1
|
Gao YY, Yang WC, Ashby CR, Hao GF. Mapping cryptic binding sites of drug targets to overcome drug resistance. Drug Resist Updat 2023; 67:100934. [PMID: 36736042 DOI: 10.1016/j.drup.2023.100934] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
The emergence of drug resistance is a primary obstacle for successful chemotherapy. Drugs that target cryptic binding sites (CBSs) represent a novel strategy for overcoming drug resistance. In this short communication, we explain and discuss how the discovery of CBSs and their inhibitors can overcome drug resistance.
Collapse
Affiliation(s)
- Yang-Yang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Wei-Cheng Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
2
|
Asciminib: first FDA approved allosteric inhibitor of BCR-ABL1 for the treatment of chronic myeloid leukemia. Med Chem Res 2023. [DOI: 10.1007/s00044-022-03011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Teng M, Luskin MR, Cowan-Jacob SW, Ding Q, Fabbro D, Gray NS. The Dawn of Allosteric BCR-ABL1 Drugs: From a Phenotypic Screening Hit to an Approved Drug. J Med Chem 2022; 65:7581-7594. [PMID: 35609336 DOI: 10.1021/acs.jmedchem.2c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic myeloid leukemia (CML) is driven by the constitutive activity of the BCR-ABL1 fusion oncoprotein. Despite the great success of drugs that target the BCR-ABL1 ATP-binding site in transforming CML into a manageable disease, emerging resistance point mutations impair inhibitor binding, thereby limiting the effectiveness of these drugs. Recently, allosteric inhibitors that interact with the ABL1 myristate-binding site have been shown to awaken an endogenous regulatory mechanism and reset full-length BCR-ABL1 into an inactive assembled state. The discovery and development of these allosteric inhibitors demonstrates an in-depth understanding of the fundamental regulatory mechanisms of kinases. In this review, we illustrate the structural basis of c-ABL1's dynamic regulation of autoinhibition and activation, discuss the discovery of allosteric inhibitors and the characterization of their mechanism of action, present the therapeutic potential of dual binding to delay the development of mutation-driven acquired resistance, and suggest key lessons learned from this program.
Collapse
Affiliation(s)
- Mingxing Teng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Marlise R Luskin
- Division of Hematologic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
| | - Sandra W Cowan-Jacob
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel CH-4056, Switzerland
| | - Qiang Ding
- Allorion Therapeutics, Guangzhou, Guangdong 511300, China
| | | | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Wang ZZ, Shi XX, Huang GY, Hao GF, Yang GF. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends Pharmacol Sci 2021; 42:551-565. [PMID: 33958239 DOI: 10.1016/j.tips.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Protein kinases (PKs) are important drug targets, but kinases selectivity poses a challenge to protein kinase inhibitors (PKIs) design. Fragment-based drug discovery (FBDD) has achieved great success in the discovery of highly specific PKIs. It makes full use of kinase-fragment interaction in target kinase subpockets to obtain promising selectivity. However, it's difficult to understand the complicated kinase-fragment interaction space, and systemic discussion of these interactions is still lacking. Herein, we introduce the advantages of the FBDD strategy in PKIs design. Key features of the selectivity of kinase-fragment interactions are summarized and analyzed. Some promising PKIs are introduced as case studies to help understand the fragment-to-lead (F2L) optimization process. Novel strategies and technologies for FBDD in PKIs discovery are also outlooked.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Xing-Xing Shi
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Guang-Yi Huang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
5
|
Zhang H, Han D, Lv T, Liu K, Yang Y, Xu X, Chen Y. Novel peptide myristoly-CM4 induces selective cytotoxicity in leukemia K562/MDR and Jurkat cells by necrosis and/or apoptosis pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2153-2167. [PMID: 31308628 PMCID: PMC6612960 DOI: 10.2147/dddt.s207224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/09/2019] [Indexed: 01/10/2023]
