1
|
Sharafat RH, Saeed A. Ectonucleotidase inhibitors: targeting signaling pathways for therapeutic advancement-an in-depth review. Purinergic Signal 2024:10.1007/s11302-024-10031-0. [PMID: 38958821 DOI: 10.1007/s11302-024-10031-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/16/2024] [Indexed: 07/04/2024] Open
Abstract
Ectonucleotidase inhibitors are a family of pharmacological drugs that, by selectively targeting ectonucleotidases, are essential in altering purinergic signaling pathways. The hydrolysis of extracellular nucleotides and nucleosides is carried out by these enzymes, which include ectonucleoside triphosphate diphosphohydrolases (NTPDases) and ecto-5'-nucleotidase (CD73). Ectonucleotidase inhibitors can prevent the conversion of ATP and ADP into adenosine by blocking these enzymes and reduce extracellular adenosine. These molecules are essential for purinergic signaling, which is associated with a variability of physiological and pathological processes. By modifying extracellular nucleotide metabolism and improving purinergic signaling regulation, ectonucleotide pyrophosphatase/phosphodiesterase (ENPP) inhibitors have the potential to improve cancer treatment, inflammatory management, and immune response modulation. Purinergic signaling is affected by CD73 inhibitors because they prevent AMP from being converted to adenosine. These inhibitors are useful in cancer therapy and immunotherapy because they may improve chemotherapy effectiveness and alter immune responses. Purinergic signaling is controlled by NTPDase inhibitors, which specifically target enzymes involved in extracellular nucleotide breakdown. These inhibitors show promise in reducing immunological responses, thrombosis, and inflammation, perhaps assisting in the treatment of cardiovascular and autoimmune illnesses. Alkaline phosphatase (ALP) inhibitors alter the function of enzymes involved in dephosphorylation reactions, which has an impact on a variety of biological processes. By altering the body's phosphate levels, these inhibitors may be used to treat diseases including hyperphosphatemia and certain bone problems. This article provides a guide for researchers and clinicians looking to leverage the remedial capability of ectonucleotidase inhibitors in a variety of illness scenarios by illuminating their processes, advantages, and difficulties.
Collapse
Affiliation(s)
- R Huzaifa Sharafat
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45321, Pakistan.
| |
Collapse
|
2
|
Latosińska M, Latosińska JN. Favipiravir Analogues as Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase, Combined Quantum Chemical Modeling, Quantitative Structure-Property Relationship, and Molecular Docking Study. Molecules 2024; 29:441. [PMID: 38257352 PMCID: PMC10818557 DOI: 10.3390/molecules29020441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Our study was motivated by the urgent need to develop or improve antivirals for effective therapy targeting RNA viruses. We hypothesized that analogues of favipiravir (FVP), an inhibitor of RNA-dependent RNA polymerase (RdRp), could provide more effective nucleic acid recognition and binding processes while reducing side effects such as cardiotoxicity, hepatotoxicity, teratogenicity, and embryotoxicity. We proposed a set of FVP analogues together with their forms of triphosphate as new SARS-CoV-2 RdRp inhibitors. The main aim of our study was to investigate changes in the mechanism and binding capacity resulting from these modifications. Using three different approaches, QTAIM, QSPR, and MD, the differences in the reactivity, toxicity, binding efficiency, and ability to be incorporated by RdRp were assessed. Two new quantum chemical reactivity descriptors, the relative electro-donating and electro-accepting power, were defined and successfully applied. Moreover, a new quantitative method for comparing binding modes was developed based on mathematical metrics and an atypical radar plot. These methods provide deep insight into the set of desirable properties responsible for inhibiting RdRp, allowing ligands to be conveniently screened. The proposed modification of the FVP structure seems to improve its binding ability and enhance the productive mode of binding. In particular, two of the FVP analogues (the trifluoro- and cyano-) bind very strongly to the RNA template, RNA primer, cofactors, and RdRp, and thus may constitute a very good alternative to FVP.
Collapse
|
3
|
Fishman P, Stemmer SM, Bareket-Samish A, Silverman MH, Kerns WD. Targeting the A3 adenosine receptor to treat hepatocellular carcinoma: anti-cancer and hepatoprotective effects. Purinergic Signal 2023; 19:513-522. [PMID: 36781824 PMCID: PMC10539266 DOI: 10.1007/s11302-023-09925-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
The A3 adenosine receptor (A3AR) is over-expressed in human hepatocellular carcinoma (HCC) cells. Namodenoson, an A3AR agonist, induces de-regulation of the Wnt and NF-kB signaling pathways resulting in apoptosis of HCC cells. In a phase I healthy volunteer study and in a phase I/II study in patients with advanced HCC, namodenoson was safe and well tolerated. Preliminary evidence of antitumor activity was observed in the phase I/II trial in a subset of patients with advanced disease, namely patients with Child-Pugh B (CPB) hepatic dysfunction, whose median overall survival (OS) on namodenoson was 8.1 months. A phase II blinded, randomized, placebo-controlled trial was subsequently conducted in patients with advanced HCC and CPB cirrhosis. The primary endpoint of OS superiority over placebo was not met. However, subgroup analysis of CPB7 patients (34 namodenoson-treated, 22 placebo-treated) showed nonsignificant differences in OS/progression-free survival and a significant difference in 12-month OS (44% vs 18%, p = 0.028). Partial response was achieved in 9% of namodenoson-treated patients vs 0% in placebo-treated patients. Based on the positive efficacy signal in HCC CPB7 patients and the favorable safety profile of namodenoson, a phase III study is underway.
Collapse
Affiliation(s)
- Pnina Fishman
- Can-Fite BioPharma Ltd., 10 Bareket St., 49170, Petah Tikva, Israel.
| | - Salomon M Stemmer
- Davidoff Cancer Center, Petah Tikva and Sackler Faculty of Medicine, Rabin Medical Center-Beilinson Hospital, Tel Aviv, Israel
| | | | | | - William D Kerns
- Can-Fite BioPharma Ltd., 10 Bareket St., 49170, Petah Tikva, Israel
| |
Collapse
|
4
|
Huang Y, Zeng A, Song L. Facts and prospects of peptide in targeted therapy and immune regulation against triple-negative breast cancer. Front Immunol 2023; 14:1255820. [PMID: 37691919 PMCID: PMC10485606 DOI: 10.3389/fimmu.2023.1255820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to the lack of specific therapeutic targets, treatment options are limited, and the recurrence and metastasis rate is high, the overall survival of patients is poor. However, with the discovery of some new targets and the corresponding immune regulation after targeting these targets, TNBC has a new hope in treatment. The peptide has a simple structure, strong binding affinity, and high stability, and has great potential in targeted therapy and immune regulation against TNBC. This review will discuss how single peptides and peptide combinations target triple-negative breast cancer to exert immunomodulatory effects. Among them, single peptides target specific receptors on TNBC cells, act as decoys to target key ligands in the regulatory pathway, and target TME-related cells. The combinations of peptides work in the form of cancer vaccines, engineered exosomes, microRNAs and other immune-related molecular pathways, immune checkpoint inhibitors, chimeric antigen receptor T cells, and drug-peptide conjugates. This article is mainly dedicated to exploring new treatment methods for TNBC to improve the curative effect and prolong the survival time of patients.
Collapse
Affiliation(s)
- Yongxiu Huang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
6
|
Schloss B, Bekiroglu I, O'Connor C, Lee S, Rice J, Kim SS, Tobias JD. Hemodynamic and Respiratory Effects of Regadenoson During Radiologic Imaging in Infants and Children. Cardiol Res 2022; 12:329-334. [PMID: 34970361 PMCID: PMC8683102 DOI: 10.14740/cr1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/29/2021] [Indexed: 11/11/2022] Open
Abstract
Background Myocardial perfusion imaging using radionuclides is a well-validated, noninvasive method to aid in the diagnosis of patients with suspected or known myocardial ischemia. To increase the sensitivity of the technique, pharmacologic agents which induce coronary vasodilatation are administered. Regadenoson is a novel selective A2A receptor agonist that has similar efficacy to adenosine for cardiac magnetic resonance imaging (MRI) with a more favorable adverse effect profile and is the most widely used pharmacologic stress agent. While widely used in adults, there is limited experience with it in pediatrics, particularly young children. Methods The current study retrospectively reviews our experience with stress cardiac MRI using regadenoson in children requiring general anesthesia. The study cohort included eight patients, all male, ranging in age from 2 to 6.2 years (mean age of 4.2 years) and in weight from 10 to 30.5 kg (mean weight of 18.5 kg). All patients received general anesthesia with endotracheal intubation and a volatile anesthetic agent. Results Heart rate 1 min prior to regadenoson was 99 ± 19.2 (mean ± standard deviation (SD)) beats per minute. Peak heart rate was achieved at an average of 4 min post regadenoson administration with a mean heart rate of 122 ± 15 beats per minute. The average of the mean arterial pressure 1 min prior to regadenoson was 53.4 ± 5.2 mm Hg. Mean arterial pressure nadir was noted at 6 min post regadenoson with a value of 44.1 ± 6.3 mm Hg. Blood pressure support with phenylephrine was required in four of the eight (50%) of patients. No adverse respiratory events were noted. Only one of the eight (13%) patients had a perfusion defect but had preserved ventricular function and recovered without incident. Conclusions Use of regadenoson in pediatric patients requiring general anesthesia is safe and feasible.
