1
|
Nainwal N, Sharma Y, Jakhmola V. Dry powder inhalers of antitubercular drugs. Tuberculosis (Edinb) 2022; 135:102228. [PMID: 35779497 DOI: 10.1016/j.tube.2022.102228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 12/15/2022]
Abstract
Despite advancements in the medical and pharmaceutical fields, tuberculosis remains a major health problem globally. Patients do not widely accept the conventional approach to treating tuberculosis (TB) due to prolonged treatment periods with multiple high doses of drugs and associated side effects. A pulmonary route is a non-invasive approach to delivering drugs, hormones, nucleic acid, steroids, proteins, and peptides directly to the lungs, improving the efficacy of the treatment and consequently decreasing the adverse effect of the treatment. This route has been successfully developed for the treatment of various respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), tuberculosis (TB), lung cancer, and other pulmonary infections. The major approaches of inhalation delivery systems include nebulizers, metered-dose inhalers (MDIs), and dry powder inhalers (DPIs). However, dry powder inhalers (DPIs) are more advantageous due to their stability and ability to deliver a high dose of the drug to the lungs. The present review analyzes the modern therapeutic approach of inhaled dry powders, with a special focus on novel drug delivery system (NDDS) based DPIs for the treatment of TB. The article also discussed the challenges of preparing inhalable dry powder formulations for the treatment of TB. The clinical development of inhalable anti-TB drugs is also reviewed.
Collapse
Affiliation(s)
- Nidhi Nainwal
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Yuwanshi Sharma
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248161, India.
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
2
|
Nikjoo D, van der Zwaan I, Brülls M, Tehler U, Frenning G. Hyaluronic Acid Hydrogels for Controlled Pulmonary Drug Delivery-A Particle Engineering Approach. Pharmaceutics 2021; 13:pharmaceutics13111878. [PMID: 34834293 PMCID: PMC8618576 DOI: 10.3390/pharmaceutics13111878] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Hydrogels warrant attention as a potential material for use in sustained pulmonary drug delivery due to their swelling and mucoadhesive features. Herein, hyaluronic acid (HA) is considered a promising material due to its therapeutic potential, the effect on lung inflammation, and possible utility as an excipient or drug carrier. In this study, the feasibility of using HA hydrogels (without a model drug) to engineer inhalation powders for controlled pulmonary drug delivery was assessed. A combination of chemical crosslinking and spray-drying was proposed as a novel methodology for the preparation of inhalation powders. Different crosslinkers (urea; UR and glutaraldehyde; GA) were exploited in the hydrogel formulation and the obtained powders were subjected to extensive characterization. Compositional analysis of the powders indicated a crosslinked structure of the hydrogels with sufficient thermal stability to withstand spray drying. The obtained microparticles presented a spherical shape with mean diameter particle sizes from 2.3 ± 1.1 to 3.2 ± 2.9 μm. Microparticles formed from HA crosslinked with GA exhibited a reasonable aerosolization performance (fine particle fraction estimated as 28 ± 2%), whereas lower values were obtained for the UR-based formulation. Likewise, swelling and stability in water were larger for GA than for UR, for which the results were very similar to those obtained for native (not crosslinked) HA. In conclusion, microparticles could successfully be produced from crosslinked HA, and the ones crosslinked by GA exhibited superior performance in terms of aerosolization and swelling.
Collapse
Affiliation(s)
- Dariush Nikjoo
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 75124 Uppsala, Sweden;
- Division of Material Science, Department of Engineering Science and Mathematic, Luleå University of Technology, 97187 Luleå, Sweden
- Correspondence: (D.N.); (G.F.)
| | - Irès van der Zwaan
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 75124 Uppsala, Sweden;
| | - Mikael Brülls
- Early Product Development & Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden;
| | - Ulrika Tehler
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Astra Zeneca, 43183 Gothenburg, Sweden;
| | - Göran Frenning
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 75124 Uppsala, Sweden;
- Correspondence: (D.N.); (G.F.)