Abstract
Purpose: There is an urgent need for the development of novel, effective, and less toxic drugs to treat leukemia. Antimicrobial peptides (AMPs) have received much more attention as alternative chemotherapeutic agents. This study aimed to examined the cytotoxicity of a novel AMP myristoly-CM4 against chronic myeloid leukemia cells (K562/MDR) and acute lymphocytic leukemia cells (Jurkat), and further investigated its selectivity to clarify the cytotoxic mechanism. Materials and methods: In this study, the cytotoxicity and selectivity of myristoly-CM4 against K562/MDR and Jurkat cells were assessed in vitro, and the anticancer mechanism responsible for its cytotoxicity and selectivity was further investigated. Results: Myristoly-CM4 was cytotoxic to these leukemia cell lines (IC50 2–4 μM) and was less cytotoxic to normal cells (HEK-293, L02 cells, peripheral blood mononuclear cells, and erythrocytes). Myristoyl-CM4 had stronger affinity to K562/MDR and Jurkat cells than to normal cells, while the contents of phosphatidylserine and sialic acids on the cell surfaces of K562/MDR and Jurkat cells were significantly higher than that of HEK293 cells. The myristoyl group effectively mediated the internalization of myristoyl-CM4 to leukemia cells. After internalization, myristoyl-CM4 could target mitochondria and affected mitochondrial function, including disruption of Δψm, increasing the accumulation of ROS, increasing the Bax/Bcl-2 ratio, activating caspase 9 and 3, and PARP to induce mitochondria-dependent apoptosis in both K562/MDR and Jurkat cells. Myristoyl-CM4 also induced K562/MDR cell necrosis by directive membrane disruption, and significantly decreased the level of P-glycoprotein in K562/MDR cells. Conclusion: These results suggested that myristoyl-CM4 showed selective cytotoxicity to leukemia K562/MDR and Jurkat cells by apoptosis and/or necrosis pathway. Myristoyl-CM4, thus, appears to be a promising candidate for leukemia treatment, including multidrug-resistant leukemia.
Collapse
Affiliation(s)
- Huidan Zhang
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Dongju Han
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Tongtong Lv
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Kehang Liu
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yunqing Yang
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xixi Xu
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yuqing Chen
- Department of Biochemistry, Life Sciences College, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
6
|
El Rashedy AA, Appiah-Kubi P, Soliman MES. A Synergistic Combination Against Chronic Myeloid Leukemia: An Intra-molecular Mechanism of Communication in BCR-ABL1 Resistance. Protein J 2019; 38:142-150. [PMID: 30877503 DOI: 10.1007/s10930-019-09820-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The constitutive BCR-ABL1 active protein fusion has been identified as the main cause of chronic myeloid leukemia. The emergence of T334I and D381N point mutations in BCR-ABL1 confer drug resistance. Recent experimental studies show a synergistic effect in suppressing this resistance when Nilotinib and Asciminib are co-administered to target both the catalytic and allosteric binding site of BCR-ABL1 oncoprotein, respectively. However, the structural mechanism by which this synergistic effect occurs has not been clearly elucidated. To obtain insight into the observed synergistic effect, molecular dynamics simulations have been employed to investigate the inhibitory mechanism as well as the structural dynamics that characterize this effect. Structural dynamic analyses indicate that the synergistic binding effect results in a more compact and stable protein conformation. In addition, binding free energy calculation suggests a dominant energy effect of nilotinib during co-administration. van der Waals energy interactions were observed to be the main energy component driving this synergistic effect. Furthermore, per-residue energy decomposition analysis identified Glu481, Ser453, Ala452, Tyr454, Phe401, Asp400, Met337, Phe336, Ile334, And Val275 as key residues that contribute largely to the synergistic effect. The findings highlighted in this study provide a molecular understanding of the dynamics and mechanisms that mediate the synergistic inhibition in BCR-ABL1 protein in chronic myeloid leukemia treatment.