Collapse
Affiliation(s)
- Brian Schloss
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ismail Bekiroglu
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Colin O'Connor
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Simon Lee
- Division of Pediatric Cardiology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| | - Julie Rice
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Stephani S Kim
- Department of Anesthesiology & Pain Medicine, Nationwide Children's Hospital, Columbus, OH, USA.,Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Joseph D Tobias
- Department of Anesthesiology & Pain Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.,Division of Pediatric Cardiology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
7
|
Luo S, Hou Y, Zhang Y, Ma T, Shao W, Xiao C. Adenosine A 2A Receptor Agonist PSB-0777 Modulates Synaptic Proteins and AMPA Receptor Expression in a Dose- and Time-Dependent Manner in Rat Primary Cortical Neurons. Biol Pharm Bull 2020; 43:1159-1171. [PMID: 32448843 DOI: 10.1248/bpb.b19-01007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulating synaptic formation and transmission is critical for the physiology and pathology of psychiatric disorders. The adenosine A2A receptor subtype has attracted widespread attention as a key regulator of neuropsychiatric activity, neuroprotection and injury. In this study, we systematically investigated the regulatory effects of a novel A2A receptor agonist, PSB-0777, on the expression of synaptic proteins and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid glutamate receptors (AMPA receptors) at the cellular level in a time- and dose-dependent manner. After 30 min of high-dose PSB-0777 stimulation, the expression of Synapsin-1 (Syn-1), postsynaptic density protein 95 (PSD95), and AMPA receptors and the number of synapses were rapidly and significantly increased in rat primary cortical neurons compared with the control. Sustained elevation was found in the low and medium-dose groups after 24 h and 3 d of treatment. In contrast, after stimulation with PSB-0777 for 3 consecutive days, the expression of Syn-1 was decreased, and PSD95, AMPA receptors and the number of synapses were no longer increased in the high-dose group. Our study focuses on the detailed and systematic regulation of synaptic proteins and AMPA receptors by an A2A receptor agonist, PSB-0777, which may result in both beneficial and detrimental effects on neurotransmission and neuroprotection and may contribute to the pathophysiology of psychiatric disorders related to A2A receptors. These experimental data may contribute to understanding of the mechanisms for neuroprotective and therapeutic effect of A2A receptor agonists.
Collapse
Affiliation(s)
| | | | | | - Tengfei Ma
- Yunnan University, School of Life Sciences, Center for Life Sciences
| | - Wenping Shao
- First Affiliated Hospital of Kunming Medical University, Department of Medical Examination
| | | |
Collapse
|
8
|
Borah P, Deka S, Mailavaram RP, Deb PK. P1 Receptor Agonists/Antagonists in Clinical Trials - Potential Drug Candidates of the Future. Curr Pharm Des 2020; 25:2792-2807. [PMID: 31333097 DOI: 10.2174/1381612825666190716111245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Adenosine mediates various physiological and pathological conditions by acting on its four P1 receptors (A1, A2A, A2B and A3 receptors). Omnipresence of P1 receptors and their activation, exert a wide range of biological activities. Thus, its modulation is implicated in various disorders like Parkinson's disease, asthma, cardiovascular disorders, cancer etc. Hence these receptors have become an interesting target for the researchers to develop potential therapeutic agents. Number of molecules were designed and developed in the past few years and evaluated for their efficacy in various disease conditions. OBJECTIVE The main objective is to provide an overview of new chemical entities which have crossed preclinical studies and reached clinical trials stage following their current status and future prospective. METHODS In this review we discuss current status of the drug candidates which have undergone clinical trials and their prospects. RESULTS Many chemical entities targeting various subtypes of P1 receptors are patented; twenty of them have crossed preclinical studies and reached clinical trials stage. Two of them viz adenosine and regadenoson are approved by the Food and Drug Administration. CONCLUSION This review is an attempt to highlight the current status, progress and probable future of P1 receptor ligands which are under clinical trials as promising novel therapeutic agents and the direction in which research should proceed with a view to come out with novel therapeutic agents.
Collapse
Affiliation(s)
- Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Panikhaiti, Chandrapur Road, Guwahati, Assam, India
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Panikhaiti, Chandrapur Road, Guwahati, Assam, India
| | - Raghu Prasad Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vishnu College of Pharmacy, Vishnupur (Affiliated to Andhra University), Bhimavaram, W.G. Dist., AP, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Amman, PO Box-1, 19392, Jordan
| |
Collapse
|
9
|
Deb PK, Deka S, Borah P, Abed SN, Klotz KN. Medicinal Chemistry and Therapeutic Potential of Agonists, Antagonists and Allosteric Modulators of A1 Adenosine Receptor: Current Status and Perspectives. Curr Pharm Des 2020; 25:2697-2715. [PMID: 31333094 DOI: 10.2174/1381612825666190716100509] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022]
Abstract
Adenosine is a purine nucleoside, responsible for the regulation of a wide range of physiological and pathophysiological conditions by binding with four G-protein-coupled receptors (GPCRs), namely A1, A2A, A2B and A3 adenosine receptors (ARs). In particular, A1 AR is ubiquitously present, mediating a variety of physiological processes throughout the body, thus represents a promising drug target for the management of various pathological conditions. Agonists of A1 AR are found to be useful for the treatment of atrial arrhythmia, angina, type-2 diabetes, glaucoma, neuropathic pain, epilepsy, depression and Huntington's disease, whereas antagonists are being investigated for the treatment of diuresis, congestive heart failure, asthma, COPD, anxiety and dementia. However, treatment with full A1 AR agonists has been associated with numerous challenges like cardiovascular side effects, off-target activation as well as desensitization of A1 AR leading to tachyphylaxis. In this regard, partial agonists of A1 AR have been found to be beneficial in enhancing insulin sensitivity and subsequently reducing blood glucose level, while avoiding severe CVS side effects and tachyphylaxis. Allosteric enhancer of A1 AR is found to be potent for the treatment of neuropathic pain, culminating the side effects related to off-target tissue activation of A1 AR. This review provides an overview of the medicinal chemistry and therapeutic potential of various agonists/partial agonists, antagonists and allosteric modulators of A1 AR, with a particular emphasis on their current status and future perspectives in clinical settings.
Collapse
Affiliation(s)
- Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, PO Box - 1, 19392, Amman, Jordan
| | - Satyendra Deka
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Chandrapur Road, Panikhaiti, Guwahati-26, Assam, India
| | - Sara N Abed
- Faculty of Pharmacy, Philadelphia University, PO Box - 1, 19392, Amman, Jordan
| | - Karl-Norbert Klotz
- University of Würzburg, Department of Pharmacology and Toxicology Versbacher Str. 9, D-97078 Würzburg, Germany
| |
Collapse
|
10
|
Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Beanlands RS, Hibbert B. Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective. Cardiovasc Hematol Disord Drug Targets 2019; 19:109-131. [PMID: 30318008 DOI: 10.2174/1871529x18666181011103719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
Adenosine, a purine nucleoside, is produced broadly and implicated in the homeostasis of many cells and tissues. It signals predominantly via 4 purinergic adenosine receptors (ADORs) - ADORA1, ADORA2A, ADORA2B and ADOosine signaling, both through design as specific ADOR agonists and antagonists and as offtarget effects of existing anti-platelet medications. Despite this, adenosine has yet to be firmly established as either a therapeutic or a prognostic tool in clinical medicine to date. Herein, we provide a bench-to-bedside review of adenosine biology, highlighting the key considerations for further translational development of this proRA3 in addition to non-ADOR mediated effects. Through these signaling mechanisms, adenosine exerts effects on numerous cell types crucial to maintaining vascular homeostasis, especially following vascular injury. Both in vitro and in vivo models have provided considerable insights into adenosine signaling and identified targets for therapeutic intervention. Numerous pharmacologic agents have been developed that modulate adenmising molecule.
