1
|
Ageenko A, Vasileva N, Richter V, Kuligina E. Combination of Oncolytic Virotherapy with Different Antitumor Approaches against Glioblastoma. Int J Mol Sci 2024; 25:2042. [PMID: 38396720 PMCID: PMC10889383 DOI: 10.3390/ijms25042042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms. In this review, we have focused on emphasizing recent achievements in virotherapy, both as a monotherapy and in combination with other therapeutic schemes to improve survival rate and quality of life among patients with glioblastoma.
Collapse
Affiliation(s)
- Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Galanis E, Dooley KE, Keith Anderson S, Kurokawa CB, Carrero XW, Uhm JH, Federspiel MJ, Leontovich AA, Aderca I, Viker KB, Hammack JE, Marks RS, Robinson SI, Johnson DR, Kaufmann TJ, Buckner JC, Lachance DH, Burns TC, Giannini C, Raghunathan A, Iankov ID, Parney IF. Carcinoembryonic antigen-expressing oncolytic measles virus derivative in recurrent glioblastoma: a phase 1 trial. Nat Commun 2024; 15:493. [PMID: 38216554 PMCID: PMC10786937 DOI: 10.1038/s41467-023-43076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/31/2023] [Indexed: 01/14/2024] Open
Abstract
Measles virus (MV) vaccine strains have shown significant preclinical antitumor activity against glioblastoma (GBM), the most lethal glioma histology. In this first in human trial (NCT00390299), a carcinoembryonic antigen-expressing oncolytic measles virus derivative (MV-CEA), was administered in recurrent GBM patients either at the resection cavity (Group A), or, intratumorally on day 1, followed by a second dose administered in the resection cavity after tumor resection on day 5 (Group B). A total of 22 patients received study treatment, 9 in Group A and 13 in Group B. Primary endpoint was safety and toxicity: treatment was well tolerated with no dose-limiting toxicity being observed up to the maximum feasible dose (2×107 TCID50). Median OS, a secondary endpoint, was 11.6 mo and one year survival was 45.5% comparing favorably with contemporary controls. Other secondary endpoints included assessment of viremia, MV replication and shedding, humoral and cellular immune response to the injected virus. A 22 interferon stimulated gene (ISG) diagonal linear discriminate analysis (DLDA) classification algorithm in a post-hoc analysis was found to be inversely (R = -0.6, p = 0.04) correlated with viral replication and tumor microenvironment remodeling including proinflammatory changes and CD8 + T cell infiltration in post treatment samples. This data supports that oncolytic MV derivatives warrant further clinical investigation and that an ISG-based DLDA algorithm can provide the basis for treatment personalization.
Collapse
Affiliation(s)
- Evanthia Galanis
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | | | | | | - Joon H Uhm
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ileana Aderca
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kimberly B Viker
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Julie E Hammack
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, Rochester, MN, USA
| | - Randolph S Marks
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Steven I Robinson
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Jan C Buckner
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Daniel H Lachance
- Department of Neurology, Division of Neuro-Oncology, Mayo Clinic, Rochester, MN, USA
| | - Terry C Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ianko D Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
3
|
Karandikar PV, Suh L, Gerstl JVE, Blitz SE, Qu QR, Won SY, Gessler FA, Arnaout O, Smith TR, Peruzzi PP, Yang W, Friedman GK, Bernstock JD. Positioning SUMO as an immunological facilitator of oncolytic viruses for high-grade glioma. Front Cell Dev Biol 2023; 11:1271575. [PMID: 37860820 PMCID: PMC10582965 DOI: 10.3389/fcell.2023.1271575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Oncolytic viral (OV) therapies are promising novel treatment modalities for cancers refractory to conventional treatment, such as glioblastoma, within the central nervous system (CNS). Although OVs have received regulatory approval for use in the CNS, efficacy is hampered by obstacles related to delivery, under-/over-active immune responses, and the "immune-cold" nature of most CNS malignancies. SUMO, the Small Ubiquitin-like Modifier, is a family of proteins that serve as a high-level regulator of a large variety of key physiologic processes including the host immune response. The SUMO pathway has also been implicated in the pathogenesis of both wild-type viruses and CNS malignancies. As such, the intersection of OV biology with the SUMO pathway makes SUMOtherapeutics particularly interesting as adjuvant therapies for the enhancement of OV efficacy alone and in concert with other immunotherapeutic agents. Accordingly, the authors herein provide: 1) an overview of the SUMO pathway and its role in CNS malignancies; 2) describe the current state of CNS-targeted OVs; and 3) describe the interplay between the SUMO pathway and the viral lifecycle and host immune response.
Collapse
Affiliation(s)
- Paramesh V. Karandikar
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Lyle Suh
- T. H. Chan School of Medicine, University of Massachusetts, Worcester, MA, United States
| | - Jakob V. E. Gerstl
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah E. Blitz
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Qing Rui Qu
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Sae-Yeon Won
- Department of Neurosurgery, University of Rostock, Rostock, Germany
| | | | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Timothy R. Smith
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Wei Yang
- Department of Anesthesiology, Multidisciplinary Brain Protection Program, Duke University Medical Center, Durham, NC, United States
| | - Gregory K. Friedman
- Department of Neuro-Oncology, Division of Cancer Medicine, MD Anderson Cancer Center, Houston, TX, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
4
|
Khalid Z, Coco S, Ullah N, Pulliero A, Cortese K, Varesano S, Orsi A, Izzotti A. Anticancer Activity of Measles-Mumps-Rubella MMR Vaccine Viruses against Glioblastoma. Cancers (Basel) 2023; 15:4304. [PMID: 37686579 PMCID: PMC10486717 DOI: 10.3390/cancers15174304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) have been utilized since 1990s for targeted cancer treatment. Our study examined the Measles-Mumps-Rubella (MMR) vaccine's cancer-killing potency against Glioblastoma (GBM), a therapy-resistant, aggressive cancer type. METHODOLOGY We used GBM cell lines, primary GBM cells, and normal mice microglial cells, to assess the MMR vaccine's efficacy through cell viability, cell cycle analysis, intracellular viral load via RT-PCR, and Transmission Electron Microscopy (TEM). RESULTS After 72 h of MMR treatment, GBM cell lines and primary GBM cells exhibited significant viability reduction compared to untreated cells. Conversely, normal microglial cells showed only minor changes in viability and morphology. Intracellular viral load tests indicated GBM cells' increased sensitivity to MMR viruses compared to normal cells. The cell cycle study also revealed measles and mumps viruses' crucial role in cytopathic effects, with the rubella virus causing cell cycle arrest. CONCLUSION Herein the reported results demonstrate the anti-cancer activity of the MMR vaccine against GBM cells. Accordingly, the MMR vaccine warrants further study as a potential new tool for GBM therapy and relapse prevention. Therapeutic potential of the MMR vaccine has been found to be promising in earlier studies as well.
Collapse
Affiliation(s)
- Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Simona Coco
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Nadir Ullah
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Alessandra Pulliero
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Serena Varesano
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Andrea Orsi
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (Z.K.); (N.U.); (A.P.); (A.O.)
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
| | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy; (S.C.); (S.V.)
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
5
|
Viker KB, Steele MB, Iankov ID, Concilio SC, Ammayappan A, Bolon B, Jenks NJ, Goetz MP, Panagioti E, Federspiel MJ, Liu MC, Peng KW, Galanis E. Preclinical safety assessment of MV-s-NAP, a novel oncolytic measles virus strain armed with an H . pylori immunostimulatory bacterial transgene. Mol Ther Methods Clin Dev 2022; 26:532-546. [PMID: 36092362 PMCID: PMC9437807 DOI: 10.1016/j.omtm.2022.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
Despite recent therapeutic advances, metastatic breast cancer (MBC) remains incurable. Engineered measles virus (MV) constructs based on the attenuated MV Edmonston vaccine platform have demonstrated significant oncolytic activity against solid tumors. The Helicobacter pylori neutrophil-activating protein (NAP) is responsible for the robust inflammatory reaction in gastroduodenal mucosa during bacterial infection. NAP attracts and activates immune cells at the site of infection, inducing expression of pro-inflammatory mediators. We engineered an MV strain to express the secretory form of NAP (MV-s-NAP) and showed that it exhibits anti-tumor and immunostimulatory activity in human breast cancer xenograft models. In this study, we utilized a measles-infection-permissive mouse model (transgenic IFNAR KO-CD46Ge) to evaluate the biodistribution and safety of MV-s-NAP. The primary objective was to identify potential toxic side effects and confirm the safety of the proposed clinical doses of MV-s-NAP prior to a phase I clinical trial of intratumoral administration of MV-s-NAP in patients with MBC. Both subcutaneous delivery (corresponding to the clinical trial intratumoral administration route) and intravenous (worst case scenario) delivery of MV-s-NAP were well tolerated: no significant clinical, laboratory or histologic toxicity was observed. This outcome supports the safety of MV-s-NAP for oncolytic virotherapy of MBC. The first-in-human clinical trial of MV-s-NAP in patients with MBC (ClinicalTrials.gov: NCT04521764) was subsequently activated.