Collapse
Affiliation(s)
- Ahmed A El Rashedy
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Patrick Appiah-Kubi
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Lab, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa. .,College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, FAMU, Tallahassee, FL, 32307, USA.
| |
Collapse
|
7
|
Abruzzese E, de Fabritiis P, Trawinska MM, Niscola P, Apperley JF, Mauro MJ. Back to the future: Treatment-free remission and pregnancy in chronic myeloid leukemia. Eur J Haematol 2018; 102:197-199. [PMID: 30403419 DOI: 10.1111/ejh.13192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | | | | | | | | | - Michael J Mauro
- Memorial Sloan Kettering Cancer Center, New York City, New York
| |
Collapse
|
8
|
Schoepfer J, Jahnke W, Berellini G, Buonamici S, Cotesta S, Cowan-Jacob SW, Dodd S, Drueckes P, Fabbro D, Gabriel T, Groell JM, Grotzfeld RM, Hassan AQ, Henry C, Iyer V, Jones D, Lombardo F, Loo A, Manley PW, Pellé X, Rummel G, Salem B, Warmuth M, Wylie AA, Zoller T, Marzinzik AL, Furet P. Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1. J Med Chem 2018; 61:8120-8135. [DOI: 10.1021/acs.jmedchem.8b01040] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Joseph Schoepfer
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Wolfgang Jahnke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Sandra W. Cowan-Jacob
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Stephanie Dodd
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter Drueckes
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Tobias Gabriel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Jean-Marc Groell
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Robert M. Grotzfeld
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Chrystèle Henry
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Darryl Jones
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | - Alice Loo
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Paul W. Manley
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Xavier Pellé
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Gabriele Rummel
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Bahaa Salem
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | - Thomas Zoller
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Andreas L. Marzinzik
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - Pascal Furet
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| |
Collapse
|
9
|
Carrà G, Torti D, Crivellaro S, Panuzzo C, Taulli R, Cilloni D, Guerrasio A, Saglio G, Morotti A. The BCR-ABL/NF-κB signal transduction network: a long lasting relationship in Philadelphia positive Leukemias. Oncotarget 2018; 7:66287-66298. [PMID: 27563822 PMCID: PMC5323234 DOI: 10.18632/oncotarget.11507] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/10/2016] [Indexed: 12/23/2022] Open
Abstract
The Nuclear Factor-kappa B (NF-κB) family of transcription factors plays a key role in cancer pathogenesis due to the ability to promote cellular proliferation and survival, to induce resistance to chemotherapy and to mediate invasion and metastasis. NF-κB is recruited through different mechanisms involving either canonical (RelA/p50) or non-canonical pathways (RelB/p50 or RelB/p52), which transduce the signals originated from growth-factors, cytokines, oncogenic stress and DNA damage, bacterial and viral products or other stimuli. The pharmacological inhibition of the NF-κB pathway has clearly been associated with significant clinical activity in different cancers. Almost 20 years ago, NF-κB was described as an essential modulator of BCR-ABL signaling in Chronic Myeloid Leukemia and Philadelphia-positive Acute Lymphoblastic Leukemia. This review summarizes the role of NF-κB in BCR-ABL-mediated leukemogenesis and provides new insights on the long lasting BCR-ABL/NF-κB connection.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Davide Torti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Orbassano, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| |
Collapse
|
10
|
Müller MC, Cervantes F, Hjorth-Hansen H, Janssen JJWM, Milojkovic D, Rea D, Rosti G. Ponatinib in chronic myeloid leukemia (CML): Consensus on patient treatment and management from a European expert panel. Crit Rev Oncol Hematol 2017; 120:52-59. [PMID: 29198338 DOI: 10.1016/j.critrevonc.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 01/02/2023] Open
Abstract
Five tyrosine kinase inhibitors (TKIs) are currently approved in the European Union for treatment of chronic myeloid leukemia (CML) and all have considerable overlap in their indications. While disease-specific factors such as CML phase, mutational status, and line of treatment are key to TKI selection, other important features must be considered, such as patient-specific comorbidities and TKI safety profiles. Ponatinib, the TKI most recently approved, has demonstrated efficacy in patients with refractory CML, but is associated with an increased risk of arterial hypertension, sometimes severe, and serious arterial occlusive and venous thromboembolic events. A panel of European experts convened to discuss their clinical experience in managing patients with CML. Based on the panel discussions, scenarios in which a CML patient may be an appropriate candidate for ponatinib therapy are described, including presence of the T315I mutation, resistance to other TKIs without the T315I mutation, and intolerance to other TKIs.