Collapse
Affiliation(s)
- Trevor Simard
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Richard Jung
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Alisha Labinaz
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | | | - F Daniel Ramirez
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pietro Di Santo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Ian Pitcher
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Pouya Motazedian
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, ON, Canada
| | - Chantal Gaudet
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rebecca Rochman
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Jeffrey Marbach
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Paul Boland
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Kiran Sarathy
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Saleh Alghofaili
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Juan J Russo
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Etienne Couture
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
| | - Rob S Beanlands
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Benjamin Hibbert
- CAPITAL research group, Division of Cardiology, University of Ottawa Heart Institute, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| |
Collapse
|
11
|
Burgos CF, Sanchéz C, Sepúlveda C, Fuentes E, Palomo I, Alarcón M. Anti-aggregation effect on platelets of Indiplon a hypnotic sedative non-benzodiazepine drug. Biomed Pharmacother 2018; 111:378-385. [PMID: 30594050 DOI: 10.1016/j.biopha.2018.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/04/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022] Open
Abstract
Cardiovascular diseases are one of the main public health problems, and many of them, their pathophysiology involves alterations in platelet activity. Platelet activation is an essential event that is regulated by the intracellular concentrations of Ca2+ and cAMP. Interestingly, it has been shown that the activation of adenosine A2A receptors increases cAMP levels and produces the inhibition of platelet aggregation, which appears as a potential target for regulation of platelet activity. Therefore, we tried to activate A2A receptors using Indiplon, a drug developed for the treatment of insomnia, and analyze its effect on platelet activity in vitro. Our results indicate that Indiplon is able to interact in silico with the adenosine A2A receptor (ΔGbind of -73.321 kcal/mol, similar to that obtained with adenosine), which is involved in the regulation of platelet cAMP levels. In functional studies using PRP, a reduction in platelet aggregation induced by ADP was observed in the presence of Indiplon at 500 μM with a percentage of inhibition 70%, where the use of specific inhibitors (ZM241385 and MSX-2) of the A2A receptor also blocked these effects reducing the percentage of inhibition to 41% and 34.1%, respectively. Also, the use of Indiplon produced a decrease in the expression in the membrane of P-selectin. Thus, Indiplon acts as an A2A receptor agonist and whose activation results in inhibition of platelet aggregation and activation, showing a possible cardiovascular protective role.
Collapse
Affiliation(s)
- C F Burgos
- Department of Physiology, Faculty of Biological Sciences, Universidad de Concepción, Chile
| | - C Sanchéz
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile
| | - C Sepúlveda
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - E Fuentes
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - I Palomo
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile
| | - M Alarcón
- Thrombosis Reasearch Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Chile; Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile; Centro de Estudios en Alimentos Procesados (CEAP), CONICYT-Regional, Gore Maule, R09I2001 Talca, Chile.
| |
Collapse
|
12
|
Is knee osteoarthritis related to coffee drinking? A nationwide cross-sectional observational study. Clin Rheumatol 2018; 38:817-825. [PMID: 30397838 DOI: 10.1007/s10067-018-4354-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023]
Abstract
AIMS Coffee is one of the most consumed beverages globally, and coffee consumption is increasing. Osteoarthritis (OA), the most common musculoskeletal disease in the elderly, is also becoming more prevalent. Coffee is associated with various diseases, but there has not yet been a study of the relationship between coffee and knee OA. Therefore, we investigated this relationship in elderly Koreans. METHODS Data from 2012 to 2013 were collected from the Korea National Health and Nutrition Examination Survey. We included 2302 participants in our study: 897 men and 1405 women. Participants with knee OA were defined as those whose knee joints exhibited radiographic change of Kellgren-Lawrence grade 2 or higher. Daily coffee consumption amounts were categorized as none, < 2 cups, 2-3 cups, 4-6 cups, and ≥ 7 cups based on self-reporting. RESULTS A multiple logistic regression model, the odds ratios (ORs) of knee OA in the < 2 cup, 2-3 cup, 4-6 cup, and ≥ 7 cup groups compared to the no-coffee group in men were 1.13 (95% CI 0.50-2.55), 1.79 (95% CI 0.81-3.97), 2.21 (95% CI 0.91-5.35), and 3.81 (95% CI 1.46-12.45), respectively. There was no significant association between coffee consumption and knee OA prevalence in women. CONCLUSION Daily more than 7 cups of coffee drinking was associated with a prevalence of knee OA in Korean men, and although the ORs did not increase significantly across consumption levels, the prevalence of knee OA tended to increase with increasing coffee consumption.
Collapse
|
13
|
Mutant TP53 modulates metastasis of triple negative breast cancer through adenosine A2b receptor signaling. Oncotarget 2018; 9:34554-34566. [PMID: 30349649 PMCID: PMC6195371 DOI: 10.18632/oncotarget.26177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Purpose The identification of genes with synthetic lethality in the context of mutant TP53 is a promising strategy for the treatment of basal-like triple negative breast cancer (TNBC). This study investigated regulators of mutant TP53 (R248Q) in basal-like TNBC and their impact on tumorigenesis. Experimental Design TNBC cells were analyzed by RNA-seq, and synthetic-lethal shRNA knock-down screening, to identify genes related to the expression of mutant TP53. A tissue microarray of 232 breast cancer samples, that included 66 TNBC cases, was used to assess clinicopathological correlates of tumor protein expression. Functional assays were performed in vitro and in vivo to assess the role of ADORA2B in TNBC. Results Transcriptome profiling identified ADORA2B as up-regulated in basal-like TNBC cell lines with R248Q-mutated TP53, with shRNA-screening suggesting the potential for a synthetic-lethal interaction between these genes. In clinical samples, ADORA2B was highly expressed in 39.4% (26/66) of TNBC patients. ADORA2B-expression was significantly correlated with ER (P < 0.01), PgR (P = 0.027), EGFR (P < 0.01), and tumor size (P = 0.037), and was an independent prognostic factor for outcome (P = 0.036). In line with this, ADORA2B-transduced TNBC cells showed increased tumorigenesis, and ADORA2B knockdown, along with mutant p53 knockdown, decreased metastasis both in vitro and in vivo. Notably, the cytotoxic cyclic peptide SA-I suppressed ADORA2B expression and tumorigenesis in TNBC cell lines. Conclusions ADORA2B expression increases the oncogenic potential of basal-like TNBC and is an independent factor for poor outcome. These data suggest that ADORA2B could serve as a prognostic biomarker and a potential therapeutic target for basal-like TNBC.
Collapse
|
14
|
Varani K, Vincenzi F, Merighi S, Gessi S, Borea PA. Biochemical and Pharmacological Role of A1 Adenosine Receptors and Their Modulation as Novel Therapeutic Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:193-232. [DOI: 10.1007/5584_2017_61] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Nishat S, Khan LA, Ansari ZM, Basir SF. Adenosine A3 Receptor: A promising therapeutic target in cardiovascular disease. Curr Cardiol Rev 2016; 12:18-26. [PMID: 26750723 PMCID: PMC4807713 DOI: 10.2174/1573403x12666160111125116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/28/2015] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular complications are one of the major factors for early mortality in the present
worldwide scenario and have become a major challenge in both developing and developed nations. It
has thus become of immense importance to look for different therapeutic possibilities and treatments
for the growing burden of cardiovascular diseases. Recent advancements in research have opened
various means for better understanding of the complication and treatment of the disease. Adenosine
receptors have become tool of choice in understanding the signaling mechanism which might lead to
the cardiovascular complications. Adenosine A3 receptor is one of the important receptor which is extensively studied as a
therapeutic target in cardiovascular disorder. Recent studies have shown that A3AR is involved in the amelioration of cardiovascular
complications by altering the expression of A3AR. This review focuses towards the therapeutic potential of
A3AR involved in cardiovascular disease and it might help in better understanding of mechanism by which this receptor
may prove useful in improving the complications arising due to various cardiovascular diseases. Understanding of A3AR
signaling may also help to develop newer agonists and antagonists which might be prove helpful in the treatment of cardiovascular
disorder.
Collapse
Affiliation(s)
| | | | | | - Seemi F Basir
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India.
| |
Collapse
|
16
|
Guo D, Heitman LH, IJzerman AP. Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors. Chem Rev 2016; 117:38-66. [DOI: 10.1021/acs.chemrev.6b00025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dong Guo
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Laura H. Heitman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
17
|
Equilibrium and kinetic selectivity profiling on the human adenosine receptors. Biochem Pharmacol 2016; 105:34-41. [DOI: 10.1016/j.bcp.2016.02.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/26/2016] [Indexed: 11/23/2022]
|
18
|
Janes K, Symons-Liguori AM, Jacobson KA, Salvemini D. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics. Br J Pharmacol 2016; 173:1253-67. [PMID: 26804983 DOI: 10.1111/bph.13446] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 11/09/2015] [Accepted: 11/22/2015] [Indexed: 12/26/2022] Open
Abstract
Chronic pain negatively impacts the quality of life in a variety of patient populations. The current therapeutic repertoire is inadequate in managing patient pain and warrants the development of new therapeutics. Adenosine and its four cognate receptors (A1 , A2A , A2B and A3 ) have important roles in physiological and pathophysiological states, including chronic pain. Preclinical and clinical studies have revealed that while adenosine and agonists of the A1 and A2A receptors have antinociceptive properties, their therapeutic utility is limited by adverse cardiovascular side effects. In contrast, our understanding of the A3 receptor is only in its infancy, but exciting preclinical observations of A3 receptor antinociception, which have been bolstered by clinical trials of A3 receptor agonists in other disease states, suggest pain relief without cardiovascular side effects and with sufficient tolerability. Our goal herein is to briefly discuss adenosine and its receptors in the context of pathological pain and to consider the current data regarding A3 receptor-mediated antinociception. We will highlight recent findings regarding the impact of the A3 receptor on pain pathways and examine the current state of selective A3 receptor agonists used for these studies. The adenosine-to-A3 receptor pathway represents an important endogenous system that can be targeted to provide safe, effective pain relief from chronic pain.