Collapse
Affiliation(s)
- Kimberly B. Viker
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael B. Steele
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Ianko D. Iankov
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Arun Ammayappan
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Nathan J. Jenks
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Eleni Panagioti
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Minetta C. Liu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
6
|
Lundstrom K. Self-replicating vehicles based on negative strand RNA viruses. Cancer Gene Ther 2022:10.1038/s41417-022-00436-7. [PMID: 35169298 PMCID: PMC8853047 DOI: 10.1038/s41417-022-00436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Self-replicating RNA viruses have been engineered as efficient expression vectors for vaccine development for infectious diseases and cancers. Moreover, self-replicating RNA viral vectors, particularly oncolytic viruses, have been applied for cancer therapy and immunotherapy. Among negative strand RNA viruses, measles viruses and rhabdoviruses have been frequently applied for vaccine development against viruses such as Chikungunya virus, Lassa virus, Ebola virus, influenza virus, HIV, Zika virus, and coronaviruses. Immunization of rodents and primates has elicited strong neutralizing antibody responses and provided protection against lethal challenges with pathogenic viruses. Several clinical trials have been conducted. Ervebo, a vaccine based on a vesicular stomatitis virus (VSV) vector has been approved for immunization of humans against Ebola virus. Different types of cancers such as brain, breast, cervical, lung, leukemia/lymphoma, ovarian, prostate, pancreatic, and melanoma, have been the targets for cancer vaccine development, cancer gene therapy, and cancer immunotherapy. Administration of measles virus and VSV vectors have demonstrated immune responses, tumor regression, and tumor eradication in various animal models. A limited number of clinical trials have shown well-tolerated treatment, good safety profiles, and dose-dependent activity in cancer patients.
Collapse
|
7
|
Vorobyev PO, Babaeva FE, Panova AV, Shakiba J, Kravchenko SK, Soboleva AV, Lipatova AV. Oncolytic Viruses in the Therapy of Lymphoproliferative Diseases. Mol Biol 2022; 56:684-695. [PMID: 36217339 PMCID: PMC9534467 DOI: 10.1134/s0026893322050144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 11/23/2022]
Abstract
Cancer is a leading causes of death. Despite significant success in the treatment of lymphatic system tumors, the problems of relapse, drug resistance and effectiveness of therapy remain relevant. Oncolytic viruses are able to replicate in tumor cells and destroy them without affecting normal, healthy tissues. By activating antitumor immunity, viruses are effective against malignant neoplasms of various nature. In lymphoproliferative diseases with a drug-resistant phenotype, many cases of remissions have been described after viral therapy. The current level of understanding of viral biology and the discovery of host cell interaction mechanisms made it possible to create unique strains with high oncoselectivity widely used in clinical practice in recent years.
Collapse
Affiliation(s)
- P. O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - F. E. Babaeva
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Panova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 117971 Moscow, Russia
| | - J. Shakiba
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - S. K. Kravchenko
- National Medical Research Center for Hematology, Ministry of Health of Russia, 125167 Moscow, Russia
| | - A. V. Soboleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A. V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
8
|
Monie DD, Bhandarkar AR, Parney IF, Correia C, Sarkaria JN, Vile RG, Li H. Synthetic and systems biology principles in the design of programmable oncolytic virus immunotherapies for glioblastoma. Neurosurg Focus 2021; 50:E10. [PMID: 33524942 DOI: 10.3171/2020.12.focus20855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Oncolytic viruses (OVs) are a class of immunotherapeutic agents with promising preclinical results for the treatment of glioblastoma (GBM) but have shown limited success in recent clinical trials. Advanced bioengineering principles from disciplines such as synthetic and systems biology are needed to overcome the current challenges faced in developing effective OV-based immunotherapies for GBMs, including off-target effects and poor clinical responses. Synthetic biology is an emerging field that focuses on the development of synthetic DNA constructs that encode networks of genes and proteins (synthetic genetic circuits) to perform novel functions, whereas systems biology is an analytical framework that enables the study of complex interactions between host pathways and these synthetic genetic circuits. In this review, the authors summarize synthetic and systems biology concepts for developing programmable, logic-based OVs to treat GBMs. Programmable OVs can increase selectivity for tumor cells and enhance the local immunological response using synthetic genetic circuits. The authors discuss key principles for developing programmable OV-based immunotherapies, including how to 1) select an appropriate chassis, a vector that carries a synthetic genetic circuit, and 2) design a synthetic genetic circuit that can be programmed to sense key signals in the GBM microenvironment and trigger release of a therapeutic payload. To illustrate these principles, some original laboratory data are included, highlighting the need for systems biology studies, as well as some preliminary network analyses in preparation for synthetic biology applications. Examples from the literature of state-of-the-art synthetic genetic circuits that can be packaged into leading candidate OV chassis are also surveyed and discussed.
Collapse
Affiliation(s)
- Dileep D Monie
- Departments of1Immunology.,6Mayo Clinic Alix School of Medicine.,7Mayo Clinic Graduate School of Biomedical Sciences; and Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | | | | | - Cristina Correia
- 5Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| | | | | | - Hu Li
- 5Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic
| |
Collapse
|
9
|
Montoya ML, Kasahara N, Okada H. Introduction to immunotherapy for brain tumor patients: challenges and future perspectives. Neurooncol Pract 2020; 7:465-476. [PMID: 33014387 PMCID: PMC7516091 DOI: 10.1093/nop/npaa007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Malignant gliomas, including glioblastoma (GBM) as the most aggressive type of adult CNS tumors, are notoriously resistant to current standard of care treatments, including surgery, systemic chemotherapy, and radiation therapy (RT). This lack of effective treatment options highlights the urgent need for novel therapies, including immunotherapies. The overarching goal of immunotherapy is to stimulate and activate the patient's immune system in a targeted manner to kill tumor cells. The success of immunotherapeutic interventions in other cancer types has led to interest in and evaluation of various experimental immunotherapies in patients with malignant gliomas. However, these primary malignant brain tumors present a challenge because they exist in a vital and sensitive organ with a unique immune environment. The challenges and current status of experimental immunotherapeutic approaches, including vaccines, immune-checkpoint blockade, chimeric antigen receptor T-cell therapy, and oncolytic viruses will be discussed, as well as the potential for combinatorial therapies.
Collapse
Affiliation(s)
- Megan L Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, US
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, US
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, US
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, US
- The Parker Institute of Cancer Immunotherapy, California, US
- Cancer Immunotherapy Program, University of California San Francisco, San Francisco, California, US
| |
Collapse
|
10
|
Keshavarz M, Sabbaghi A, Miri SM, Rezaeyan A, Arjeini Y, Ghaemi A. Virotheranostics, a double-barreled viral gun pointed toward cancer; ready to shoot? Cancer Cell Int 2020; 20:131. [PMID: 32336951 PMCID: PMC7178751 DOI: 10.1186/s12935-020-01219-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
Compared with conventional cancer treatments, the main advantage of oncolytic virotherapy is its tumor-selective replication followed by the destruction of malignant cells without damaging healthy cells. Accordingly, this kind of biological therapy can potentially be used as a promising approach in the field of cancer management. Given the failure of traditional monitoring strategies (such as immunohistochemical analysis (in providing sufficient safety and efficacy necessary for virotherapy and continual pharmacologic monitoring to track pharmacokinetics in real-time, the development of alternative strategies for ongoing monitoring of oncolytic treatment in a live animal model seems inevitable. Three-dimensional molecular imaging methods have recently been considered as an attractive approach to overcome the limitations of oncolytic therapy. These noninvasive visualization systems provide real-time follow-up of viral progression within the cancer tissue by the ability of engineered oncolytic viruses (OVs) to encode reporter transgenes based on recombinant technology. Human sodium/iodide symporter (hNIS) is considered as one of the most prevalent nuclear imaging reporter transgenes that provides precise information regarding the kinetics of gene expression, viral biodistribution, toxicity, and therapeutic outcomes using the accumulation of radiotracers at the site of transgene expression. Here, we provide an overview of pre-clinical and clinical applications of hNIS-based molecular imaging to evaluate virotherapy efficacy. Moreover, we describe different types of reporter genes and their potency in the clinical trials.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- 1The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ailar Sabbaghi
- 2Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Abolhasan Rezaeyan
- 4Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Arjeini
- 5Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- 6Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
11
|
Abstract
Oncolytic virotherapy uses replication-competent virus as a means of treating cancer. Whereas this field has shown great promise as a viable treatment method, the limited spread of these viruses throughout the tumor microenvironment remains a major challenge. To overcome this issue, researchers have begun looking at syncytia formation as a novel method of increasing viral spread. Several naturally occurring fusogenic viruses have been shown to possess strong oncolytic potential and have since been studied to gain insight into how this process benefits oncolytic virotherapy. Whereas these naturally fusogenic viruses have been beneficial, there are still challenges associated with their regular use. Because of this, engineered/recombinant fusogenic viruses have also been created that enhance nonfusogenic oncolytic viruses with the beneficial property of syncytia formation. The purpose of this review is to examine the existing body of literature on syncytia formation in oncolytics and offer direction for potential future studies.
