoietins. This process represents a novel pathway that may explain proteinuria in a variety of common renal diseases.
Collapse
Affiliation(s)
- Ayesha Ghayur
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Limin Liu
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Martin Kolb
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Arun Chawla
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Shahid Lambe
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Anil Kapoor
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Peter J Margetts
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
15
|
Trachtman H, Fervenza FC, Gipson DS, Heering P, Jayne DRW, Peters H, Rota S, Remuzzi G, Rump LC, Sellin LK, Heaton JPW, Streisand JB, Hard ML, Ledbetter SR, Vincenti F. A phase 1, single-dose study of fresolimumab, an anti-TGF-β antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int 2011; 79:1236-43. [PMID: 21368745 PMCID: PMC3257033 DOI: 10.1038/ki.2011.33] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/20/2010] [Accepted: 01/04/2011] [Indexed: 11/23/2022]
Abstract
Primary focal segmental glomerulosclerosis (FSGS) is a disease with poor prognosis and high unmet therapeutic need. Here, we evaluated the safety and pharmacokinetics of single-dose infusions of fresolimumab, a human monoclonal antibody that inactivates all forms of transforming growth factor-β (TGF-β), in a phase I open-label, dose-ranging study. Patients with biopsy-confirmed, treatment-resistant, primary FSGS with a minimum estimated glomerular filtration rate (eGFR) of 25 ml/min per 1.73 m(2), and a urine protein to creatinine ratio over 1.8 mg/mg were eligible. All 16 patients completed the study in which each received one of four single-dose levels of fresolimumab (up to 4 mg/kg) and was followed for 112 days. Fresolimumab was well tolerated with pustular rash the only adverse event in two patients. One patient was diagnosed with a histologically confirmed primitive neuroectodermal tumor 2 years after fresolimumab treatment. Consistent with treatment-resistant FSGS, there was a slight decline in eGFR (median decline baseline to final of 5.85 ml/min per 1.73 m(2)). Proteinuria fluctuated during the study with the median decline from baseline to final in urine protein to creatinine ratio of 1.2 mg/mg with all three Black patients having a mean decline of 3.6 mg/mg. The half-life of fresolimumab was ∼14 days, and the mean dose-normalized Cmax and area under the curve were independent of dose. Thus, single-dose fresolimumab was well tolerated in patients with primary resistant FSGS. Additional evaluation in a larger dose-ranging study is necessary.
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Biomarkers/urine
- Biopsy
- Creatinine/urine
- Dose-Response Relationship, Drug
- Europe
- Female
- Glomerular Filtration Rate/drug effects
- Glomerulosclerosis, Focal Segmental/drug therapy
- Glomerulosclerosis, Focal Segmental/immunology
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/physiopathology
- Humans
- Infusions, Parenteral
- Kidney/drug effects
- Kidney/immunology
- Kidney/pathology
- Kidney/physiopathology
- Male
- Middle Aged
- Proteinuria/drug therapy
- Proteinuria/immunology
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/immunology
- Treatment Outcome
- United States
- Young Adult
Collapse
Affiliation(s)
- Howard Trachtman
- Division of Nephrology, Department of Pediatrics, Cohen Children's Medical Center, New Hyde Park, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Prunotto M, Gabbiani G, Pomposiello S, Ghiggeri G, Moll S. The kidney as a target organ in pharmaceutical research. Drug Discov Today 2011; 16:244-59. [DOI: 10.1016/j.drudis.2010.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 11/11/2010] [Accepted: 11/24/2010] [Indexed: 02/07/2023]
|
17
|
Liu X, Lü L, Tao BB, Zhou AL, Zhu YC. Amelioration of glomerulosclerosis with all-trans retinoic acid is linked to decreased plasminogen activator inhibitor-1 and α-smooth muscle actin. Acta Pharmacol Sin 2011; 32:70-8. [PMID: 21206504 PMCID: PMC4003321 DOI: 10.1038/aps.2010.200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/01/2010] [Indexed: 12/17/2022] Open
Abstract
AIM To examine the effects of all-trans retinoic acid (atRA) on renal morphology and function as well as on renal plasminogen activator inhibitor-1 (PAI-1) expression and plasmin activity in rats with 5/6 nephrectomy. METHODS Adult male Sprague Dawley rats were given 5/6 nephrectomy or sham operation. Renal function was measured 2 weeks later. The nephrectomized rats were assigned to groups matched for proteinuria and treated with vehicle or atRA (5 or 10 mg/kg by gastric gavage once daily) for the next 12 weeks. Rats with sham operation were treated with vehicle. At the end of the treatments, kidneys were collected for histological examination, Western blot analysis, and enzymatic activity measurements. RESULTS The 5/6 nephrectomy promoted hypertension, renal dysfunction, and glomerulosclerosis. These changes were significantly reduced in the atRA-treated group. The expressions of PAI-1 and α-smooth muscle actin (α-SMA) were significantly increased in the vehicle-treated nephrectomized rats. Treatment with atRA significantly reduced the expressions of PAI-1 and α-SMA. However, plasmin activity remained unchanged following atRA treatment. CONCLUSION Treatment with atRA ameliorates glomerulosclerosis and improves renal function in rats with 5/6 nephrectomy. This is associated with a decrease in PAI-1 and α-SMA, but not with a change in plasmin activity.