Collapse
Affiliation(s)
- K Janes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - A M Symons-Liguori
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - K A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - D Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Guo D, IJzerman AP, Heitman LH. Importance of Drug-Target Residence Time at G Protein-Coupled Receptors - a Case for the Adenosine Receptors. THERMODYNAMICS AND KINETICS OF DRUG BINDING 2015. [DOI: 10.1002/9783527673025.ch13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Kasama H, Sakamoto Y, Kasamatsu A, Okamoto A, Koyama T, Minakawa Y, Ogawara K, Yokoe H, Shiiba M, Tanzawa H, Uzawa K. Adenosine A2b receptor promotes progression of human oral cancer. BMC Cancer 2015; 15:563. [PMID: 26228921 PMCID: PMC4520274 DOI: 10.1186/s12885-015-1577-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 07/27/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Adenosine A2b receptor (ADORA2B) encodes an adenosine receptor that is a member of the G protein-coupled receptor superfamily. This integral membrane protein stimulates adenylate cyclase activity in the presence of adenosine. Little is known about the relevance of ADORA2B to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of ADORA2B in OSCC. METHODS The ADORA2B expression levels in nine OSCC-derived cells were analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunoblotting analyses. Using an ADORA2B knockdown model, we assessed cellular proliferation and expression of hypoxia-inducible factor1α (HIF-1α). We examined the adenosine receptor expression profile under both normoxic and hypoxic conditions in the OSCC-derived cells. In addition to in vitro data, the clinical correlation between the ADORA2B expression levels in primary OSCCs (n = 100 patients) and the clinicopathological status by immunohistochemistry (IHC) also was evaluated. RESULTS ADORA2B mRNA and protein were up-regulated significantly (p < 0.05) in seven OSCC-derived cells compared with human normal oral keratinocytes. Suppression of ADORA2B expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells. HIF-1α also was down-regulated in ADORA2B knockdown OSCC cells. During hypoxia, ADORA2B expression was induced significantly (p < 0.05) in the mRNA and protein after 24 hours of incubation in OSCC-derived cells. IHC showed that ADORA2B expression in primary OSCCs was significantly (p < 0.05) greater than in the normal oral counterparts and that ADORA2B-positive OSCCs were correlated closely (p < 0.05) with tumoral size. CONCLUSION Our results suggested that ADORA2B controls cellular proliferation via HIF-1α activation, indicating that ADORA2B may be a key regulator of tumoral progression in OSCCs.
Collapse
Affiliation(s)
- Hiroki Kasama
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Yosuke Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Atsushi Okamoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Tomoyoshi Koyama
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Yasuyuki Minakawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Katsunori Ogawara
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery Research Institute, National Defense Medical College Hospital, 3-2, Namiki, Tokorozawa-shi, Saitama, 359-8513, Japan.
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
21
|
Topological sub-structural molecular design (TOPS-MODE): a useful tool to explore key fragments of human $$\mathbf{A}_{3}$$ A 3 adenosine receptor ligands. Mol Divers 2015. [DOI: 10.1007/s11030-015-9617-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Abstract
Adenosine is an ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1, A2A, A2B and A3 adenosine receptors (ARs). Allosteric enhancers to A1ARs may represent novel therapeutic agents because they increase the activity of these receptors by mediating a shift to their active form in the A1AR-G protein ternary complex. In this manner, they are able to amplify the action of endogenous adenosine, which is produced in high concentrations under conditions of metabolic stress. A1AR allosteric enhancers could be used as a justifiable alternative to the exogenous agonists that are characterized by receptor desensitization and downregulation. In this review, an analysis of some of the most interesting allosteric modulators of A1ARs has been reported.
Collapse
|
23
|
Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S, Gessi S. The A3 adenosine receptor: history and perspectives. Pharmacol Rev 2015; 67:74-102. [PMID: 25387804 DOI: 10.1124/pr.113.008540] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Katia Varani
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Fabrizio Vincenzi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Pier Giovanni Baraldi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Mojgan Aghazadeh Tabrizi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Merighi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| | - Stefania Gessi
- Department of Medical Sciences, Pharmacology Section (P.A.B., K.V., F.V., S.M., S.G.), and Department of Pharmaceutical Sciences, University of Ferrara, Italy (P.G.B., M.A.T.)
| |
Collapse
|
24
|
Preti D, Baraldi PG, Saponaro G, Romagnoli R, Aghazadeh Tabrizi M, Baraldi S, Cosconati S, Bruno A, Novellino E, Vincenzi F, Ravani A, Borea PA, Varani K. Design, synthesis, and biological evaluation of novel 2-((2-(4-(substituted)phenylpiperazin-1-yl)ethyl)amino)-5'-N-ethylcarboxamidoadenosines as potent and selective agonists of the A2A adenosine receptor. J Med Chem 2015; 58:3253-67. [PMID: 25780876 DOI: 10.1021/acs.jmedchem.5b00215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stimulation of A2A adenosine receptors (AR) promotes anti-inflammatory responses in animal models of allergic rhinitis, asthma, chronic obstructive pulmonary disease, and rheumatic diseases. Herein we describe the results of a research program aimed at identifying potent and selective agonists of the A2AAR as potential anti-inflammatory agents. The recent crystallographic analysis of A2AAR agonists and antagonists in complex with the receptor provided key information on the structural determinants leading to receptor activation or blocking. In light of this, we designed a new series of 2-((4-aryl(alkyl)piperazin-1-yl)alkylamino)-5'-N-ethylcarboxamidoadenosines with high A2AAR affinity, activation potency and selectivity obtained by merging distinctive structural elements of known agonists and antagonists of the investigated target. Docking-based SAR optimization allowed us to identify compound 42 as one of the most potent and selective A2A agonist discovered so far (Ki hA2AAR = 4.8 nM, EC50 hA2AAR = 4.9 nM, Ki hA1AR > 10 000 nM, Ki hA3AR = 1487 nM, EC50 hA2BAR > 10 000 nM).
Collapse
Affiliation(s)
- Delia Preti
- †Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- †Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Giulia Saponaro
- †Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Romeo Romagnoli
- †Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- †Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Stefania Baraldi
- †Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Sandro Cosconati
- §DiSTABiF, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Agostino Bruno
- ∥Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- ∥Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Fabrizio Vincenzi
- ‡Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Annalisa Ravani
- ‡Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- ‡Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| | - Katia Varani
- ‡Dipartimento di Scienze Mediche, Sezione di Farmacologia, Università degli Studi di Ferrara, Via Fossato di Mortara 17, 44121 Ferrara, Italy
| |
Collapse
|
25
|
Ren T, Tian T, Feng X, Ye S, Wang H, Wu W, Qiu Y, Yu C, He Y, Zeng J, Cen J, Zhou Y. An adenosine A3 receptor agonist inhibits DSS-induced colitis in mice through modulation of the NF-κB signaling pathway. Sci Rep 2015; 5:9047. [PMID: 25762375 PMCID: PMC4357005 DOI: 10.1038/srep09047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/13/2015] [Indexed: 12/13/2022] Open
Abstract
The role of the adenosine A3 receptor (A3AR) in experimental colitis is controversial. The A3AR agonist N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been shown to have a clinical benefit, although studies in A3AR-deficient mice suggest a pro-inflammatory role. However, there are no studies on the effect of 2-Cl-IB-MECA and the molecular mechanism of action of A3AR in murine colitis models in vivo. Is it the same as that observed in vitro? The interaction between 2-CL-IB-MECA and A3AR in a murine colitis model and the signaling pathways associated with this interaction remain unclear. Here we demonstrate a role for the NF-κB signaling pathway and its effect on modifying the activity of proinflammatory factors in A3AR-mediated biological processes. Our results demonstrated that A3AR activation possessed marked effects on experimental colitis through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tianhua Ren
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Ting Tian
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Xiao Feng
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Shicai Ye
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Hao Wang
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Weiyun Wu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Yumei Qiu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Caiyuan Yu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Yanting He
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Juncheng Zeng
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Junwei Cen
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Yu Zhou
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| |
Collapse
|
26
|
PKA reduces the rat and human KCa3.1 current, CaM binding, and Ca2+ signaling, which requires Ser332/334 in the CaM-binding C terminus. J Neurosci 2015; 34:13371-83. [PMID: 25274816 DOI: 10.1523/jneurosci.1008-14.2014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Ca(2+)-dependent K(+) channel, KCa3.1 (KCNN4/IK/SK4), is widely expressed and contributes to cell functions that include volume regulation, migration, membrane potential, and excitability. KCa3.1 is now considered a therapeutic target for several diseases, including CNS disorders involving microglial activation; thus, we need to understand how KCa3.1 function is regulated. KCa3.1 gating and trafficking require calmodulin binding to the two ends of the CaM-binding domain (CaMBD), which also contains three conserved sites for Ser/Thr kinases. Although cAMP protein kinase (PKA) signaling is important in many cells that use KCa3.1, reports of channel regulation by PKA are inconsistent. We first compared regulation by PKA of native rat KCa3.1 channels in microglia (and the microglia cell line, MLS-9) with human KCa3.1 expressed in HEK293 cells. In all three cells, PKA activation with Sp-8-Br-cAMPS decreased the current, and this was prevented by the PKA inhibitor, PKI14-22. Inhibiting PKA with Rp-8-Br-cAMPS increased the current in microglia. Mutating the single PKA site (S334A) in human KCa3.1 abolished the PKA-dependent regulation. CaM-affinity chromatography showed that CaM binding to KCa3.1 was decreased by PKA-dependent phosphorylation of S334, and this regulation was absent in the S334A mutant. Single-channel analysis showed that PKA decreased the open probability in wild-type but not S334A mutant channels. The same decrease in current for native and wild-type expressed KCa3.1 channels (but not S334A) occurred when PKA was activated through the adenosine A2a receptor. Finally, by decreasing the KCa3.1 current, PKA activation reduced Ca(2+)-release-activated Ca(2+) entry following activation of metabotropic purinergic receptors in microglia.