| |
Collapse
|
3
|
Biswas P, Sen D, Bouwman W. Structural characterization of spray-dried microgranules by spin-echo small-angle neutron scattering. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Mucosal Vaccination via the Respiratory Tract. Pharmaceutics 2019; 11:pharmaceutics11080375. [PMID: 31374959 PMCID: PMC6723941 DOI: 10.3390/pharmaceutics11080375] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022] Open
Abstract
Vaccine delivery via mucosal surfaces is an interesting alternative to parenteral vaccine administration, as it avoids the use of a needle and syringe. Mucosal vaccine administration also targets the mucosal immune system, which is the largest lymphoid tissue in the human body. The mucosal immune response involves systemic, antigen-specific humoral and cellular immune response in addition to a local response which is characterised by a predominantly cytotoxic T cell response in combination with secreted IgA. This antibody facilitates pathogen recognition and deletion prior to entrance into the body. Hence, administration via the respiratory mucosa can be favoured for all pathogens which use the respiratory tract as entry to the body, such as influenza and for all diseases directly affecting the respiratory tract such as pneumonia. Additionally, the different mucosal tissues of the human body are interconnected via the so-called “common mucosal immune system”, which allows induction of an antigen-specific immune response in distant mucosal sites. Finally, mucosal administration is also interesting in the area of therapeutic vaccination, in which a predominant cellular immune response is required, as this can efficiently be induced by this route of delivery. The review gives an introduction to respiratory vaccination, formulation approaches and application strategies.
Collapse
|
5
|
Ziaee A, Albadarin AB, Padrela L, Femmer T, O'Reilly E, Walker G. Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. Eur J Pharm Sci 2019; 127:300-318. [DOI: 10.1016/j.ejps.2018.10.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/01/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
|
6
|
Eedara BB, Rangnekar B, Doyle C, Cavallaro A, Das SC. The influence of surface active l-leucine and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) in the improvement of aerosolization of pyrazinamide and moxifloxacin co-spray dried powders. Int J Pharm 2018. [DOI: 10.1016/j.ijpharm.2018.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Momin MA, Tucker IG, Doyle CS, Denman JA, Sinha S, Das SC. Co-spray drying of hygroscopic kanamycin with the hydrophobic drug rifampicin to improve the aerosolization of kanamycin powder for treating respiratory infections. Int J Pharm 2018; 541:26-36. [DOI: 10.1016/j.ijpharm.2018.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/12/2018] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
|
8
|
Momin MA, Sinha S, Tucker IG, Doyle C, Das SC. Dry powder formulation of kanamycin with enhanced aerosolization efficiency for drug-resistant tuberculosis. Int J Pharm 2017; 528:107-117. [DOI: 10.1016/j.ijpharm.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023]
|
9
|
Parumasivam T, Chang RYK, Abdelghany S, Ye TT, Britton WJ, Chan HK. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev 2016; 102:83-101. [PMID: 27212477 DOI: 10.1016/j.addr.2016.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) is an intracellular infectious disease caused by the airborne bacterium, Mycobacterium tuberculosis. Despite considerable research efforts, the treatment of TB continues to be a great challenge in part due to the requirement of prolonged therapy with multiple high-dose drugs and associated side effects. The delivery of pharmacological agents directly to the respiratory system, following the natural route of infection, represents a logical therapeutic approach for treatment or vaccination against TB. Pulmonary delivery is non-invasive, avoids first-pass metabolism in the liver and enables targeting of therapeutic agents to the infection site. Inhaled delivery also potentially reduces the dose requirement and the accompanying side effects. Dry powder is a stable formulation of drug that can be stored without refrigeration compared to liquids and suspensions. The dry powder inhalers are easy to use and suitable for high-dose formulations. This review focuses on the current innovations of inhalable dry powder formulations of drug and vaccine delivery for TB, including the powder production method, preclinical and clinical evaluations of inhaled dry powder over the last decade. Finally, the risks associated with pulmonary therapy are addressed. A novel dry powder formulation with high percentages of respirable particles coupled with a cost effective inhaler device is an appealing platform for TB drug delivery.