Collapse
Affiliation(s)
- Xia Liu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
- Department of Pathophysiology, Nantong University Nantong Medical College, Nantong 226001, China
| | - Lei Lü
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Bei-bei Tao
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Ai-ling Zhou
- Department of Pathophysiology, Nantong University Nantong Medical College, Nantong 226001, China
| | - Yi-chun Zhu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
18
|
Chang HW, Wu VC, Wu KD, Huang HY, Hsieh BS, Chen YM. In rat renal fibroblasts, mycophenolic acid inhibits proliferation and production of the chemokine CCL2, stimulated by tumour necrosis factor-alpha. Br J Pharmacol 2010; 160:1611-20. [PMID: 20649565 DOI: 10.1111/j.1476-5381.2010.00837.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibroblasts play a pivotal role in the development of tubulointerstitial fibrosis, a condition highly predictive of progression towards end-stage renal disease. The present study investigated the anti-mitogenic and anti-inflammatory effects of an inhibitor of inosine monophosphate dehydrogenase, mycophenolic acid (MPA) and the mechanisms underlying its action in normal rat kidney fibroblasts (49F cells). EXPERIMENTAL APPROACH Proliferation of 49F cells was studied by tetrazole 3-(4, 5-dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide (MTT) test, bromodeoxyuridine incorporation and flow cytometry. The cyclins, tumour suppressor genes and phospho-mitogen-activated protein kinases (MAPKs) were semiquantified by immunoblotting. Apoptosis was measured by quantifying the fragmented DNA and the activity of caspase 3. The monocyte chemokine CCL2 was measured by ELISA. The mRNA expression of CCL2 was measured by real-time PCR. KEY RESULTS Mycophenolic acid dose-dependently inhibited steady-state proliferation of 49F cells by up-regulation of p21, p27 and p53, in association with a decrease in cyclins D2 and E. Treatment with MPA also triggered apoptosis of 49F cells by activating the caspase 3 cascade. Furthermore, MPA attenuated tumour necrosis factor-alpha-induced CCL2 expression through down-regulation of p38 MAPK, but not that of ERK1/2 or JNK. CONCLUSIONS AND IMPLICATIONS The anti-mitogenic and anti-inflammatory effects of MPA were mediated by up-regulation of cell cycle inhibitors and pro-apoptotic signals, and by suppression of p38 MAPK pathway respectively. This dual effect of MPA may form the rationale for animal or clinical trials for the treatment of fibrotic renal diseases.
Collapse
Affiliation(s)
- Hong-Wei Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Wu WP, Chang CH, Chiu YT, Ku CL, Wen MC, Shu KH, Wu MJ. A reduction of unilateral ureteral obstruction-induced renal fibrosis by a therapy combining valsartan with aliskiren. Am J Physiol Renal Physiol 2010; 299:F929-41. [PMID: 20685818 DOI: 10.1152/ajprenal.00192.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The protective effect of combination therapy with valsartan and aliskiren against renal fibrosis remains to be defined. This study was undertaken to examine the protective effects of the combination of valsartan and aliskiren against renal fibrosis induced by unilateral ureteral obstruction (UUO). Combination therapy with valsartan (15 mg·kg(-1)·day(-1)) and aliskiren (10 mg·kg(-1)·day(-1)), valsartan monotherapy (30 mg·kg(-1)·day(-1)), and aliskiren monotherapy (20 mg·kg(-1)·day(-1)) all significantly ameliorated the increase in blood urea nitrogen and the degree of hydronephrosis determined by the increase in weight and length of the obstructed kidney. The dose titration study and blood pressure measurement confirmed that the combination therapy provided a greater benefit independent of the vasodilatory effect. There were no significant changes in serum levels of creatinine, sodium, and potassium in UUO rats and any treatment groups. Combination therapy also attenuated UUO-related increases in the scores of tubular dilatation, interstitial volume, interstitial collagen deposition, α-smooth muscle actin, the activation of ERK 1/2, the infiltration of monocytes/macrophages, the mRNA expression of snail-1, and transforming growth factor-β1 to a greater extent compared with aliskiren or valsartan used alone. The mRNA expression of renin and the (pro)renin receptor significantly increased after UUO. Combination therapy and monotherapy of valsartan and aliskiren had a comparable enhancing effect on the mRNA expression of renin, whereas all these treatments did not affect the expression of the (pro)renin receptor. In conclusion, a direct renin inhibitor in conjunction with an angiotensin II receptor blocker exerts increased renal protection against renal fibrosis and inflammation during obstruction over either agent alone.