Collapse
|
27
|
Guo D, Venhorst SN, Massink A, van Veldhoven JPD, Vauquelin G, IJzerman AP, Heitman LH. Molecular mechanism of allosteric modulation at GPCRs: insight from a binding kinetics study at the human A1 adenosine receptor. Br J Pharmacol 2014; 171:5295-312. [PMID: 25040887 PMCID: PMC4294041 DOI: 10.1111/bph.12836] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 06/27/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Many GPCRs can be allosterically modulated by small-molecule ligands. This modulation is best understood in terms of the kinetics of the ligand-receptor interaction. However, many current kinetic assays require at least the (radio)labelling of the orthosteric ligand, which is impractical for studying a range of ligands. Here, we describe the application of a so-called competition association assay at the adenosine A1 receptor for this purpose. EXPERIMENTAL APPROACH We used a competition association assay to examine the binding kinetics of several unlabelled orthosteric agonists of the A1 receptor in the absence or presence of two allosteric modulators. We also tested three bitopic ligands, in which an orthosteric and an allosteric pharmacophore were covalently linked with different spacer lengths. The relevance of the competition association assay for the binding kinetics of the bitopic ligands was also explored by analysing simulated data. KEY RESULTS The binding kinetics of an unlabelled orthosteric ligand were affected by the addition of an allosteric modulator and such effects were probe- and concentration-dependent. Covalently linking the orthosteric and allosteric pharmacophores into one bitopic molecule had a substantial effect on the overall on- or off-rate. CONCLUSION AND IMPLICATIONS The competition association assay is a useful tool for exploring the allosteric modulation of the human adenosine A1 receptor. This assay may have general applicability to study allosteric modulation at other GPCRs as well.
Collapse
Affiliation(s)
- Dong Guo
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| | - Suzanne N Venhorst
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| | - Arnault Massink
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| | - Jacobus P D van Veldhoven
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| | - Georges Vauquelin
- Institute for Molecular Biology and Biotechnology, Free University of Brussels (VUB)Brussel, Belgium
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden UniversityLeiden, The Netherlands
| |
Collapse
|
28
|
Romagnoli R, Baraldi PG, IJzerman AP, Massink A, Cruz-Lopez O, Lopez-Cara LC, Saponaro G, Preti D, Aghazadeh Tabrizi M, Baraldi S, Moorman AR, Vincenzi F, Borea PA, Varani K. Synthesis and Biological Evaluation of Novel Allosteric Enhancers of the A1 Adenosine Receptor Based on 2-Amino-3-(4′-Chlorobenzoyl)-4-Substituted-5-Arylethynyl Thiophene. J Med Chem 2014; 57:7673-86. [DOI: 10.1021/jm5008853] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Romeo Romagnoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Adriaan P. IJzerman
- Leiden Academic
Centre for Drug Research, Division of Medicinal Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Arnault Massink
- Leiden Academic
Centre for Drug Research, Division of Medicinal Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Olga Cruz-Lopez
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Luisa Carlota Lopez-Cara
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Giulia Saponaro
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Delia Preti
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Allan R. Moorman
- King Pharmaceuticals
Inc., Research and Development, 4000
CentreGreen Way, Suite 300, Cary, North Carolina 27513
| | - Fabrizio Vincenzi
- Dipartimento
di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Savonarola 9, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Dipartimento
di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Savonarola 9, 44121 Ferrara, Italy
| | - Katia Varani
- Dipartimento
di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Savonarola 9, 44121 Ferrara, Italy
| |
Collapse
|
29
|
Ahsan MK, Mehal WZ. Activation of adenosine receptor A2A increases HSC proliferation and inhibits death and senescence by down-regulation of p53 and Rb. Front Pharmacol 2014; 5:69. [PMID: 24782773 PMCID: PMC3989592 DOI: 10.3389/fphar.2014.00069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/25/2014] [Indexed: 01/28/2023] Open
Abstract
Background and Aims: During fibrosis hepatic stellate cells (HSC) undergo activation, proliferation, and senescence but the regulation of these important processes is poorly understood. The adenosine A2A receptor (A2A) is known to be present on HSC, and its activation results in liver fibrosis. In this study, we tested if A2A has a role in the regulation of HSC proliferation, apoptosis, senescence, and the relevant molecular mechanism. Methods: The ability of adenosine to regulate p53 and Rb protein levels, proliferation, apoptosis and senescence was tested in the human HSC cell line LX-2 and rat primary HSC. Results: Adenosine receptor activation down-regulates p53 and Rb protein levels, increases BrdU incorporation and increases cell survival in LX-2 cells and in primary rat HSC. These effects of NECA were reproduced by an adenosine A2A receptor specific agonist (CGS21680) and blocked by a specific antagonist (ZM241385). By day twenty-one of culture primary rat HSC entered senescence and expressed β-gal which was significantly inhibited by NECA. Furthermore, NECA induced down regulation of p53 and Rb and Rac1, and decreased phosphorylation of p44-42 MAP Kinase in LX-2 cells and primary rat HSC. These effects were reproduced by the cAMP analog 8-Bromo-cAMP, and the adenylyl cyclase activator forskolin, and were blocked by PKA inhibitors. Conclusions: These results demonstrate that A2A receptor regulates a number of HSC fate decisions and induces greater HSC proliferation, reduces apoptosis and senescence by decreasing p53 and Rb through cAMP-PKA/Rac1/p38 MAPK pathway. This provides a mechanism for adenosine induced HSC regulation and liver fibrosis.