Collapse
Affiliation(s)
- Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Sharif Abdelghany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Jordan, Amman 1192, Jordan
| | - Tian Tian Ye
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Warwick John Britton
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, NSW 2006, Australia; Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
10
|
Kunda NK, Wafula D, Tram M, Wu TH, Muttil P. A stable live bacterial vaccine. Eur J Pharm Biopharm 2016; 103:109-117. [PMID: 27020530 DOI: 10.1016/j.ejpb.2016.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/04/2016] [Accepted: 03/23/2016] [Indexed: 01/31/2023]
Abstract
Formulating vaccines into a dry form enhances its thermal stability. This is critical to prevent administering damaged and ineffective vaccines, and to reduce its final cost. A number of vaccines in the market as well as those being evaluated in the clinical setting are in a dry solid state; yet none of these vaccines have achieved long-term stability at high temperatures. We used spray-drying to formulate a recombinant live attenuated Listeria monocytogenes (Lm; expressing Francisella tularensis immune protective antigen pathogenicity island protein IglC) bacterial vaccine into a thermostable dry powder using various sugars and an amino acid. Lm powder vaccine showed minimal loss in viability when stored for more than a year at ambient room temperature (∼23°C) or for 180days at 40°C. High temperature viability was achieved by maintaining an inert atmosphere in the storage container and removing oxygen free radicals that damage bacterial membranes. Further, in vitro antigenicity was confirmed by infecting a dendritic cell line with cultures derived from spray dried Lm and detection of an intracellularly expressed protective antigen. A combination of stabilizing excipients, a cost effective one-step drying process, and appropriate storage conditions could provide a viable option for producing, storing and transporting heat-sensitive vaccines, especially in regions of the world that require them the most.
Collapse
Affiliation(s)
- Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Denis Wafula
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, MD, USA
| | - Meilinn Tram
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Terry H Wu
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA; Center for Infectious Disease and Immunity, University of New Mexico, Albuquerque, NM, USA
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
11
|
Sou T, Forbes RT, Gray J, Prankerd RJ, Kaminskas LM, McIntosh MP, Morton DA. Designing a multi-component spray-dried formulation platform for pulmonary delivery of biopharmaceuticals: The use of polyol, disaccharide, polysaccharide and synthetic polymer to modify solid-state properties for glassy stabilisation. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2015.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
|
13
|
Manjaly Thomas ZR, McShane H. Aerosol immunisation for TB: matching route of vaccination to route of infection. Trans R Soc Trop Med Hyg 2015; 109:175-81. [PMID: 25636950 PMCID: PMC4321022 DOI: 10.1093/trstmh/tru206] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022] Open
Abstract
TB remains a very significant global health burden. There is an urgent need for better tools for TB control, which include an effective vaccine. Bacillus Calmette-Guérin (BCG), the currently licensed vaccine, confers highly variable protection against pulmonary TB, the main source of TB transmission. Replacing BCG completely or boosting BCG with another vaccine are the two current strategies for TB vaccine development. Delivering a vaccine by aerosol represents a way to match the route of vaccination to the route of infection. This route of immunisation offers not only the scientific advantage of delivering the vaccine directly to the respiratory mucosa, but also practical and logistical advantages. This review summarises the state of current TB vaccine candidates in the pipeline, reviews current progress in aerosol administration of vaccines in general and evaluates the potential for TB vaccine candidates to be administered by the aerosol route.
Collapse
Affiliation(s)
| | - Helen McShane
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
14
|
Sou T, Morton DAV, Williamson M, Meeusen EN, Kaminskas LM, McIntosh MP. Spray-Dried Influenza Antigen with Trehalose and Leucine Produces an Aerosolizable Powder Vaccine Formulation that Induces Strong Systemic and Mucosal Immunity after Pulmonary Administration. J Aerosol Med Pulm Drug Deliv 2015; 28:361-71. [PMID: 25714115 DOI: 10.1089/jamp.2014.1176] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Pulmonary immunization has recently gained increased interest as a means to induce both systemic and mucosal immunity while eliminating issues associated with the use of needles in parenteral vaccination. However, in contrast to the inhaled delivery of small molecule drugs, a dry powder carrier platform that is readily adaptable to the incorporation of biomacromolecules (e.g., vaccine antigens) as a common standard is lacking. Spray-dried trehalose with leucine has previously been characterized and demonstrated to produce highly aerosolizable powders containing an amorphous glassy matrix suitable for stabilization of biomacromolecules. This study aimed to further extend the understanding in the use of this formulation as a dry powder carrier platform in an in vivo setting, using influenza antigen as a model, for pulmonary delivery of biomacromolecules. METHODS Spray-dried influenza vaccine was produced using previously established spray-drying conditions. The formulations were characterized to examine the impact of influenza antigen on the solid-state properties of the spray-dried powders. The optimal vaccine formulation was then selected for in vivo immunogenicity study in rats to evaluate the efficacy of the reconstituted spray-dried vaccine compared to liquid vaccine administered via pulmonary and subcutaneous routes. RESULTS The formation of amorphous glassy matrix and morphology of the spray-dried particles, within the protein concentration range used in the study, was not affected by the incorporation of the influenza antigen. However, the amount of proteins incorporated increased water content and reduced the glass transition temperature (Tg) of the formulation. Nevertheless, the spray-dried vaccine induced strong mucosal and systemic immunity comparable to liquid vaccine after pulmonary and subcutaneous immunization without causing any inflammation to the lung parenchyma. CONCLUSIONS The study demonstrated the usability of the spray-dried carrier as a promising platform for pulmonary delivery of influenza vaccine. The potential utility of this delivery system for other biomacromolecules may also be further explored.