Collapse
Affiliation(s)
- Chase Burton
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Eric Bartee
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
12
|
Loya J, Zhang C, Cox E, Achrol AS, Kesari S. Biological intratumoral therapy for the high-grade glioma part II: vector- and cell-based therapies and radioimmunotherapy. CNS Oncol 2019; 8:CNS40. [PMID: 31747784 PMCID: PMC6880300 DOI: 10.2217/cns-2019-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Management of high-grade gliomas (HGGs) remains a complex challenge with an overall poor prognosis despite aggressive multimodal treatment. New translational research has focused on maximizing tumor cell eradication through improved tumor cell targeting while minimizing collateral systemic side effects. In particular, biological intratumoral therapies have been the focus of novel translational research efforts due to their inherent potential to be both dynamically adaptive and target specific. This two part review will provide an overview of biological intratumoral therapies that have been evaluated in human clinical trials in HGGs, and summarize key advances and remaining challenges in the development of these therapies as a potential new paradigm in the management of HGGs. Part II discusses vector-based therapies, cell-based therapies and radioimmunotherapy.
Collapse
Affiliation(s)
- Joshua Loya
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Charlie Zhang
- Buffalo School of Medicine, State University of New York, Buffalo, NY 14202, USA
| | - Emily Cox
- Providence Medical Research Center, Spokane, WA 99204, USA
| | - Achal S Achrol
- John Wayne Cancer Institute, Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| | - Santosh Kesari
- John Wayne Cancer Institute, Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
13
|
Manikandan C, Kaushik A, Sen D. Viral vector: potential therapeutic for glioblastoma multiforme. Cancer Gene Ther 2019; 27:270-279. [PMID: 31316136 DOI: 10.1038/s41417-019-0124-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/29/2019] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme is a highly malignant primary brain tumour found in adults and is highlighted as the most devastating among all the other grades of glioma. Well-established standard treatment methods, such as chemotherapy, radiation and surgery, have resulted in modest improvement in the survival of patients. Hence, the arduous search for novel treatments backed by advancements in molecular biology still persists. Glioblastoma has many distinctive characteristics, which makes it a potential candidate for gene therapy. Gene therapy involves the delivery of genetic material of therapeutic use into tumour cells, which produces a specific antitumour response. Moreover, viruses stimulate a vigorous cytotoxic effect, they are easily modifiable and the inherent property of horizontal transfer of genetic material makes them valuable tools for genetic engineering. In this review, we have enlisted the various viral vectors employed in gene therapy for glioblastoma.
Collapse
Affiliation(s)
- Ceera Manikandan
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, 632014, India
| | - Akshita Kaushik
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, 632014, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT) University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
14
|
Msaouel P, Opyrchal M, Dispenzieri A, Peng KW, Federspiel MJ, Russell SJ, Galanis E. Clinical Trials with Oncolytic Measles Virus: Current Status and Future Prospects. Curr Cancer Drug Targets 2019; 18:177-187. [PMID: 28228086 DOI: 10.2174/1568009617666170222125035] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/15/2016] [Accepted: 12/05/2016] [Indexed: 01/23/2023]
Abstract
Attenuated Edmonston lineage measles virus (MV-Edm) vaccine strains can preferentially infect and lyse a wide variety of cancer cells. Oncolytic MV-Edm derivatives are genetically engineered to express the human carcinoembryonic antigen (MV-CEA virus) or the human sodium iodide symporter (MV-NIS virus) and are currently being tested in clinical trials against ovarian cancer, glioblastoma multiforme, multiple myeloma, mesothelioma, head and neck cancer, breast cancer and malignant peripheral nerve sheath tumors. This review describes the basic and preclinical data that facilitated the clinical translation of MV-Edm strains, and summarizes the clinical results of this oncolytic platform to date. Furthermore, we discuss the latest clinically relevant MV-Edm vector developments and creative strategies for future translational steps.
Collapse
Affiliation(s)
- Pavlos Msaouel
- MD Anderson Cancer Center, Division of Cancer Medicine, 1400 Holcombe Blvd, Unit 0463, Houston, TX 77030, USA
| | - Mateusz Opyrchal
- Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Angela Dispenzieri
- Division of Hematology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Kah Whye Peng
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Mark J Federspiel
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Stephen J Russell
- Division of Hematology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| | - Evanthia Galanis
- Department of Molecular Medicine, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA.,Division of Medical Oncology, Mayo Clinic 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Sharma P, Debinski W. Receptor-Targeted Glial Brain Tumor Therapies. Int J Mol Sci 2018; 19:E3326. [PMID: 30366424 PMCID: PMC6274942 DOI: 10.3390/ijms19113326] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022] Open
Abstract
Among primary brain tumors, malignant gliomas are notably difficult to manage. The higher-grade tumors represent an unmet need in medicine. There have been extensive efforts to implement receptor-targeted therapeutic approaches directed against gliomas. These approaches include immunotherapies, such as vaccines, adoptive immunotherapy, and passive immunotherapy. Targeted cytotoxic radio energy and pro-drug activation have been designed specifically for brain tumors. The field of targeting through receptors progressed significantly with the discovery of an interleukin 13 receptor alpha 2 (IL-13RA2) as a tumor-associated receptor over-expressed in most patients with glioblastoma (GBM) but not in normal brain. IL-13RA2 has been exploited in novel experimental therapies with very encouraging clinical responses. Other receptors are specifically over-expressed in many patients with GBM, such as EphA2 and EphA3 receptors, among others. These findings are important in view of the heterogeneity of GBM tumors and multiple tumor compartments responsible for tumor progression and resistance to therapies. The combined targeting of multiple receptors in different tumor compartments should be a preferred way to design novel receptor-targeted therapeutic approaches in gliomas.
Collapse
Affiliation(s)
- Puja Sharma
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Waldemar Debinski
- Brain Tumor Center of Excellence, Department of Cancer Biology, Wake Forest University School of Medicine, Comprehensive Cancer Center of Wake Forest Baptist Medical Center, 1 Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| |
Collapse
|
16
|
Zhang X, Mao G, van den Pol AN. Chikungunya-vesicular stomatitis chimeric virus targets and eliminates brain tumors. Virology 2018; 522:244-259. [PMID: 30055515 DOI: 10.1016/j.virol.2018.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/17/2023]
Abstract
Vesicular stomatitis virus (VSV) shows potential for targeting and killing cancer cells, but can be dangerous in the brain due to its neurotropic glycoprotein. Here we test a chimeric virus in which the VSV glycoprotein is replaced with the Chikungunya polyprotein E3-E2-6K-E1 (VSVΔG-CHIKV). Control mice with brain tumors survived a mean of 40 days after tumor implant. VSVΔG-CHIKV selectively infected and eliminated the tumor, and extended survival substantially in all tumor-bearing mice to over 100 days. VSVΔG-CHIKV also targeted intracranial primary patient derived melanoma xenografts. Virus injected into one melanoma spread to other melanomas within the same brain with little detectable infection of normal cells. Intravenous VSVΔG-CHIKV infected tumor cells but not normal tissue. In immunocompetent mice, VSVΔG-CHIKV selectively infected mouse melanoma cells within the brain. These data suggest VSVΔG-CHIKV can target and destroy brain tumors in multiple animal models without the neurotropism associated with the wild type VSV glycoprotein.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, United States
| | - Guochao Mao
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, United States
| | - Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar St, New Haven, CT 06520, United States.
| |
Collapse
|
17
|
|
18
|
Abstract
INTRODUCTION Oncolytic viruses represent a novel treatment modality that is unencumbered by the standard resistance mechanisms limiting the therapeutic efficacy of conventional antineoplastic agents. Attenuated engineered measles virus strains derived from the Edmonston vaccine lineage have undergone extensive preclinical evaluation with significant antitumor activity observed in a broad range of preclinical tumoral models. These have laid the foundation for several clinical trials in both solid and hematologic malignancies, which have demonstrated safety, biologic activity and the ability to elicit antitumor immune responses. Areas covered: This review examines the published preclinical data which supported the clinical translation of this therapeutic platform, reviews the available clinical trial data and expands on ongoing phase II testing. It also looks at approaches to optimize clinical applicability and offers future perspectives. Expert opinion: Reverse genetic engineering has allowed the generation of oncolytic MV strains retargeted to increase viral tumor specificity, or armed with therapeutic and immunomodulatory genes in order to enhance anti-tumor efficacy. Continuous efforts focusing on exploring methods to overcome resistance pathways and determining optimal combinatorial strategies will facilitate further development of this encouraging antitumor strategy.
Collapse
Affiliation(s)
- Steven Robinson
- a Division of Medical Oncology , Mayo Clinic , Rochester , MN , USA
| | - Evanthia Galanis
- a Division of Medical Oncology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
19
|
Uhm JH, Porter AB. Treatment of Glioma in the 21st Century: An Exciting Decade of Postsurgical Treatment Advances in the Molecular Era. Mayo Clin Proc 2017; 92:995-1004. [PMID: 28578786 DOI: 10.1016/j.mayocp.2017.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/21/2016] [Accepted: 01/25/2017] [Indexed: 11/18/2022]
Abstract
The past decade has brought about major changes in the way we classify and have begun to approach patients with high-grade glioma. As we trend toward personalized medicine, we are now able to utilize the molecular characteristics of each individual's tumor in order to tailor their treatment, particularly if the patient is elderly or has a poor performance status at baseline. We address the state of the practice as of 2016 in regard to chemotherapy, immunotherapy, and tumor-treating fields. The goal of this review is to enhance readers' understanding of the nuances that are allowing clinicians to tailor the treatment of high-grade glioma more specifically.