Collapse
Affiliation(s)
- Md Kaimul Ahsan
- Department of Internal Medicine, Section of Digestive Diseases, Yale University New Haven, CT, USA
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University New Haven, CT, USA
| |
Collapse
|
30
|
New carbocyclic nucleoside analogues with a bicyclo[2.2.1]heptane fragment as sugar moiety; Synthesis, X-ray crystallography and anticancer activity. Bioorg Med Chem 2014; 22:513-22. [DOI: 10.1016/j.bmc.2013.10.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/23/2013] [Accepted: 10/31/2013] [Indexed: 11/15/2022]
|
31
|
Dal Ben D, Buccioni M, Lambertucci C, Thomas A, Volpini R. Simulation and comparative analysis of binding modes of nucleoside and non-nucleoside agonists at the A2B adenosine receptor. In Silico Pharmacol 2013; 1:24. [PMID: 25505666 PMCID: PMC4215817 DOI: 10.1186/2193-9616-1-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
PURPOSE A2B receptor agonists are studied as possible therapeutic tools for a variety of pathological conditions. Unfortunately, medicinal chemistry efforts have led to the development of a limited number of potent agonists of this receptor, in most cases with a low or no selectivity versus the other adenosine receptor subtypes. Among the developed molecules, two structural families of compounds have been identified based on nucleoside and non-nucleoside (pyridine) scaffolds. The aim of this work is to analyse the binding mode of these molecules at 3D models of the human A2B receptor to identify possible common interaction features and the key receptor residues involved in ligand interaction. METHODS The A2B receptor models are built by using two recently published crystal structures of the human A2A receptor in complex with two different agonists. The developed models are used as targets for molecular docking studies of nucleoside and non-nucleoside agonists. The generated docking conformations are subjected to energy minimization and rescoring by using three different scoring functions. Further analysis of top-score conformations are performed with a tool evaluating the interaction energy between the ligand and the binding site residues. RESULTS Results suggest a set of common interaction points between the two structural families of agonists and the receptor binding site, as evidenced by the superimposition of docking conformations and by analysis of interaction energy with the receptor residues. CONCLUSIONS The obtained results show that there is a conserved pattern of interaction between the A2B receptor and its agonists. These information and can provide useful data to support the design and the development of A2B receptor agonists belonging to nucleoside or non-nucleoside structural families.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Ajiroghene Thomas
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| |
Collapse
|
32
|
Bonet I, Franco-Montero P, Rivero V, Teijeira M, Borges F, Uriarte E, Morales Helguera A. Classifier ensemble based on feature selection and diversity measures for predicting the affinity of A(2B) adenosine receptor antagonists. J Chem Inf Model 2013; 53:3140-55. [PMID: 24289249 DOI: 10.1021/ci300516w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A(2B) adenosine receptor antagonists may be beneficial in treating diseases like asthma, diabetes, diabetic retinopathy, and certain cancers. This has stimulated research for the development of potent ligands for this subtype, based on quantitative structure-affinity relationships. In this work, a new ensemble machine learning algorithm is proposed for classification and prediction of the ligand-binding affinity of A(2B) adenosine receptor antagonists. This algorithm is based on the training of different classifier models with multiple training sets (composed of the same compounds but represented by diverse features). The k-nearest neighbor, decision trees, neural networks, and support vector machines were used as single classifiers. To select the base classifiers for combining into the ensemble, several diversity measures were employed. The final multiclassifier prediction results were computed from the output obtained by using a combination of selected base classifiers output, by utilizing different mathematical functions including the following: majority vote, maximum and average probability. In this work, 10-fold cross- and external validation were used. The strategy led to the following results: i) the single classifiers, together with previous features selections, resulted in good overall accuracy, ii) a comparison between single classifiers, and their combinations in the multiclassifier model, showed that using our ensemble gave a better performance than the single classifier model, and iii) our multiclassifier model performed better than the most widely used multiclassifier models in the literature. The results and statistical analysis demonstrated the supremacy of our multiclassifier approach for predicting the affinity of A(2B) adenosine receptor antagonists, and it can be used to develop other QSAR models.
Collapse
Affiliation(s)
- Isis Bonet
- Escuela de Ingeniería de Antioquia, Envigado, 055428 Antioquia, Colombia
| | | | | | | | | | | | | |
Collapse
|
33
|
Romagnoli R, Baraldi PG, Carrion MD, Lopez Cara C, Kimatrai Salvador M, Preti D, Aghazadeh Tabrizi M, Moorman AR, Vincenzi F, Borea PA, Varani K. Synthesis and biological effects of novel 2-amino-3-(4-chlorobenzoyl)-4-substituted thiophenes as allosteric enhancers of the A1 adenosine receptor. Eur J Med Chem 2013; 67:409-27. [DOI: 10.1016/j.ejmech.2013.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/01/2013] [Accepted: 07/06/2013] [Indexed: 11/27/2022]
|
34
|
Zhu Y, Liu L, Peng X, Ding X, Yang G, Li T. Role of adenosine A2A receptor in organ-specific vascular reactivity following hemorrhagic shock in rats. J Surg Res 2013; 184:951-8. [PMID: 23587453 DOI: 10.1016/j.jss.2013.03.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 03/01/2013] [Accepted: 03/13/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Previous studies have demonstrated differences among organs in terms of shock-induced vascular reactivity and a role for adenosine A2A receptors (A2ARs) in protection against ischemia/reperfusion injury. However, the contributions of A2ARs to organ-specific vascular reactivity and the protection of vascular responsiveness following shock are currently unknown. METHODS We investigated the role of A2ARs in different arteries, including the left femoral artery (LFA), thoracic aorta (TA), superior mesenteric artery (SMA), right renal artery (RRA), pulmonary artery (PA), and middle cerebral artery (MCA), in hemorrhagic-shock rats. RESULTS The vascular reactivities of the LFA, SMA, RRA, and MCA increased slightly during early shock and then gradually decreased, whereas those of the PA and TA decreased from the start of shock. Different blood vessels lost vascular reactivity at different rates compared with controls; the LFA had the highest rate of loss (64.51%), followed by the SMA (44.69%), TA (36.06%), PA (37.83%), and RRA (32.33%), whereas the MCA had the lowest rate (18.45%). The rate of loss of vascular reactivity in the different vessels was negatively correlated with A2AR expression levels in normal and shock conditions. The highly selective A2AR agonist CGS 21680 significantly improved vascular reactivity, hemodynamic parameters, and animal survival, whereas the specific antagonist SCH58261 further decreased the shock-induced reduction in vascular reactivity and hemodynamic parameters. CONCLUSIONS A2ARs are involved in the regulation and protection of vascular reactivity following shock. A2AR activation may have a beneficial effect on hemorrhagic shock by improving vascular reactivity and hemodynamic parameters.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine A2 Receptor Agonists/pharmacology
- Adenosine A2 Receptor Antagonists/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Female
- Femoral Artery/drug effects
- Femoral Artery/physiology
- Hemodynamics/drug effects
- Hemodynamics/physiology
- Male
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/physiology
- Middle Cerebral Artery/drug effects
- Middle Cerebral Artery/physiology
- Models, Animal
- Phenethylamines/pharmacology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Pyrimidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Adenosine A2A/drug effects
- Receptor, Adenosine A2A/physiology
- Renal Artery/drug effects
- Renal Artery/physiology
- Shock, Hemorrhagic/mortality
- Shock, Hemorrhagic/physiopathology
- Survival Rate
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
35
|
Kermanian F, Soleimani M, Ebrahimzadeh A, Haghir H, Mehdizadeh M. Effects of adenosine A2a receptor agonist and antagonist on hippocampal nuclear factor-kB expression preceded by MDMA toxicity. Metab Brain Dis 2013; 28:45-52. [PMID: 23212481 DOI: 10.1007/s11011-012-9366-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/22/2012] [Indexed: 01/23/2023]
Abstract
There is an abundance of evidence showing that repeated use of 3,4-methlylenedioxymethamphetamine (MDMA; ecstasy) is associated with brain dysfunction, memory disturbance, locomotor hyperactivity, and hyperthermia. MDMA is toxic to both the serotonergic neurons and dopaminergic system. Adenosine is an endogenous purine nucleoside with a neuromodulatory function in the central nervous system. Nuclear factor kappa-B (NF-kB) plays a pivotal role in the initiation and perpetuation of an immune response by triggering the expression of major inflammatory mediators such as cytokines, chemokines, and adhesion molecules. Here, we investigated the effects of the A2a adenosine receptor (A2a-R) agonist (CGS) and antagonist (SCH) on NF-kB expression after MDMA administration. Male Sprague-Dawley rats were injected to MDMA (10 mg/kg) followed by intraperitoneal injection of either CGS or SCH (0.03 mg/kg each) to animals. The hippocampi were then removed for western blot and RT- PCR analyses. MDMA significantly elevated NF-kB expression. Our results show that administration of CGS following MDMA significantly elevated the NF-kB expression both at mRNA and protein levels. By contrast, administration of the A2a-R antagonist SCH resulted in a decrease in the NF-kB levels. Taken together, these results indicate that, co-administration of A2a agonist (CGS) can protect against MDMA neurotoxic effects by increasing NF-kB expression levels; suggesting a potential application for protection against the neurotoxic effects observed in MDMA users.