Collapse
Affiliation(s)
- Tomás Sou
- 1 Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria, Australia
| | - David A V Morton
- 1 Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria, Australia
| | - Mark Williamson
- 2 Gribbles Veterinary Pathology , Clayton, Victoria, Australia
| | - Els N Meeusen
- 3 Department of Microbiology and ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University , Clayton, Victoria, Australia
| | - Lisa M Kaminskas
- 1 Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria, Australia
| | - Michelle P McIntosh
- 1 Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria, Australia
| |
Collapse
|
15
|
Patel AR, Godugu C, Wilson H, Safe S, Singh M. Evaluation of Spray BIO-Max DIM-P in Dogs for Oral Bioavailability and in Nu/nu Mice Bearing Orthotopic/Metastatic Lung Tumor Models for Anticancer Activity. Pharm Res 2015; 32:2292-300. [PMID: 25576245 DOI: 10.1007/s11095-015-1620-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/05/2015] [Indexed: 11/29/2022]
Abstract
PURPOSE In an effort to prepare an oral dosage form for poorly bioavailable anti-cancer agents, we have incorporated spray drying using a customized spray gun generating enteric coated Self-emulsifying drug delivery systems. The objective of this study was to design and evaluate pharmacokinetics and pharmacodynamic characteristics of Spray BIO-Max DIM-P (SB DIM-P). METHODS SB DIM-P was prepared and optimized based on physico-chemical characteristics using design of experiment (DOE-Vr 8.0) software. Pharmacokinetic parameters in dogs and rats were evaluated and analyzed using Winonlin. Anti-tumor activity was carried out in orthotopic and metastatic lung tumor models using size M capsules in mice. RESULTS Based on the optimization using DOE analysis of SB DIM-P characteristics, formulations were selected for further investigation. Pharmacokinetic studies showed a 30% increase in oral bioavailability in rats and ~2.9 times more bioavailability of SB DIM-P compare to solution in dogs. SB DIM-P showed ~20-25% more tumor volume/weight reduction in H1650 metastatic tumor model and ~25-30% tumor volume/weight reduction in A549 orthotopic tumor model compared to DIM-P solution. CONCLUSIONS Our studies demonstrate the potential application of spray dried enteric coated self-emulsifying delivery system (SB DIM-P) to enhances oral absorption and efficacy of DIM-P in lung tumor models.