Collapse
Affiliation(s)
- Joon H Uhm
- Department of Neurology and Division of Neuro-Oncology, Mayo Clinic, Rochester, MN.
| | - Alyx B Porter
- Department of Neurology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
20
|
Dunn-Pirio AM, Vlahovic G. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer 2016; 123:734-750. [PMID: 27875627 DOI: 10.1002/cncr.30371] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/16/2016] [Accepted: 09/01/2016] [Indexed: 12/28/2022]
Abstract
Glioblastoma is the most common malignant primary brain tumor. Despite standard-of-care treatment, consisting of maximal surgical resection followed by chemoradiation, both morbidity and mortality associated with this disease remain very poor. Therefore, there is an urgent need for more efficacious and well tolerated therapies. Advancing knowledge of the intricate interplay between malignant gliomas and the immune system, coupled with the recent launch of immunotherapy research for other cancers, has led to a veritable increase in immunotherapy investigation for glioblastoma and other malignant gliomas. This clinical review highlights the recent breakthroughs in cancer immunotherapy and the complex correlation of the immune system with primary brain tumors, with special attention to multiple immunotherapy modalities currently being investigated for malignant glioma, including peptide vaccines, dendritic cell vaccines, oncolytic viruses, chimeric T-cell receptors, and checkpoint inhibitors. Cancer 2017;123:734-50. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Anastasie M Dunn-Pirio
- The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Gordana Vlahovic
- The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
21
|
Lal S, Peng KW, Steele MB, Jenks N, Ma H, Kohanbash G, Phillips JJ, Raffel C. Safety Study: Intraventricular Injection of a Modified Oncolytic Measles Virus into Measles-Immune, hCD46-Transgenic, IFNαRko Mice. HUM GENE THER CL DEV 2016; 27:145-151. [PMID: 27604429 DOI: 10.1089/humc.2016.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The modified Edmonston vaccine strain of measles virus (MV) has shown potent oncolytic efficacy against various tumor types and is being investigated in clinical trials. Our laboratory showed that MV effectively kills medulloblastoma tumor cells in both localized disease and when tumor cells are disseminated through cerebrospinal fluid (CSF). Although the safety of repeated intracerebral injection of modified MV in rhesus macaques has been established, the safety of administering MV into CSF has not been adequately investigated. In this study, we assessed the safety of MV-NIS (MV modified to express the human sodium iodide symporter protein) injected into the CSF of measles-immunized and measles virus-susceptible transgenic (CD46, IFNαRko) mice. Treated animals were administered a single intraventricular injection of 1 × 105 or 1 × 106 TCID50 (50% tissue culture infective dose) of MV-NIS. Detailed clinical observation was performed over a 90-day period. Clinically, we did not observe any measles-related toxic effects or behavioral abnormality in animals of any treated cohort. The complete blood count and blood chemistry analysis results were found to be within normal range for all the cohorts. Histologic examination of brains and spinal cords revealed inflammatory changes, mostly related to the needle track; these resolved by day 21 postinjection. To assess viral biodistribution, quantitative RT-PCR to detect the measles virus N-protein was performed on blood and brain samples. Viral RNA was not detectable in the blood as soon as 2 days after injection, and virus cleared from the brain by 45 days postadministration in all treatment cohorts. In conclusion, our data suggest that a single injection of modified MV into the CSF is safe and can be used in future therapeutic applications.
Collapse
Affiliation(s)
- Sangeet Lal
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Kah-Whye Peng
- 2 Department of Molecular Medicine, Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Michael B Steele
- 2 Department of Molecular Medicine, Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Nathan Jenks
- 2 Department of Molecular Medicine, Toxicology and Pharmacology Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Hong Ma
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Gary Kohanbash
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Joanna J Phillips
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| | - Corey Raffel
- 1 Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California , San Francisco, San Francisco, California
| |
Collapse
|
22
|
Wang R, Wei B, Wei J, Li Z, Tian Y, Du C. Caspase-related apoptosis genes in gliomas by RNA-seq and bioinformatics analysis. J Clin Neurosci 2016; 33:259-263. [PMID: 27469411 DOI: 10.1016/j.jocn.2016.03.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 12/27/2022]
Abstract
Gliomas are the most common malignant tumors of the brain. The aim of this study is to identify caspase-dependent apoptotic genes and uncover their potential regulatory mechanism in glioma progression. Human glioma cell line U251 was used. Three experiment groups were set as control group, H2O2 group (treated with H2O2) and caspase inhibitor group (treated with caspase inhibitor). For samples in each group, RNA-sequencing was performed on Illumina platform and differentially expressed genes (DEGs) between any two of the three groups were selected using NOISeq package. By overlapping analysis, the caspase inhibitor-related DEGs were further screened out, followed by enrichment analyses. Drugs associating with these genes were selected by WebGestalt. Protein-protein interaction (PPI) network analysis was conducted based on SRINIG database. A set of 105 caspase inhibitor-related DEGs were identified, which were significantly enriched in cellular components related functions (for example, TUBB2A, RPSA and RPL5); and metabolism related pathways (for example, PSMC3, KHSRP, RPL5 and RPSA). In addition, KHSRP and TUBB2A were significantly associated with several drugs such as cefotaxime, cefacetrile and netilmicin. Besides, PSMC3 and RPL5 were identified as crucial nodes in the PPI network. Several crucial genes in gliomas cells such as TUBB2A, RPSA, RPL5, PSMC3 and KHSRP were identified, which might play significant roles in apoptosis in a caspase-dependent manner. These genes might also involve in the regulation of metabolism related functions and pathways. KHSRP and TUBB2A might be novel targets of three drugs, cefotaxime, cefacetrile and netilmicin.
Collapse
Affiliation(s)
- Rui Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin Province 130033, China
| | - Jun Wei
- Department of Science and Education Section, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhaohui Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin Province 130033, China
| | - Yu Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin Province 130033, China
| | - Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin Province 130033, China.
| |
Collapse
|
23
|
Abstract
Glioblastoma, the most aggressive of the gliomas, has a high recurrence and mortality rate. The nature of this poor prognosis resides in the molecular heterogeneity and phenotypic features of this tumor. Despite research advances in understanding the molecular biology, it has been difficult to translate this knowledge into effective treatment. Nearly all will have tumor recurrence, yet to date very few therapies have established efficacy as salvage regimens. This challenge is further complicated by imaging confounders and to an even greater degree by the ever increasing molecular heterogeneity that is thought to be both sporadic and treatment-induced. The development of novel clinical trial designs to support the development and testing of novel treatment regimens and drug delivery strategies underscore the need for more precise techniques in imaging and better surrogate markers to help determine treatment response. This review summarizes recent approaches to treat patients with recurrent glioblastoma and considers future perspectives.
Collapse
Affiliation(s)
- Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
24
|
Azad TD, Pan J, Connolly ID, Remington A, Wilson CM, Grant GA. Therapeutic strategies to improve drug delivery across the blood-brain barrier. Neurosurg Focus 2015; 38:E9. [PMID: 25727231 DOI: 10.3171/2014.12.focus14758] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resection of brain tumors is followed by chemotherapy and radiation to ablate remaining malignant cell populations. Targeting these populations stands to reduce tumor recurrence and offer the promise of more complete therapy. Thus, improving access to the tumor, while leaving normal brain tissue unscathed, is a critical pursuit. A central challenge in this endeavor lies in the limited delivery of therapeutics to the tumor itself. The blood-brain barrier (BBB) is responsible for much of this difficulty but also provides an essential separation from systemic circulation. Due to the BBB's physical and chemical constraints, many current therapies, from cytotoxic drugs to antibody-based proteins, cannot gain access to the tumor. This review describes the characteristics of the BBB and associated changes wrought by the presence of a tumor. Current strategies for enhancing the delivery of therapies across the BBB to the tumor will be discussed, with a distinction made between strategies that seek to disrupt the BBB and those that aim to circumvent it.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | |
Collapse
|
25
|
Hutzen B, Raffel C, Studebaker AW. Advances in the design and development of oncolytic measles viruses. Oncolytic Virother 2015; 4:109-18. [PMID: 27512675 PMCID: PMC4918395 DOI: 10.2147/ov.s66078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A successful oncolytic virus is one that selectively propagates and destroys cancerous tissue without causing excessive damage to the normal surrounding tissue. Oncolytic measles virus (MV) is one such virus that exhibits this characteristic and thus has rapidly emerged as a potentially useful anticancer modality. Derivatives of the Edmonston MV vaccine strain possess a remarkable safety record in humans. Promising results in preclinical animal models and evidence of biological activity in early phase trials contribute to the enthusiasm. Genetic modifications have enabled MV to evolve from a vaccine agent to a potential anticancer therapy. Specifically, alterations of the MV genome have led to improved tumor selectivity and delivery, therapeutic potency, and immune system modulation. In this article, we will review the advancements that have been made in the design and development of MV that have led to its use as a cancer therapy. In addition, we will discuss the evidence supporting its use, as well as the challenges associated with MV as a potential cancer therapeutic.