Collapse
Affiliation(s)
- Wen-Pyng Wu
- Graduate Institute of Clinical Medical Science, China Medical University, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Renoprotective properties of pirfenidone in subtotally nephrectomized rats. Eur J Pharmacol 2009; 629:118-24. [PMID: 20006961 DOI: 10.1016/j.ejphar.2009.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 11/20/2009] [Accepted: 12/07/2009] [Indexed: 12/22/2022]
Abstract
Renal fibrosis is the final common pathway of chronic kidney disease, and its progression predicts the degree of renal dysfunction. We investigated the renoprotective properties of pirfenidone in a remnant kidney model of chronic renal failure to determine its pharmacological potency compared to enalapril. Five-sixths nephrectomized rats were fed diet containing pirfenidone (approximately 700mg/kg/day) for 8weeks. Pirfenidone steadily inhibited the progression of proteinuria, but not to a significant degree. Pirfenidone prevented the elevation of plasma creatinine and blood urea nitrogen. At the end of the experiment, pirfenidone had reduced systolic blood pressure by means of its renoprotective effect. In a histological study, pirfenidone improved interstitial fibrosis in the renal cortex. These effects were supported by the suppression of the expression of TGF-beta and fibronectin in the mRNA of the kidney. In contrast, pirfenidone had little effect on the expression of alpha-smooth muscle actin, which is one of the proteins responsible for epithelial-mesenchymal transition. This property was confirmed by the TGF-beta-induced transdifferentiation observed in cultured normal rat kidney tubular epithelial NRK52E cells. These results suggest that pirfenidone improves the progression of chronic renal failure via its antifibrotic action, although pirfenidone has less effective TGF-beta-induced epithelial to mesenchymal transdifferentiation.
Collapse
|
21
|
Abstract
The podocytopathies, including minimal-change nephropathy, focal segmental glomerulosclerosis, collapsing glomerulopathy, and diffuse mesangial sclerosis, involve diverse types of injury to podocytes. These injuries can have genetic causes, or can be caused by viral infection, mechanical stress, medication or-probably-immunologic injury. Several lines of evidence-including the immunosuppressive effects of standard therapies-suggest a role for immunologic injury in some cases, but the precise pathologic mechanisms are far from clear. Despite this uncertainty, newly available biologic therapies that target immune cells and cytokines have been used to treat a number of patients with different podocytopathies. Of these therapies, the greatest experience has been gained with rituximab. The data on all such therapies remain too fragmentary to provide firm conclusions, but further clinical research with such agents might help to define pathogenetic pathways and could potentially contribute to new therapies.
Collapse
|
22
|
Daniel C. Blocking of angiotensin II is more than blocking of transforming growth factor-beta. Kidney Int 2008; 74:551-3. [PMID: 18709023 DOI: 10.1038/ki.2008.290] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibrosis is a common feature of chronic kidney diseases that is mediated by matrix-producing myofibroblasts. One potential origin of myofibroblasts is epithelial-mesenchymal transition (EMT) of tubuloepithelial cells. Transforming growth factor-beta (TGF-beta) is a key factor inducing EMT. Carvajal et al. demonstrate that angiotensin II induces EMT by classical stimulation of TGF-beta and also by a TGF-beta-independent pathway, both signaling via Smad molecules. Therefore, blockade of angiotensin II is more than lowering of blood pressure and inhibition of TGF-beta stimulation.