Collapse
Affiliation(s)
- Martin C Müller
- Institute for Hematology and Oncology (IHO GmbH), Mannheim, Germany.
| | | | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs Hospital, Trondheim, Norway; Department of Cancer Research and Molecular Medicine (IKM), NTNU, Trondheim, Norway
| | | | | | - Delphine Rea
- Department of Hematology, Hôpital Saint-Louis, Paris, France
| | - Gianantonio Rosti
- Department of Hematology and Oncology "L. and A. Seràgnoli," St Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Skora L, Jahnke W. 19F-NMR-Based Dual-Site Reporter Assay for the Discovery and Distinction of Catalytic and Allosteric Kinase Inhibitors. ACS Med Chem Lett 2017. [PMID: 28626524 DOI: 10.1021/acsmedchemlett.7b00084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In modern kinase drug discovery, allosteric inhibitors have become a focus of attention due to their potential selectivity, but such compounds are difficult to identify. Here we describe an NMR-based competition assay using 19F-containing reporter molecules, which allows for rapid identification and discrimination between ATP-competitive and allosteric kinase inhibitors. We illustrate the principle of such a dual-site competition assay with the example of catalytic and allosteric ABL1 kinase inhibitors. The assay can also be used to identify and characterize mixed binding modes of well-known drugs, as shown for crizotinib and fingolimod.
Collapse
Affiliation(s)
- Lukasz Skora
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| | - Wolfgang Jahnke
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, 4002 Basel, Switzerland
| |
Collapse
|
12
|
|
13
|
The Use of Pediatric Patient-Derived Xenografts for Identifying Novel Agents and Combinations. MOLECULAR AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/978-3-319-57424-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Manley PW, Stiefl NJ. Progress in the Discovery of BCR-ABL Kinase Inhibitors for the Treatment of Leukemia. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
BCR/ABL increases EZH2 levels which regulates XIAP expression via miRNA-219 in chronic myeloid leukemia cells. Leuk Res 2016; 45:24-32. [DOI: 10.1016/j.leukres.2016.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 11/20/2022]
|
16
|
Santoleri F, Lasala R, Ranucci E, La Barba G, Di Lorenzo R, Vetrò A, Di Bartolomeo P, Costantini A. Medication Adherence to Tyrosine Kinase Inhibitors: 2-Year Analysis of Medication Adherence to Imatinib Treatment for Chronic Myeloid Leukemia and Correlation with the Depth of Molecular Response. Acta Haematol 2016; 136:45-51. [PMID: 27160310 DOI: 10.1159/000444626] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/10/2016] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Adherence to tyrosine kinase inhibitor treatment is a significant factor in the achievement of a good clinical response in chronic myeloid leukemia (CML). The aim of this retrospective study is to investigate 1- and 2-year medication adherence to imatinib treatment, linking adherence rates with the clinical outcome, in accordance with European LeukemiaNet Recommendations for the management of CML. We have tried to find a cutoff value for adherence in order to achieve a good clinical outcome. METHODS The method used to calculate medication adherence was the ratio between the received and the prescribed daily dose. RESULTS We observed the levels of mean adherence for each of the following response groups (in years 1 and 2, respectively): complete response (0.96, 0.95), MR4.5 (1.00, -), MR4 (0.93, 0.91), major molecular responses (0.96, 0.97), warning (0.91, 0.89) and failure (0.79, 0.84). CONCLUSION Results show that the higher the adherence, the lower the level of BCR-ABL1. Furthermore, using cutoffs ≥0.9, outcomes were significantly improved compared to those with cutoffs <0.90. This value of adherence is in line with previous publications.