Collapse
Affiliation(s)
- Apurva R Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307, USA
| | | | | | | | | |
Collapse
|
16
|
McAdams D, Chen D, Kristensen D. Spray drying and vaccine stabilization. Expert Rev Vaccines 2014; 11:1211-9. [DOI: 10.1586/erv.12.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Sou T, Kaminskas LM, Nguyen TH, Carlberg R, McIntosh MP, Morton DA. The effect of amino acid excipients on morphology and solid-state properties of multi-component spray-dried formulations for pulmonary delivery of biomacromolecules. Eur J Pharm Biopharm 2013. [DOI: 10.1016/j.ejpb.2012.10.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Kunda NK, Somavarapu S, Gordon SB, Hutcheon GA, Saleem IY. Nanocarriers targeting dendritic cells for pulmonary vaccine delivery. Pharm Res 2012; 30:325-41. [PMID: 23054093 DOI: 10.1007/s11095-012-0891-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/18/2012] [Indexed: 12/27/2022]
Abstract
Pulmonary vaccine delivery has gained significant attention as an alternate route for vaccination without the use of needles. Immunization through the pulmonary route induces both mucosal and systemic immunity, and the delivery of antigens in a dry powder state can overcome some challenges such as cold-chain and availability of medical personnel compared to traditional liquid-based vaccines. Antigens formulated as nanoparticles (NPs) reach the respiratory airways of the lungs providing greater chance of uptake by relevant immune cells. In addition, effective targeting of antigens to the most 'professional' antigen presenting cells (APCs), the dendritic cells (DCs) yields an enhanced immune response and the use of an adjuvant further augments the generated immune response thus requiring less antigen/dosage to achieve vaccination. This review discusses the pulmonary delivery of vaccines, methods of preparing NPs for antigen delivery and targeting, the importance of targeting DCs and different techniques involved in formulating dry powders suitable for inhalation.
Collapse
Affiliation(s)
- Nitesh K Kunda
- Formulation and Drug Delivery Research School of Pharmacy and Biomolecular Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | | | | | | | | |
Collapse
|
19
|
Tonnis WF, Kersten GF, Frijlink HW, Hinrichs WL, de Boer AH, Amorij JP. Pulmonary Vaccine Delivery: A Realistic Approach? J Aerosol Med Pulm Drug Deliv 2012; 25:249-60. [DOI: 10.1089/jamp.2011.0931] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wouter F. Tonnis
- University of Groningen, Department Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Gideon F. Kersten
- National Institute for Public Health and the Environment, Vaccinology Unit, Bilthoven, The Netherlands
| | - Henderik W. Frijlink
- University of Groningen, Department Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Wouter L.J. Hinrichs
- University of Groningen, Department Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Anne H. de Boer
- University of Groningen, Department Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Jean-Pierre Amorij
- National Institute for Public Health and the Environment, Vaccinology Unit, Bilthoven, The Netherlands
| |
Collapse
|
20
|
Abstract
A new efficacious tuberculosis (TB) vaccine has the potential to dramatically assist control efforts for the global TB epidemic. Good progress has been made with the clinical development of new TB vaccine candidates with twelve being actively tested in clinical trials. However, there are many challenges that need to be addressed before a new vaccine is licensed for public use. The diversity of risk in populations needs to be factored into clinical development plans, specific but feasible clinical endpoints need to be agreed upon, and TB vaccines need to be effective in both uninfected and infected populations. An achievable efficacy target needs to be set while standardisation of trial outcomes and critical choices based on the vaccine development pipeline need to be made. Alternative routes of vaccine administration should be thoroughly explored, sufficient adequately prepared trial sites for performing TB vaccine assessments are required and creative use of study designs should be used to expedite progress towards licensure while at the same time containing costs. Lastly, there needs to be sufficient funding to support TB vaccine development. These challenges can be met through commitment by all role-players within the TB vaccine arena and with support from external stakeholders.
Collapse
Affiliation(s)
- Hassan Mahomed
- South African TB Vaccine Initiative, University of Cape Town, Cape Town, South Africa.
| | | |
Collapse
|
21
|
González-Juarrero M, O'Sullivan MP. Optimization of inhaled therapies for tuberculosis: the role of macrophages and dendritic cells. Tuberculosis (Edinb) 2011; 91:86-92. [PMID: 20888298 DOI: 10.1016/j.tube.2010.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 08/16/2010] [Accepted: 08/29/2010] [Indexed: 01/06/2023]
Abstract
Inhaled therapies in the form of drugs or vaccines for tuberculosis treatment were reported about a decade ago. Experts around the world met to discuss the scientific progress in inhaled therapies at the international symposium "Optimization of inhaled Tuberculosis therapies and implications for host-pathogen interactions" held in New Delhi, India on November 3-5, 2009. The meeting was organized by the Central Drug Research Institute (CDRI) Lucknow, India. The lung is the main route for infection with Mycobacterium tuberculosis bacilli and the primary site of reactivation of latent disease. The only available vaccine BCG is relatively ineffective at preventing tuberculosis disease and current therapy requires prolonged treatment with drugs which results in low patient compliance. Consequently, there is a need to design new vaccines and therapies for this disease. Recently there has been increased interest in the development of inhaled formulations to deliver anti-mycobacterial drugs and vaccines directly to the lung and many of these therapies are designed to target lung macrophages and dendritic cells. However, the development of effective inhaled therapies requires an understanding of the unique function and immunosuppressive environment of the lung which is driven, in part, by alveolar macrophages and dendritic cells. In this review, we will discuss the role of alveolar macrophages and dendritic cells in the host immune response to M. tuberculosis infection and the ways in which inhaled therapies might enhance the anti-microbial response of phagocytes and boost pulmonary immunity.