Collapse
Affiliation(s)
- Christoph Daniel
- Department of Nephrology and Hypertension, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
23
|
Yang SH, Shin SJ, Oh JE, Jin JZ, Chung NH, Lim CS, Kim S, Kim YS. The protective role of uteroglobin through the modulation of tissue transglutaminase in the experimental crescentic glomerulonephritis. Nephrol Dial Transplant 2008; 23:3437-45. [PMID: 18558621 DOI: 10.1093/ndt/gfn268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND METHODS Tissue transglutaminase (tTG) may induce pro-inflammatory cytokines and produce irreversible end-products, thus promoting renal scarring. It has recently been confirmed that the crescent formation in murine experimental crescentic glomerulonephritis (ecGN) has been inhibited by the administration of recombinant uteroglobin (rUG). However, the ability of UG on tTG modulation has not been thoroughly assessed. In this study, we investigated the feasible protective role of UG in murine ecGN through the modulation of tTG and TGF-beta1 expressions. ecGN was induced by the administration of anti-GBM Ab into C57BL/6 mice. RESULTS Both proteinuria and BUN levels were distinctively lower in rUG-treated mice compared to those of disease control mice. Glomerular injuries such as mesangial proliferation, matrix production and crescent formation were lessened with the rUG treatment, and these findings were parallel with the attenuated expression of tTG and TGF-beta1. tTG and TGF-beta1 were expressed mainly on mesangial areas by the induction of ecGN and rUG treatment markedly attenuated the expressions of these proteins in glomeruli without spatial changes. With the addition of LPS to mesangial cells, the expressions of tTG and TGF-beta1 were up-regulated, whilst the addition of cysteamine, tTG inhibitor, attenuated the expression of tTG and TGF-beta1 as well as the cellular proliferation which was further induced by LPS. CONCLUSION We demonstrate for the first time that rUG is able to attenuate the renal injury through the modulation of expressions of tTG and TGF-beta1 in ecGN and further suggest a wide range of feasible molecular targets to reduce the severity of human glomerulonephritis.
Collapse
Affiliation(s)
- Seung Hee Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 110-744, Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Li ZB, Kollias HD, Wagner KR. Myostatin directly regulates skeletal muscle fibrosis. J Biol Chem 2008; 283:19371-8. [PMID: 18453534 DOI: 10.1074/jbc.m802585200] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle fibrosis is a major pathological hallmark of chronic myopathies in which myofibers are replaced by progressive deposition of collagen and other extracellular matrix proteins produced by muscle fibroblasts. Recent studies have shown that in the absence of the endogenous muscle growth regulator myostatin, regeneration of muscle is enhanced, and muscle fibrosis is correspondingly reduced. We now demonstrate that myostatin not only regulates the growth of myocytes but also directly regulates muscle fibroblasts. Our results show that myostatin stimulates the proliferation of muscle fibroblasts and the production of extracellular matrix proteins both in vitro and in vivo. Further, muscle fibroblasts express myostatin and its putative receptor activin receptor IIB. Proliferation of muscle fibroblasts, induced by myostatin, involves the activation of Smad, p38 MAPK and Akt pathways. These results expand our understanding of the function of myostatin in muscle tissue and provide a potential target for anti-fibrotic therapies.
Collapse
Affiliation(s)
- Zhao Bo Li
- Department of Neurology and Neuroscience, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
25
|
Zhu S, Liu Y, Wang L, Meng QH. Transforming growth factor- 1 is associated with kidney damage in patients with essential hypertension: renoprotective effect of ACE inhibitor and/or angiotensin II receptor blocker. Nephrol Dial Transplant 2008; 23:2841-6. [DOI: 10.1093/ndt/gfn159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
26
|
Combinatorial selection of a single stranded DNA thioaptamer targeting TGF-beta1 protein. Bioorg Med Chem Lett 2008; 18:1835-9. [PMID: 18294846 DOI: 10.1016/j.bmcl.2008.02.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 01/06/2023]
Abstract
A phosphorothioate single-stranded DNA aptamer (thioaptamer) targeting transforming growth factor-beta1 (TGF-beta1) was isolated by in-vitro combinatorial selection. The aptamer selection procedure was designed to modify the backbone of single-stranded DNA aptamers, where 5' of both A and C are phosphorothioates, since this provides enhanced nuclease resistance as well as higher affinity than that of a phosphate counterpart. The thioaptamer selected from a combinatorial library (5x10(14) sequences) binds to TGF-beta1 protein with an affinity of 90 nM. In this report, sequence, predicted secondary structure, and binding affinity of the selected thioaptamer (T18_1_3) are presented.
Collapse
|