Collapse
Affiliation(s)
- Brian Hutzen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Corey Raffel
- Department of Neurological Surgery and Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Adam W Studebaker
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
26
|
Studebaker AW, Hutzen B, Pierson CR, Shaffer TA, Raffel C, Jackson EM. Oncolytic measles virus efficacy in murine xenograft models of atypical teratoid rhabdoid tumors. Neuro Oncol 2015; 17:1568-77. [PMID: 25838138 DOI: 10.1093/neuonc/nov058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/11/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (AT/RT) is a rare, highly malignant pediatric tumor of the central nervous system that is usually refractory to available treatments. The aggressive growth, propensity to disseminate along the neuroaxis, and young age at diagnosis contribute to the poor prognosis. Previous studies have demonstrated the efficacy of using oncolytic measles virus (MV) against localized and disseminated models of medulloblastoma. The purpose of this study was to evaluate the oncolytic potential of MV in experimental models of AT/RT. METHODS Following confirmation of susceptibility to MV infection and killing of AT/RT cells in vitro, nude mice were injected with BT-12 and BT-16 AT/RT cells stereotactically into the caudate nucleus (primary tumor model) or lateral ventricle (disseminated tumor model). Recombinant MV was administered either intratumorally or intravenously. Survival was determined for treated and control animals. Necropsy was performed on animals showing signs of progressive disease. RESULTS All cell lines exhibited significant killing when infected with MV, all formed syncytia with infection, and all generated infectious virus after infection. Orthotopic xenografts displayed cells with rhabdoid-like cellular morphology, were negative for INI1 expression, and showed dissemination within the intracranial and spinal subarachnoid spaces. Intratumoral injection of live MV significantly prolonged the survival of animals with intracranial and metastatic tumors. CONCLUSION These data demonstrate that AT/RT is susceptible to MV killing and suggest that the virus may have a role in treating this tumor in the clinical setting.
Collapse
Affiliation(s)
- Adam W Studebaker
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| | - Brian Hutzen
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| | - Christopher R Pierson
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| | - Terri A Shaffer
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| | - Corey Raffel
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| | - Eric M Jackson
- Center for Childhood Cancer and Blood Diseases, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (A.W.S., B.H.); Nationwide Children's Hospital Department of Pathology and Laboratory Medicine and Departments of Pathology and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio (C.R.P.); Animal Resources Core, Research Institute at Nationwide Children's Hospital, Columbus, Ohio (T.A.S.); Department of Neurological Surgery and Pediatrics, University of California, San Francisco, California (C.R.); Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland (E.M.J.)
| |
Collapse
|
27
|
Measles Edmonston vaccine strain derivatives have potent oncolytic activity against osteosarcoma. Cancer Gene Ther 2014; 21:483-90. [PMID: 25394505 PMCID: PMC4337839 DOI: 10.1038/cgt.2014.54] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 01/09/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone tumor affecting children and young adults, and development of metastatic disease is associated with poor prognosis. The purpose of this study was to evaluate the antitumor efficacy of virotherapy with engineered measles virus (MV) vaccine strains in the treatment of OS. Cell lines derived from pediatric patients with OS (HOS, MG63, 143B, KHOS-312H, U2-OS and SJSA1) were infected with MV expressing green fluorescent protein (MV-GFP) and MV-expressing sodium iodide symporter (MV-NIS) strains. Viral gene expression and cytotoxicity as defined by syncytial formation, cell death and eradication of cell monolayers were demonstrated. Findings were correlated with in vivo efficacy in subcutaneous, orthotopic (tibial bone) and lung metastatic OS xenografts treated with the MV derivative MV-NIS via the intratumoral or intravenous route. Following treatment, we observed decrease in tumor growth of subcutaneous xenografts (P=0.0374) and prolongation of survival in mice with orthotopic (P<0.0001) and pulmonary metastatic OS tumors (P=0.0207). Expression of the NIS transgene in MV-NIS infected tumors allowed for single photon emission computed tomography and positron emission tomography-computed tomography imaging of virus infected tumors in vivo. Our data support the translational potential of MV-based virotherapy approaches in the treatment of recurrent and metastatic OS.
Collapse
|
28
|
Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood 2013; 123:1327-35. [PMID: 24345754 DOI: 10.1182/blood-2013-09-528851] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical trials of oncolytic attenuated measles virus (MV) are ongoing, but successful systemic delivery in immune individuals remains a major challenge. We demonstrated high-titer anti-MV antibody in 16 adults with acute lymphoblastic leukemia (ALL) following treatments including numerous immunosuppressive drugs. To resolve this challenge, human bone marrow-derived mesenchymal stromal cells (BM-MSCs) were used to efficiently deliver MV in a systemic xenograft model of precursor B-lineage-ALL. BM-MSCs were successfully loaded with MV ex vivo, and MV was amplified intracellularly, without toxicity. Live cell confocal imaging demonstrated a viral hand-off between BM-MSCs and ALL targets in the presence of antibody. In a murine model of disseminated ALL, successful MV treatment (judged by bioluminescence quantification and survival) was completely abrogated by passive immunization with high-titer human anti-MV antibody. Importantly, no such abrogation was seen in immunized mice receiving MV delivered by BM-MSCs. These data support the use of BM-MSCs as cellular carriers for MV in patients with ALL.
Collapse
|
29
|
Opyrchal M, Allen C, Msaouel P, Iankov I, Galanis E. Inhibition of Rho-associated coiled-coil-forming kinase increases efficacy of measles virotherapy. Cancer Gene Ther 2013; 20:630-7. [PMID: 24157925 DOI: 10.1038/cgt.2013.58] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 08/10/2013] [Indexed: 12/16/2022]
Abstract
RhoA and its downstream effector Rho-associated coiled-coil-forming kinase (ROCK) are known regulators of the formation of actin cytoskeleton in cells. Actin cytoskeleton is involved in paramyxovirus infection; we, therefore, examined the effect of ROCK inhibition on measles virus (MV) cytopathic effect and replication. Treatment with the ROCK inhibitor, Y27632, significantly increased syncytia size in tumor cell lines following MV infection, associated with cytoskeleton disruption as demonstrated by actin staining. Treatment of prostate cancer, breast cancer and glioblastoma tumor cell lines with Y27632 following MV infection resulted in increased cytopathic effect, as assessed by trypan blue exclusion assays. In addition, there was a significant increase in viral proliferation by at least one log or more as tested in one-step viral growth curves. Increased viral replication was also observed in athymic nude mice bearing MDA-MB-231 xenografts following combination treatment with MV and Y27632. In summary, inhibition of the ROCK kinase by Y27632 enhanced the oncolytic effect of MV and viral proliferation; this approach merits further translational investigation.
Collapse
Affiliation(s)
- M Opyrchal
- 1] Division of Medical Oncology, Mayo Clinic, Rochester, MN, USA [2] Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | |
Collapse
|
30
|
Kwiatkowska A, Nandhu MS, Behera P, Chiocca EA, Viapiano MS. Strategies in gene therapy for glioblastoma. Cancers (Basel) 2013; 5:1271-305. [PMID: 24202446 PMCID: PMC3875940 DOI: 10.3390/cancers5041271] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of brain cancer, with a dismal prognosis and extremely low percentage of survivors. Novel therapies are in dire need to improve the clinical management of these tumors and extend patient survival. Genetic therapies for GBM have been postulated and attempted for the past twenty years, with variable degrees of success in pre-clinical models and clinical trials. Here we review the most common approaches to treat GBM by gene therapy, including strategies to deliver tumor-suppressor genes, suicide genes, immunomodulatory cytokines to improve immune response, and conditionally-replicating oncolytic viruses. The review focuses on the strategies used for gene delivery, including the most common and widely used vehicles (i.e., replicating and non-replicating viruses) as well as novel therapeutic approaches such as stem cell-mediated therapy and nanotechnologies used for gene delivery. We present an overview of these strategies, their targets, different advantages, and challenges for success. Finally, we discuss the potential of gene therapy-based strategies to effectively attack such a complex genetic target as GBM, alone or in combination with conventional therapy.
Collapse
Affiliation(s)
- Aneta Kwiatkowska
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
31
|
Piccioni DE, Kesari S. Clinical trials of viral therapy for malignant gliomas. Expert Rev Anticancer Ther 2013; 13:1297-305. [PMID: 24138481 DOI: 10.1586/14737140.2013.851160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite recent scientific advances in the understanding of the biology of malignant gliomas, there has been little change in the overall survival for this devastating disease. New and innovative treatments are under constant investigation. Starting in the 1990s, there was an interest in using viral therapeutics for the treatment of malignant gliomas. Multiple strategies were pursued, including oncolytic viral therapy, enzyme/pro-drug combinations and gene transfer with viral vectors. Multiple Phase I and II trials demonstrated the safety of these techniques, but clinically showed limited efficacy. However, this led to a better understanding of the pitfalls of viral therapy and encouraged the development of new approaches and improved delivery methods. Here we review the prior and ongoing clinical trials of viral therapy for gliomas, and discuss how novel strategies are currently being utilized in clinical trials.
Collapse
Affiliation(s)
- David E Piccioni
- Department of Neurosciences, Moores Cancer Center, Translational Neuro-Oncology Laboratories, 3855 Health Sciences Dr. #0819, UC San Diego, La Jolla, CA, USA
| | | |
Collapse
|
32
|
Current status of gene therapy for brain tumors. Transl Res 2013; 161:339-54. [PMID: 23246627 PMCID: PMC3733107 DOI: 10.1016/j.trsl.2012.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma.