Collapse
Affiliation(s)
- Fatemeh Kermanian
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | | | | | | |
Collapse
|
36
|
Donatini B. L’Armillaire miel: un agoniste adénosine A1 actif contre les vertiges et un agent potentiel contre les effets délétères de l’ischémie. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s10298-013-0753-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Vincenzi F, Padovan M, Targa M, Corciulo C, Giacuzzo S, Merighi S, Gessi S, Govoni M, Borea PA, Varani K. A(2A) adenosine receptors are differentially modulated by pharmacological treatments in rheumatoid arthritis patients and their stimulation ameliorates adjuvant-induced arthritis in rats. PLoS One 2013; 8:e54195. [PMID: 23326596 PMCID: PMC3543361 DOI: 10.1371/journal.pone.0054195] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 12/11/2012] [Indexed: 12/17/2022] Open
Abstract
A2A adenosine receptors (ARs) play a key role in the inhibition of the inflammatory process. The purpose of this study was to evaluate the modulation of A2AARs in rheumatoid arthritis (RA) patients after different pharmacological treatments and to investigate the effect of A2AAR stimulation in a rat model of arthritis. We investigated A2AAR density and functionality in RA progression by using a longitudinal study in RA patients before and after methotrexate (MTX), anti-TNFα agents or rituximab treatments. A2AARs were analyzed by saturation binding assays in lymphocytes from RA patients throughout the 24-month study timeframe. In an adjuvant-induced arthritis model in rats we showed the efficacy of the A2AAR agonist, CGS 21680 in comparison with standard therapies by means of paw volume assessment, radiographic and ultrasonographic imaging. Arthritic-associated pain was investigated in mechanical allodynia and thermal hyperalgesia tests. IL-10 release following A2AAR stimulation in lymphocytes from RA patients and in serum from arthritic rats was measured. In lymphocytes obtained from RA patients, the A2AAR up-regulation was gradually reduced in function of the treatment time and the stimulation of these receptors mediated a significant increase of IL-10 production. In the same cells, CGS 21680 did not affected cell viability and did not produced cytotoxic effects. The A2AAR agonist CGS 21680 was highly effective, as suggested by the marked reduction of clinical signs, in rat adjuvant-induced arthritis and associated pain. This study highlighted that A2AAR agonists represent a physiological-like therapeutic alternative for RA treatment as suggested by the anti-inflammatory role of A2AARs in lymphocytes from RA patients. The effectiveness of A2AAR stimulation in a rat model of arthritis supported the role of A2AAR agonists as potential pharmacological treatment for RA.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Clinical and Experimental Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Guo D, Mulder-Krieger T, IJzerman AP, Heitman LH. Functional efficacy of adenosine A₂A receptor agonists is positively correlated to their receptor residence time. Br J Pharmacol 2012; 166:1846-59. [PMID: 22324512 DOI: 10.1111/j.1476-5381.2012.01897.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The adenosine A(2A) receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A(2A) receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A(2A) receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A(2A) receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A(2A) receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A(2A) receptor ligands at their receptor. A correlation was observed between the receptor residence time of A(2A) receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A(2A) receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A(2A) receptor lies within their different residence times at this receptor.
Collapse
Affiliation(s)
- Dong Guo
- Division of Medicinal Chemistry, Leiden/Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | | | | | | |
Collapse
|
39
|
Guo D, van Dorp EJH, Mulder-Krieger T, van Veldhoven JPD, Brussee J, IJzerman AP, Heitman LH. Dual-Point Competition Association Assay. ACTA ACUST UNITED AC 2012; 18:309-20. [DOI: 10.1177/1087057112464776] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The concept of ligand-receptor binding kinetics is emerging as an important parameter in the early phase of drug discovery. Since the currently used kinetic assays are laborious and low throughput, we developed a method that enables fast and large format screening. It is a so-called dual-point competition association assay, which measures radioligand binding at two different time points in the absence or presence of unlabeled competitors. Specifically, this assay yields the kinetic rate index (KRI), which is a measure for the binding kinetics of the unlabeled ligands screened. As a prototypical drug target, the adenosine A1 receptor (A1R) was chosen for assay validation and optimization. A screen with 35 high-affinity A1R antagonists yielded seven compounds with a KRI value above 1.0, which indicated a relatively slow dissociation from the target. All other compounds had a KRI value below or equal to 1.0, predicting a relatively fast dissociation rate. Several compounds were selected for follow-up kinetic quantifications in classical kinetic assays and were shown to have kinetic rates that corresponded to their KRI values. The dual-point assay and KRI value may have general applicability at other G-protein-coupled receptors, as well as at drug targets from other protein families.
Collapse
Affiliation(s)
- Dong Guo
- Leiden University, Leiden, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
Ning C, Qi L, Wen J, Zhang Y, Zhang W, Wang W, Blackburn M, Kellems R, Xia Y. Excessive Penile Norepinephrine Level Underlies Impaired Erectile Function in Adenosine A1 Receptor Deficient Mice. J Sex Med 2012; 9:2552-61. [DOI: 10.1111/j.1743-6109.2012.02896.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Korboukh I, Hull-Ryde EA, Rittiner JE, Randhawa AS, Coleman J, Fitzpatrick BJ, Setola V, Janzen WP, Frye SV, Zylka MJ, Jin J. Orally active adenosine A(1) receptor agonists with antinociceptive effects in mice. J Med Chem 2012; 55:6467-77. [PMID: 22738238 DOI: 10.1021/jm3004834] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adenosine A(1) receptor (A(1)AR) agonists have antinociceptive effects in multiple preclinical models of acute and chronic pain. Although numerous A(1)AR agonists have been developed, clinical applications of these agents have been hampered by their cardiovascular side effects. Herein we report a series of novel A(1)AR agonists, some of which are structurally related to adenosine 5'-monophosphate (5'-AMP), a naturally occurring nucleotide that itself activates A(1)AR. These novel compounds potently activate A(1)AR in several orthogonal in vitro assays and are subtype selective for A(1)AR over A(2A)AR, A(2B)AR, and A(3)AR. Among them, UNC32A (3a) is orally active and has dose-dependent antinociceptive effects in wild-type mice. The antinociceptive effects of 3a were completely abolished in A(1)AR knockout mice, revealing a strict dependence on A(1)AR for activity. The apparent lack of cardiovascular side effects when administered orally and high affinity (K(i) of 36 nM for the human A(1)AR) make this compound potentially suitable as a therapeutic.
Collapse
Affiliation(s)
- Ilia Korboukh
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Panchal SK, Wong WY, Kauter K, Ward LC, Brown L. Caffeine attenuates metabolic syndrome in diet-induced obese rats. Nutrition 2012; 28:1055-62. [PMID: 22721876 DOI: 10.1016/j.nut.2012.02.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/25/2012] [Accepted: 02/25/2012] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Caffeine is a constituent of many non-alcoholic beverages. Pharmacological actions of caffeine include the antagonism of adenosine receptors and the inhibition of phosphodiesterase activity. The A₁ adenosine receptors present on adipocytes are involved in the control of fatty acid uptake and lipolysis. In this study, the effects of caffeine were characterized in a diet-induced metabolic syndrome in rats. METHODS Rats were given a high-carbohydrate, high-fat diet (mainly containing fructose and beef tallow) for 16 wk. The control rats were given a corn starch diet. Treatment groups were given caffeine 0.5 g/kg of food for the last 8 wk of the 16-wk protocol. The structure and function of the heart and the liver were investigated in addition to the metabolic parameters including the plasma lipid components. RESULTS The high-carbohydrate, high-fat diet induced symptoms of metabolic syndrome, including obesity, dyslipidemia, impaired glucose tolerance, decreased insulin sensitivity, and increased systolic blood pressure, associated with the development of cardiovascular remodeling and non-alcoholic steatohepatitis. The treatment with caffeine in the rats fed the high-carbohydrate, high-fat diet decreased body fat and systolic blood pressure, improved glucose tolerance and insulin sensitivity, and attenuated cardiovascular and hepatic abnormalities, although the plasma lipid concentrations were further increased. CONCLUSION Decreased total body fat, concurrent with increased plasma lipid concentrations, reflects the lipolytic effects of caffeine in adipocytes, likely owing to the caffeine antagonism of A₁ adenosine receptors on adipocytes.
Collapse
Affiliation(s)
- Sunil K Panchal
- Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba, Queensland, Australia
| | | | | | | | | |
Collapse
|
43
|
Abstract
Adenosine receptors (ARs), the major targets of caffeine and theophylline, comprise four receptor subtypes designated as A(1), A(2A), A(2B) and A(3). Over a dozen AR agonists are currently in clinical trials for various conditions, including cardiac arrhythmias, neuropathic pain, myocardial perfusion imaging, cardiac ischemia, inflammatory diseases and cancer. Adenosine (nonselective), regadenoson (A(2A)) and dipyridamole (act indirectly via ARs) have received regulatory approval for clinical use. The present editorial will give a brief update on the current status of AR agonists in clinical trials.