Collapse
Affiliation(s)
- Mercedes González-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
22
|
Investigating the interactions of amino acid components on a mannitol-based spray-dried powder formulation for pulmonary delivery: A design of experiment approach. Int J Pharm 2011; 421:220-9. [PMID: 21963471 DOI: 10.1016/j.ijpharm.2011.09.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/07/2011] [Accepted: 09/19/2011] [Indexed: 11/23/2022]
Abstract
Combining an amino acid and a sugar is a known strategy in the formulation of spray or freeze dried biomolecule powder formulations. The effect of the amino acid leucine in enhancing performance of spray-dried powders has been previously demonstrated, but interaction effects of several constituents which may provide multiple benefits, are less well-understood. A 3 factor 2 level (2(3)) factorial design was used to study the effects of leucine, glycine and alanine in a mannitol-based dry powder formulation on particle size, aerosolisation, emitted dose and cohesion. Other qualitative tests including scanning electronic microscopy and X-ray powder diffraction were also conducted on the design of experiment (DoE) trials. The results show that the use of glycine and/or alanine, though structurally related to leucine, did not achieve similar aerosol performance enhancing effects, rather the particle formation was hindered. However, when used in appropriate concentrations with leucine, the combination of amino acids produced an enhanced performance regardless of the presence of glycine and/or alanine, yielding significantly modified particle properties. The results from the DoE analyses also revealed the lack of linearity of effects for certain responses with a significant curvature in the model which would otherwise not be discovered using a trial-and-error approach.
Collapse
|
23
|
Abstract
There has never been a greater need for a new protective tuberculosis vaccine. Bacille Calmette-Guerin remains the cornerstone of any vaccine strategy, but improving its immunogenicity and efficacy has now become an urgent global health priority. This review discusses the main vaccines currently in clinical development and other novel vaccine strategies in the pipeline. It addresses the key questions in vaccine design, including antigen selection, route of vaccine delivery and immune correlates of vaccine-induced protection. There is an opportunity to identify such correlates from ongoing and future Phase II/III trials and, as these emerge, they can be used to validate the most relevant and predictive animal models with which to develop the next generation of new vaccines.
Collapse
Affiliation(s)
- Angela M Minassian
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Level 2, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK.
| | | |
Collapse
|
24
|
Abstract
Delivery of biologically active agents to animals is often perceived to be the poor relation of human drug delivery. Yet this field has a long and successful history of species-specific device and formulation development, ranging from simple approaches and devices used in production animals to more sophisticated formulations and approaches for a wide range of species. While several technologies using biodegradable polymers have been successfully marketed in a range of veterinary and human products, the transfer of delivery technologies has not been similarly applied across species. This may be due to a combination of specific technical requirements for use of devices in different species, inter-species pharmacokinetic, pharmacodynamic and physiological differences, and distinct market drivers for drug classes used in companion and food-producing animals. This chapter reviews selected commercialised and research-based parenteral and non-parenteral veterinary drug delivery technologies in selected domestic species. Emphasis is also placed on the impact of endogenous drug transporters on drug distribution characteristics in different species. In vitro models used to investigate carrier-dependent transport are reviewed. Species-specific expression of transporters in several tissues can account for inter-animal or inter-species pharmacokinetic variability, lack of predictability of drug efficacy, and potential drug-drug interactions.
Collapse
Affiliation(s)
- David J Brayden
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin (UCD) and UCD Conway Institute, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|