Collapse
|
33
|
Msaouel P, Opyrchal M, Domingo Musibay E, Galanis E. Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther 2013; 13:483-502. [PMID: 23289598 DOI: 10.1517/14712598.2013.749851] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Replication-competent oncolytic measles virus (MV) strains preferentially infect and destroy a wide variety of cancer tissues. Clinical translation of engineered attenuated MV vaccine derivatives is demonstrating the therapeutic potential and negligible pathogenicity of these strains in humans. AREAS COVERED The present review summarizes the mechanisms of MV tumor selectivity and cytopathic activity as well as the current data on the oncolytic efficacy and preclinical testing of MV strains. Investigational strategies to reprogram MV selectivity, escape antiviral immunity and modulate the immune system to enhance viral delivery and tumor oncolysis are also discussed. EXPERT OPINION Clinical viral kinetic data derived from noninvasive monitoring of reporter transgene expression will guide future protocols to enhance oncolytic MV efficacy. Anti-measles immunity is a major challenge of measles-based therapeutics and various strategies are being investigated to modulate immunity. These include the combination of MV therapy with immunosuppressive drugs, such as cyclophosphamide, the use of cell carriers and the introduction of immunomodulatory transgenes and wild-type virulence genes. Available MV retargeting technologies can address safety considerations that may arise as more potent oncolytic MV vectors are being developed.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Albert Einstein College of Medicine, Jacobi Medical Center, Department of Internal Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
34
|
Salimi V, Tavakoli-Yaraki M, Mahmoodi M, Shahabi S, Gharagozlou MJ, Shokri F, Mokhtari-Azad T. The Oncolytic Effect of Respiratory Syncytial Virus (RSV) in Human Skin Cancer Cell Line, A431. IRANIAN RED CRESCENT MEDICAL JOURNAL 2013; 15:62-7. [PMID: 23487261 PMCID: PMC3589781 DOI: 10.5812/ircmj.4722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/19/2012] [Accepted: 05/28/2012] [Indexed: 12/02/2022]
Abstract
Background Oncolytic viruses have become of noticeable interest as a novel biological approach for selectively infecting cancer cells and triggering apoptosis in a number of malignant cells. Many researches are devoted to characterize more viruses with oncolytic properties. Objectives Evidences on the oncolytic feature of respiratory syncytial virus (RSV) are conflicting; therefore, this study was designed to elucidate the possible role of RSV on the modulation of cell growth and apoptosis in the skin cancer cells. Materials and Methods Plaque assay was used to determine RSV titers. The cytotoxic effect of RSV in A431 (skin carcinoma cell line) was determined using MTT assay. The detection of apoptosis was performed via Annexin-V-FITC staining method and analyzed with flow cytometry. Results The results indicated that A431 cell growth was inhibited following infection by RSV in a dose- and time-dependent manner. The most growth inhibitory effect of RSV was occurred at the MOI of 3, and 48 hour after infection. The inhibitory effect of RSV on the cell growth was accompanied by the induction of apoptosis in the skin cancer cells. The percentages of early and late apoptotic cells were increased following exposure to RSV in a concentration- and time-dependent manner. Conclusions This study delineated the beneficial role of RSV for growth regulation of skin cancer cells and highlighted the involvement of RSV in the induction of apoptosis in A431 cells. These findings might conduct evidence into the oncolytic properties of RSV in the skin cancer. Further studies are required to indicate intracellular targets for RSV-induced apoptosis in skin cancer cells.
Collapse
Affiliation(s)
- Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Mahmood Mahmoodi
- Department of Biostatic and Epidemiology, School of Public Health Tehran University of Medical Sciences, Tehran, IR Iran
| | - Shahram Shahabi
- Department of Microbiology, Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, IR Iran
| | | | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Talat Mokhtari Azad, Department of Virology, School of Public Health, Tehran University of Medical Sciences, P.O. Box 6446, Tehran, IR Iran. Tel.: +98-2188962343, Fax: +98-2188962343, E-mail:
| |
Collapse
|
35
|
Allen C, Opyrchal M, Aderca I, Schroeder MA, Sarkaria JN, Domingo E, Federspiel MJ, Galanis E. Oncolytic measles virus strains have significant antitumor activity against glioma stem cells. Gene Ther 2012; 20:444-9. [PMID: 22914495 PMCID: PMC3509233 DOI: 10.1038/gt.2012.62] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults and has a dismal prognosis despite multimodality treatment. Given the resistance of glioma stem cells (GSC) to chemotherapy and radiation therapy, their eradication could prevent tumor recurrence. We sought to evaluate the antitumor activity of measles virus (MV) derivatives against GSC. We generated neurosphere cultures from patient-derived primary tumor GBM xenografts, and we characterized them for the GSC markers CD133, SOX2, Nestin, ATF5 and OLIG2. Using the MV-strains MV-GFP, MV-CEA and MV-NIS we demonstrated infection, viral replication and significant cytopathic effect in vitro against GSC lines. In tumorigenicity experiments, GBM44 GSC were infected with MV in vitro and subsequently implanted into the right caudate nucleus of nude mice: significant prolongation of survival in mice implanted with infected GSC was observed, compared with mock-infected controls (P=0.0483). In therapy experiments in GBM6 and GBM12 GSC xenograft models, there was significant prolongation of survival in MV-GFP-treated animals compared with inactivated virus-treated controls (GBM6 P=0.0021, GBM12 P=0.0416). Abundant syncytia and viral replication was demonstrated in tumors of MV-treated mice. Measles virus derivatives have significant antitumor activity against glioma-derived stem cells in vitro and in vivo.
Collapse
Affiliation(s)
- C Allen
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Sugiyama T, Yoneda M, Kuraishi T, Hattori S, Inoue Y, Sato H, Kai C. Measles virus selectively blind to signaling lymphocyte activation molecule as a novel oncolytic virus for breast cancer treatment. Gene Ther 2012; 20:338-47. [PMID: 22717740 DOI: 10.1038/gt.2012.44] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oncolytic viruses hold much promise as novel therapeutic agents that can be combined with conventional therapeutic modalities. Measles virus (MV) is known to enter cells using the signaling lymphocyte activation molecule (SLAM), which is expressed on cells of the immune system. Although human breast cancer cell lines do not express SLAM, we found that a wild-type MV (HL strain) efficiently infected various breast cancer cell lines, causing cell death. Based on this finding, we used reverse genetics to generate a recombinant MV selectively unable to use SLAM (rMV-SLAMblind). The rMV-SLAMblind lacked infectivity for SLAM-positive lymphoid cells, while retaining oncolytic activity against breast cancer cells. We showed that, unlike the MV vaccine strains, rMV-SLAMblind used PVRL4 (polio virus receptor-related 4) as a receptor to infect breast cancer cells and not the ubiquitously expressed CD46. Consistent with this, rMV-SLAMblind infected CD46-positive primary normal human cells at a much-reduced level, whereas a vaccine strain of the Edmonston lineage (rMV-Edmonston) efficiently infected and killed them. The rMV-SLAMblind showed antitumor activity against human breast cancer xenografts in immunodeficient mice. The oncolytic activity of rMV-SLAMblind was significantly greater than that of rMV-Edmonston. To assess the in vivo safety, three monkeys seronegative for MV were inoculated with rMV-SLAMblind, and no clinical symptoms were documented. On the basis of these results, rMV-SLAMblind could be a promising candidate as a novel oncolytic virus for breast cancer treatment.
Collapse
Affiliation(s)
- T Sugiyama
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Twenty years of oncolytic virus development have created a field that is driven by the potential promise of lasting impact on our cancer treatment repertoire. With the field constantly expanding-more than 20 viruses have been recognized as potential oncolytic viruses-new virus candidates continue to emerge even as established viruses reach clinical trials. They all share the defining commonalities of selective replication in tumors, subsequent tumor cell lysis, and dispersion within the tumor. Members from diverse virus classes with distinctly different biologies and host species have been identified. Of these viruses, 15 have been tested on human glioblastoma multiforme. So far, 20 clinical trials have been conducted or initiated using attenuated strains of 7 different oncolytic viruses against glioblastoma multiforme. In this review, we present an overview of viruses that have been developed or considered for glioblastoma multiforme treatment. We outline the principles of tumor targeting and selective viral replication, which include mechanisms of tumor-selective binding, and molecular elements usurping cellular biosynthetic machinery in transformed cells. Results from clinical trials have clearly established the proof of concept and have confirmed the general safety of oncolytic virus application in the brain. The moderate clinical efficacy has not yet matched the promising preclinical lab results; next-generation oncolytic viruses that are either "armed" with therapeutic genes or embedded in a multimodality treatment regimen should enhance the clinical results.