Collapse
|
44
|
Luan F, Melo A, Borges F, Cordeiro MND. Affinity prediction on A3 adenosine receptor antagonists: The chemometric approach. Bioorg Med Chem 2011; 19:6853-9. [DOI: 10.1016/j.bmc.2011.09.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/17/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
|
45
|
Interplay of hypoxia and A2B adenosine receptors in tissue protection. ADVANCES IN PHARMACOLOGY 2011; 61:145-86. [PMID: 21586359 DOI: 10.1016/b978-0-12-385526-8.00006-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
That adenosine signaling can elicit adaptive tissue responses during conditions of limited oxygen availability (hypoxia) is a long-suspected notion that recently gained general acceptance from genetic and pharmacologic studies of the adenosine signaling pathway. As hypoxia and inflammation share an interdependent relationship, these studies have demonstrated that adenosine signaling events can be targeted to dampen hypoxia-induced inflammation. Here, we build on the hypothesis that particularly the A(2B) adenosine receptor (ADORA(2B)) plays a central role in tissue adaptation to hypoxia. In fact, the ADORA(2B) requires higher adenosine concentrations than any of the other adenosine receptors. However, during conditions of hypoxia or ischemia, the hypoxia-elicited rise in extracellular adenosine is sufficient to activate the ADORA(2B). Moreover, several studies have demonstrated very robust induction of the ADORA(2B) elicited by transcriptional mechanisms involving hypoxia-dependent signaling pathways and the transcription factor "hypoxia-induced factor" 1. In the present chapter, genetic and pharmacologic evidence is presented to support our hypothesis of a tissue protective role of ADORA(2B) signaling during hypoxic conditions, including hypoxia-elicited vascular leakage, organ ischemia, or acute lung injury. All these disease models are characterized by hypoxia-elicited tissue inflammation. As such, the ADORA(2B) has emerged as a therapeutic target for dampening hypoxia-induced inflammation and tissue adaptation to limited oxygen availability.
Collapse
|
46
|
Warren GL, Hulderman T, Liston A, Simeonova PP. Toll-like and adenosine receptor expression in injured skeletal muscle. Muscle Nerve 2011; 44:85-92. [PMID: 21488059 DOI: 10.1002/mus.22001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Many aspects of skeletal muscle regeneration are now considered to be controlled by the innate immune system, specifically macrophages, but the mechanisms for activation and modulation of the innate immune system during injury are not well understood. METHODS We analyzed the expression of toll-like receptors (TLRs) and adenosine receptors during traumatic skeletal muscle injury. mRNA expression and immunostaining of these receptors were evaluated in mouse skeletal muscle injured by freezing. RESULTS Expression of nearly all mammalian TLRs was induced at 1 and/or 3 days postinjury with a common trend for higher expression at day 3. Injury also elicited a dramatic increase in the expression of adenosine receptors A(2B) and A(3) but not A(1) and A(2A) . CONCLUSIONS Both receptor types may be potential targets for stimulation of skeletal muscle tissue regeneration and functional restoration after injury.
Collapse
Affiliation(s)
- Gordon L Warren
- Division of Physical Therapy, Georgia State University, P.O. Box 4019, Atlanta, Georgia 30302, USA.
| | | | | | | |
Collapse
|
47
|
Ru F, Surdenikova L, Brozmanova M, Kollarik M. Adenosine-induced activation of esophageal nociceptors. Am J Physiol Gastrointest Liver Physiol 2011; 300:G485-93. [PMID: 21148396 PMCID: PMC3064123 DOI: 10.1152/ajpgi.00361.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clinical studies implicate adenosine acting on esophageal nociceptive pathways in the pathogenesis of noncardiac chest pain originating from the esophagus. However, the effect of adenosine on esophageal afferent nerve subtypes is incompletely understood. We addressed the hypothesis that adenosine selectively activates esophageal nociceptors. Whole cell perforated patch-clamp recordings and single-cell RT-PCR analysis were performed on the primary afferent neurons retrogradely labeled from the esophagus in the guinea pig. Extracellular recordings were made from the isolated innervated esophagus. In patch-clamp studies, adenosine evoked activation (inward current) in a majority of putative nociceptive (capsaicin-sensitive) vagal nodose, vagal jugular, and spinal dorsal root ganglia (DRG) neurons innervating the esophagus. Single-cell RT-PCR analysis indicated that the majority of the putative nociceptive (transient receptor potential V1-positive) neurons innervating the esophagus express the adenosine receptors. The neural crest-derived (spinal DRG and vagal jugular) esophageal nociceptors expressed predominantly the adenosine A(1) receptor while the placodes-derived vagal nodose nociceptors expressed the adenosine A(1) and/or A(2A) receptors. Consistent with the studies in the cell bodies, adenosine evoked activation (overt action potential discharge) in esophageal nociceptive nerve terminals. Furthermore, the neural crest-derived jugular nociceptors were activated by the selective A(1) receptor agonist CCPA, and the placodes-derived nodose nociceptors were activated by CCPA and/or the selective adenosine A(2A) receptor CGS-21680. In contrast to esophageal nociceptors, adenosine failed to stimulate the vagal esophageal low-threshold (tension) mechanosensors. We conclude that adenosine selectively activates esophageal nociceptors. Our data indicate that the esophageal neural crest-derived nociceptors can be activated via the adenosine A(1) receptor while the placodes-derived esophageal nociceptors can be activated via A(1) and/or A(2A) receptors. Direct activation of esophageal nociceptors via adenosine receptors may contribute to the symptoms in esophageal diseases.
Collapse
Affiliation(s)
- F. Ru
- 1Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - L. Surdenikova
- 2Department of Pathophysiology, Jessenius Medical School, Comenius University, Martin, Slovakia
| | - M. Brozmanova
- 2Department of Pathophysiology, Jessenius Medical School, Comenius University, Martin, Slovakia
| | - M. Kollarik
- 1Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
48
|
Abstract
Ischemic preconditioning, a robust cardioprotective intervention, has limited clinical efficacy because it must be initiated before myocardial ischemia. Conversely, ischemic postconditioning, repeated brief reocclusions of a coronary artery after release of prolonged coronary occlusion, provides cardioprotection in clinically feasible settings, that is, coronary angioplasty. Ischemic postconditioning's signaling is being investigated to identify pharmacological triggers that could be used without angioplasty. In initial minutes of reperfusion H(+) washes out of previously ischemic cells. pH rises enabling mitochondrial permeability transition pores (MPTPs) to form leading to cessation of ATP production and cell necrosis. Coronary reocclusions maintain sufficient acidosis to keep MPTP closed while signaling is initiated that can generate endogenous antagonists of MPTP formation even after cellular pH normalizes. Reintroduction of oxygen generates reactive oxygen species that activate protein kinase C to increase sensitivity of adenosine A(2b) receptors allowing adenosine released from ischemic cells to bind leading to activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Phosphatidylinositol 3-kinase activation results in phosphorylation of Akt promoting activation of nitric oxide synthase and nitric oxide production, which inhibits glycogen synthase kinase-3β, perhaps the final cytosolic signaling step before inhibition of MPTP formation. Interference with MPTP may be the final step that determines cell salvage.
Collapse
Affiliation(s)
- Michael V Cohen
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA.
| | | |
Collapse
|
49
|
Santangeli P, Di Biase L, Pelargonio G, Burkhardt JD, Natale A. The pharmaceutical pipeline for atrial fibrillation. Ann Med 2011; 43:13-32. [PMID: 21166558 DOI: 10.3109/07853890.2010.538431] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is associated with a significant burden of morbidity and increased risk of mortality. Beyond outstanding advances in catheter ablation procedures, antiarrhythmic drug therapy remains a corner-stone to restore and maintain sinus rhythm. However, potentially life-threatening hazards (proarrhythmia) and significant non-cardiac organ toxicity have made new drug development of prominent relevance. Multichannel blocking, atrial selectivity, and the reduction of the risk of adverse events have all constituted the main theme of modern antifibrillatory drug development. Dronedarone, an analog of amiodarone, has the unique characteristic of being the first antiarrhythmic drug demonstrated to reduce hospitalizations in AF. Dronedarone is associated with less systemic toxicity than amiodarone, although being less effective for sinus rhythm maintenance. Atrial selective agents have been developed to target ion channels expressed selectively in the atria. Among the most promising drugs of this class is vernakalant, which has been shown effective for the acute conversion of AF with small risk of proarrhythmia. Finally, increasing evidences support antiarrhythmic effectiveness of traditional non-antiarrhythmic drugs, such as renin-angiotensin system blockers, statins, and omega-3 fatty acids. In this article, we will focus on recent advances in antiarrhythmic therapy for AF, reviewing the possible clinical utility of novel antifibrillatory agents.
Collapse
Affiliation(s)
- Pasquale Santangeli
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX 78705, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Psoriasis is an inflammatory hyperproliferative skin disorder with a strong genetic predisposition. While many effective modalities are currently available for treating psoriasis, response to therapy is quite variable among patients. The genetic component underlying the response to pharmacotherapy in psoriasis is slowly beginning to emerge and represents a specialized field of genetics referred to as pharmacogenetics. The identification of genetic variants has the potential to improve the management of patient care by identifying which patients should avoid a specific drug and which patients should be administered a modified dose. A suitable approach in implementing such a strategy could potentially reduce medical costs and improve success of drug therapy. This article summarizes the clinical aspects of psoriasis, its genetic susceptibility and highlights the current landscape of genetic targets for psoriasis pharmacotherapy.
Collapse
Affiliation(s)
- Darren D O’Rielly
- Department of Pathology & Molecular Medicine, Kingston General Hospital & Queen’s University, Kingston, ON, Canada
| | - Proton Rahman
- Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|