Collapse
|
38
|
|
39
|
Opyrchal M, Allen C, Iankov I, Aderca I, Schroeder M, Sarkaria J, Galanis E. Effective radiovirotherapy for malignant gliomas by using oncolytic measles virus strains encoding the sodium iodide symporter (MV-NIS). Hum Gene Ther 2012; 23:419-27. [PMID: 22185260 DOI: 10.1089/hum.2011.158] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Engineered measles virus (MV) strains deriving from the vaccine lineage represent a promising oncolytic platform and are currently being tested in phase I trials. In this study, we have demonstrated that MV strains genetically engineered to express the human sodium iodide symporter (NIS) have significant antitumor activity against glioma lines and orthotopic xenografts; this compares favorably with the MV strain expressing the human carcinoembryonic antigen, which is currently in clinical testing. Expression of NIS protein in infected cells results in effective concentration of radioactive iodine, which allows for in vivo monitoring of localization of MV-NIS infection by measuring uptake of (123)I or (99m)Tc. In addition, radiovirotherapy with MV-NIS followed by (131)I administration resulted in significant increase of MV-NIS antitumor activity as compared with virus alone in both subcutaneous (p=0.0003) and orthotopic (p=0.004) glioblastoma models. In conclusion, MV-NIS-based radiovirotherapy has significant antitumor activity against glioblastoma multiforme and represents a promising candidate for clinical translation.
Collapse
Affiliation(s)
- Mateusz Opyrchal
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther 2011; 19:1097-106. [PMID: 21468006 DOI: 10.1038/mt.2011.55] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oncolytic measles viruses (MV) derived from the live attenuated vaccine strain have been engineered for increased tumor-cell specificity, and are currently under investigation in clinical trials including a phase I study for glioblastoma multiforme (GBM). Recent preclinical studies have shown that the cellular tropism of several viruses can be controlled by inserting microRNA-target sequences into their genomes, thereby inhibiting spread in tissues expressing cognate microRNAs. Since neuron-specific microRNA-7 is downregulated in gliomas but highly expressed in normal brain tissue, we engineered a microRNA-sensitive virus containing target sites for microRNA-7 in the 3'-untranslated region of the viral fusion gene. In presence of microRNA-7 this modification inhibits translation of envelope proteins, restricts viral spread, and progeny production. Even though highly attenuated in presence of microRNA-7, this virus retained full efficacy against glioblastoma xenografts. Furthermore, microRNA-mediated inhibition protected genetically modified mice susceptible to MV infection from a potentially lethal intracerebral challenge. Importantly, endogenous microRNA-7 expression in primary human brain resections tightly restricted replication and spread of microRNA-sensitive virus. This is proof-of-concept that tropism restriction by tissue-specific microRNAs can be adapted to oncolytic MV to regulate viral replication and gene expression to maximize tumor specificity without compromising oncolytic efficacy.
Collapse
|
41
|
Patel B, Dey A, Ghorani E, Kumar S, Malam Y, Rai L, Steele AJ, Thomson J, Wickremasinghe RG, Zhang Y, Castleton AZ, Fielding AK. Differential cytopathology and kinetics of measles oncolysis in two primary B-cell malignancies provides mechanistic insights. Mol Ther 2011; 19:1034-40. [PMID: 21427708 DOI: 10.1038/mt.2011.44] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clinical trials using vaccine measles virus (MV) as anticancer therapy are already underway. We compared the oncolytic potential of MV in two B-cell malignancies; adult acute lymphoblastic leukemia (ALL, an aggressive leukemia) and chronic lymphocytic leukemia (CLL, an indolent leukemia overexpressing Bcl-2) using patient-derived material. In vitro, distinct cytopathological effects were observed between MV-infected primary ALL and CLL cells, with large multinucleated syncytia forming in ALL cultures compared to minimal cell-to-cell fusion in infected CLL cells. Cell viability and immunoblotting studies confirmed rapid cell death in MV-infected ALL cultures and slower MV oncolysis of CLL cells. In cell lines, overexpression of Bcl-2 diminished MV-induced cell death providing a possible mechanism for the slower kinetic of MV oncolysis in CLL. In vivo, intratumoral MV treatment of established subcutaneous ALL xenografts had striking antitumor activity leading to complete resolution of all tumors. The antitumor activity of MV was also evident in disseminated ALL xenograft models. In summary, both ALL and CLL are targets for MV-mediated lysis albeit with different kinetics. The marked sensitivity of both primary ALL cells and ALL xenografts to MV oncolysis highlights the tremendous potential of MV as a novel replicating-virus therapy for adult ALL.
Collapse
Affiliation(s)
- Bella Patel
- Department of Haematology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Arko L, Katsyv I, Park GE, Luan WP, Park JK. Experimental approaches for the treatment of malignant gliomas. Pharmacol Ther 2010; 128:1-36. [PMID: 20546782 PMCID: PMC2939300 DOI: 10.1016/j.pharmthera.2010.04.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 04/28/2010] [Indexed: 12/13/2022]
Abstract
Malignant gliomas, which include glioblastomas and anaplastic astrocytomas, are the most common primary tumors of the brain. Over the past 30 years, the standard treatment for these tumors has evolved to include maximal safe surgical resection, radiation therapy and temozolomide chemotherapy. While the median survival of patients with glioblastomas has improved from 6 months to 14.6 months, these tumors continue to be lethal for the vast majority of patients. There has, however, been recent substantial progress in our mechanistic understanding of tumor development and growth. The translation of these genetic, epigenetic and biochemical findings into therapies that have been tested in clinical trials is the subject of this review.
Collapse
Affiliation(s)
- Leopold Arko
- Surgical and Molecular Neuro-oncology Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
43
|
Galanis E. Therapeutic potential of oncolytic measles virus: promises and challenges. Clin Pharmacol Ther 2010; 88:620-5. [PMID: 20881957 DOI: 10.1038/clpt.2010.211] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Measles virus (MV) is a negative-strand RNA virus (paramyxovirus) with oncolytic properties. The significant preclinical activity of MV vaccine strains against a variety of tumor models, their potent bystander effect, their selectivity against tumor cells, and their ability to retain their oncolytic properties when engineered and retargeted makes them a promising oncolytic platform. In this article, we review potential applications and challenges associated with use of MV strains as cancer therapeutics.
Collapse
Affiliation(s)
- E Galanis
- Departments of Oncology and Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
44
|
Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther 2010; 17:550-8. [PMID: 20379224 PMCID: PMC2907639 DOI: 10.1038/cgt.2010.10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesothelioma usually leads to death within 8–14 months of diagnosis. To increase the potency of oncolytic measles viruses (MVs) for mesothelioma therapy, we inserted the interferon β (IFNβ) gene alone or with the human thyroidal sodium iodide symporter (NIS) gene into attenuated MV of the Edmonston lineage. The corresponding mouse IFNβ (mIFNβ) viruses, MV-mIFNβ and MV-mIFNβ-NIS, successfully propagated in human mesothelioma cells, leading to intercellular fusion and cell death. High levels of mIFNβ were detected in the supernatants of the infected cells, and radioiodine uptake was substantial in the cells infected with MV-mIFNβ-NIS. MV with mIFNβ expression triggered CD68-positive immune cell infiltration 2–4 times higher than MV-GFP injected into the tumor site. The numbers of CD31-positive vascular endothelial cells within the tumor were decreased at day 7 after intratumoral injection of MV-mIFNβ or MV-mIFNβ-NIS, but not after MV-GFP and PBS administration. Immunohistochemical analysis showed that MV-mIFNβ changed the microenvironment of the mesothelioma by increasing innate immune cell infiltration and inhibiting tumor angiogenesis. Oncolytic MVs coding for IFNβ effectively retarded growth of human mesotheliomas and prolonged survival time in several mesothelioma tumor models. The results suggest that oncolytic MVs that code for IFNβ and NIS will be potent and versatile agents for the treatment of human mesothelioma.
Collapse
|
45
|
Improved killing of human high-grade glioma cells by combining ionizing radiation with oncolytic parvovirus H-1 infection. J Biomed Biotechnol 2010; 2010:350748. [PMID: 20224643 PMCID: PMC2833303 DOI: 10.1155/2010/350748] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 10/06/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022] Open
Abstract
Purpose. To elucidate the influence of ionizing radiation (IR) on
the oncolytic activity of Parvovirus H-1 (H-1PV) in human
high-grade glioma cells. Methods. Short term cultures of human
high-grade gliomas were irradiated at different doses and infected
with H-1PV. Cell viability was assessed by determining relative
numbers of surviving cells. Replication of H-1PV was measured by
RT-PCR of viral RNA, fluorescence-activated cell sorter (FACS)
analysis and the synthesis of infectious virus particles. To
identify a possible mechanism for radiation induced change in the
oncolytic activity of H-1PV we performed cell cycle analyses.
Results. Previous irradiation rendered glioma cells fully
permissive to H-1PV infection. Irradiation 24 hours prior to H-1PV
infection led to increased cell killing most notably in
radioresistant glioma cells. Intracellular levels of NS-1, the
main effector of H-1PV induced cytotoxicity, were elevated after
irradiation. S-phase levels were increased one day after
irradiation improving S-phase dependent viral replication and
cytotoxicity. Conclusion. This study demonstrates intact
susceptibility of previously irradiated glioma-cells for H-1PV
induced oncolysis. The combination of ionizing radiation followed
by H-1PV infection increased viral cytotoxicity, especially in
radioresistant gliomas. These findings support the ongoing
development of a clinical trial of H-1PV in patients with
recurrent glioblastomas.
Collapse
|
46
|
van den Pol AN, Ozduman K, Wollmann G, Ho WSC, Simon I, Yao Y, Rose JK, Ghosh P. Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression. J Comp Neurol 2009; 516:456-81. [PMID: 19672982 DOI: 10.1002/cne.22131] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Viruses have substantial value as vehicles for transporting transgenes into neurons. Each virus has its own set of attributes for addressing neuroscience-related questions. Here we review some of the advantages and limitations of herpes, pseudorabies, rabies, adeno-associated, lentivirus, and others to study the brain. We then explore a novel recombinant vesicular stomatitis virus (dG-VSV) with the G-gene deleted and transgenes engineered into the first position of the RNA genome, which replicates only in the first brain cell infected, as corroborated with ultrastructural analysis, eliminating spread of virus. Because of its ability to replicate rapidly and to express multiple mRNA copies and additional templates for more copies, reporter gene expression is amplified substantially, over 500-fold in 6 hours, allowing detailed imaging of dendrites, dendritic spines, axons, and axon terminal fields within a few hours to a few days after inoculation. Green fluorescent protein (GFP) expression is first detected within 1 hour of inoculation. The virus generates a Golgi-like appearance in all neurons or glia of regions of the brain tested. Whole-cell patch-clamp electrophysiology, calcium digital imaging with fura-2, and time-lapse digital imaging showed that neurons appeared physiologically normal after expressing viral transgenes. The virus has a wide range of species applicability, including mouse, rat, hamster, human, and Drosophila cells. By using dG-VSV, we show efferent projections from the suprachiasmatic nucleus terminating in the periventricular region immediately dorsal to the nucleus. DG-VSVs with genes coding for different color reporters allow multicolor visualization of neurons wherever applied.
Collapse
Affiliation(s)
- Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Asadi-Moghaddam K, Chiocca EA. Gene- and viral-based therapies for brain tumors. Neurotherapeutics 2009; 6:547-57. [PMID: 19560744 PMCID: PMC3052738 DOI: 10.1016/j.nurt.2009.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 01/21/2023] Open
Abstract
Advances in understanding and controlling genes and their expression have set the stage to alter genetic material to fight or prevent disease with brain tumors being among one of the first human malignancies to be targeted by gene therapy. All proteins are coded for by DNA and most neoplastic diseases ultimately result from the expression or lack thereof with one or more proteins (e.g., coded by oncogenes or tumor suppressor genes, respectively). In theory, therefore, diseases could be treated by expression of the appropriate protein in the affected cells. Gene therapy is an experimental treatment that involves introducing genetic material (DNA or RNA) into cells, and it has made important advances in the past decade. Within this short time span, it has moved from the conceptual laboratory research stage to clinical translational trials for brain tumors. The most efficient approaches for gene delivery are based on viral vectors, which have been proven relatively safe in the CNS, despite occasional cases of morbidity and death in non-neurosurgical trials. However, the human response to various viral vectors can not be predicted in a reliable manner from animal experimentation, nor can size, consistency, and extent of experimental brain tumors in mouse models reflect the large, necrotic, infiltrative nature of malignant gliomas. Furthermore, the problem of delivering genetic vectors into solid brain tumors and the efficiency in situ gene transfer remains one of the most significant hurdles in gene therapy.
Collapse
Affiliation(s)
- Kaveh Asadi-Moghaddam
- Department of Neurological Surgery, Dardinger Center for Neuro-oncology and Neurosciences, James Cancer Hospital/Solove Research Institute, The Ohio State University Medical Center, N-1017 Doan Hall, 410 W. 10th Avenue, 43210-1240 Columbus, OH
| | - E. Antonio Chiocca
- Department of Neurological Surgery, Dardinger Center for Neuro-oncology and Neurosciences, James Cancer Hospital/Solove Research Institute, The Ohio State University Medical Center, N-1017 Doan Hall, 410 W. 10th Avenue, 43210-1240 Columbus, OH
| |
Collapse
|
48
|
Coronavirus genetically redirected to the epidermal growth factor receptor exhibits effective antitumor activity against a malignant glioblastoma. J Virol 2009; 83:7507-16. [PMID: 19439466 DOI: 10.1128/jvi.00495-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses are positive-strand RNA viruses with features attractive for oncolytic therapy. To investigate this potential, we redirected the coronavirus murine hepatitis virus (MHV), which is normally unable to infect human cells, to human tumor cells by using a soluble receptor (soR)-based expression construct fused to an epidermal growth factor (EGF) receptor targeting moiety. Addition of this adapter protein to MHV allowed infection of otherwise nonsusceptible, EGF receptor (EGFR)-expressing cell cultures. We introduced the sequence encoding the adaptor protein soR-EGF into the MHV genome to generate a self-targeted virus capable of multiround infection. The resulting recombinant MHV was viable and had indeed acquired the ability to infect all glioblastoma cell lines tested in vitro. Infection of malignant human glioblastoma U87DeltaEGFR cells gave rise to release of progeny virus and efficient cell killing in vitro. To investigate the oncolytic capacity of the virus in vivo, we used an orthotopic U87DeltaEGFR xenograft mouse model. Treatment of mice bearing a lethal intracranial U87DeltaEGFR tumor by injection with MHVsoR-EGF significantly prolonged survival compared to phosphate-buffered saline-treated (P = 0.001) and control virus-treated (P = 0.004) animals, and no recurrent tumor load was observed. However, some adverse effects were seen in normal mouse brain tissues that were likely caused by the natural murine tropism of MHV. This is the first demonstration of oncolytic activity of a coronavirus in vivo. It suggests that nonhuman coronaviruses may be attractive new therapeutic agents against human tumors.
Collapse
|
49
|
Msaouel P, Dispenzieri A, Galanis E. Clinical testing of engineered oncolytic measles virus strains in the treatment of cancer: an overview. CURRENT OPINION IN MOLECULAR THERAPEUTICS 2009; 11:43-53. [PMID: 19169959 PMCID: PMC2717625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Viruses have adapted through millennia of evolution to effectively invade and lyse cells through diverse mechanisms. Strains of the attenuated measles virus Edmonston (MV-Edm) vaccine lineage can preferentially infect and destroy cancerous cells while sparing the surrounding tissues. This specificity is predominantly due to overexpression of the measles virus receptor CD46 in tumor cells. To facilitate in vivo monitoring of viral gene expression and replication, these oncolytic strains have been engineered to either express soluble marker peptides, such as the human carcinoembryonic antigen (CEA; MV-CEA virus), or genes that facilitate imaging and therapy, such as the human thyroidal sodium iodide symporter (NIS) gene (MV-NIS). Preclinical efficacy and safety data for engineered oncolytic MV-Edm derivatives that led to their clinical translation are discussed in this review, and an overview of the early experience in three ongoing clinical trials of patients with ovarian cancer, glioblastoma multiforme and multiple myeloma is provided. The information obtained from these ongoing trials will guide the future clinical application and further development of MV strains as anticancer agents.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA,
- National and Kapodistrian University of Athens, Department of Experimental Physiology, Medical School, 75 Mikras Asias Street, Goudi, Athens, 115 27, Greece
| | | | - Evanthia Galanis
- Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA,
| |
Collapse
|
50
|
Msaouel P, Iankov ID, Allen C, Morris JC, von Messling V, Cattaneo R, Koutsilieris M, Russell SJ, Galanis E. Engineered measles virus as a novel oncolytic therapy against prostate cancer. Prostate 2009; 69:82-91. [PMID: 18973133 PMCID: PMC2737678 DOI: 10.1002/pros.20857] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND No curative therapy is currently available for locally advanced or metastatic prostate cancer. Oncolytic viruses represent a novel class of therapeutic agents that demonstrates no cross-resistance with existing approaches and can therefore be combined with conventional treatment modalities. Measles virus strains deriving from the Edmonston (MV-Edm) vaccine strain have shown considerable oncolytic activity against a variety of solid tumers and hematologic malignancies. In this study, we investigated the antitumor potential of recombinant MV-Edm derivatives as novel oncolytic agents against prostate cancer. METHODS The susceptibility of prostate cancer cell lines (PC-3, DU-145, and LNCaP) to measles virus infection was demonstrated using an MV-Edm derivative expressing green fluorescent protein (GFP). MV-Edm replication in prostate cancer cell lines was assessed by one step viral growth curves. The oncolytic effect of an MV-Edm strain engineered to express the human carcinoembryonic antigen (CEA) was demonstrated in vitro by MTT assays and in vivo in subcutaneous PC-3 xenografts. CEA levels were quantitated in cell supernatants and mouse serum samples. RESULTS Recombinant MV-Edm strains can effectively infect, replicate in and kill prostate cancer cells. Intratumoral administration of MV-CEA at a total dose of 6 x 10(6) TCID50 resulted in statistically significant tumor growth delay (P = 0.004) and prolongation of survival (P = 0.001) in a subcutaneous PC-3 xenograft model. Viral growth kinetics paralleled CEA production. CONCLUSIONS MV-CEA has potent antitumor activity against prostate cancer cell lines and xenografts. Viral gene expression during treatment can be determined by monitoring of CEA levels in the serum; the latter could allow dose optimization and tailoring of individualized treatment protocols.
Collapse
Affiliation(s)
- Pavlos Msaouel
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | |
Collapse
|