Collapse
Affiliation(s)
- Fiorenzo Santoleri
- Hospital Pharmacy, Spirito Santo General Hospital of Pescara, Pescara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kohn EC, Ivy SP. Confronting the Care Delivery Challenges Arising from Precision Medicine. Front Oncol 2016; 6:106. [PMID: 27200294 PMCID: PMC4846663 DOI: 10.3389/fonc.2016.00106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/15/2016] [Indexed: 01/27/2023] Open
Abstract
Understanding the biology of cancer at the cellular and molecular levels, and the application of such knowledge to the patient, has opened new opportunities and uncovered new obstacles to quality cancer care delivery. Benefits include our ability to now understand that many, if not most, cancers are not one-size-fits-all. Cancers are a variety of diseases for which intervention may be very different. This approach is beginning to bear fruit in gynecologic cancers where we are investigating therapeutic optimization at a more focused level, that while not yet precision care, is perhaps much improved. Obstacles to quality care for patients come from many directions. These include incomplete understanding of the role of the mutant proteins in the cancers, the narrow spectrum of agents, broader mutational profiles in solid tumors, and sometimes overzealous application of the findings of genetic testing. This has been further compromised by the unbridled use of social media by all stakeholders in cancer care often without scientific qualification, where anecdote sometimes masquerades as a fact. The only current remedy is to wave the flag of caution, encourage all patients who undergo genetic testing, either germline or somatic, to do so with the oversight of genetic counselors and physician scientists knowledgeable in the pathways involved. This aspiration is accomplished with well-designed clinical trials that inform next steps in this complex and ever evolving process.
Collapse
Affiliation(s)
- Elise C Kohn
- Cancer Therapy Evaluation Program, Division of Cancer Therapy and Diagnosis, National Cancer Institute , Rockville, MD , USA
| | - S Percy Ivy
- Cancer Therapy Evaluation Program, Division of Cancer Therapy and Diagnosis, National Cancer Institute , Rockville, MD , USA
| |
Collapse
|
18
|
Chang HR, Park HS, Ahn YZ, Nam S, Jung HR, Park S, Lee SJ, Balch C, Powis G, Ku JL, Kim YH. Improving gastric cancer preclinical studies using diverse in vitro and in vivo model systems. BMC Cancer 2016; 16:200. [PMID: 26955870 PMCID: PMC4784390 DOI: 10.1186/s12885-016-2232-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND "Biomarker-driven targeted therapy," the practice of tailoring patients' treatment to the expression/activity levels of disease-specific genes/proteins, remains challenging. For example, while the anti-ERBB2 monoclonal antibody, trastuzumab, was first developed using well-characterized, diverse in vitro breast cancer models (and is now a standard adjuvant therapy for ERBB2-positive breast cancer patients), trastuzumab approval for ERBB2-positive gastric cancer was largely based on preclinical studies of a single cell line, NCI-N87. Ensuing clinical trials revealed only modest patient efficacy, and many ERBB2-positive gastric cancer (GC) patients failed to respond at all (i.e., were inherently recalcitrant), or succumbed to acquired resistance. METHOD To assess mechanisms underlying GC insensitivity to ERBB2 therapies, we established a diverse panel of GC cells, differing in ERBB2 expression levels, for comprehensive in vitro and in vivo characterization. For higher throughput assays of ERBB2 DNA and protein levels, we compared the concordance of various laboratory quantification methods, including those of in vitro and in vivo genetic anomalies (FISH and SISH) and xenograft protein expression (Western blot vs. IHC), of both cell and xenograft (tissue-sectioned) microarrays. RESULTS The biomarker assessment methods strongly agreed, as did correlation between RNA and protein expression. However, although ERBB2 genomic anomalies showed good in vitro vs. in vivo correlation, we observed striking differences in protein expression between cultured cells and mouse xenografts (even within the same GC cell type). Via our unique pathway analysis, we delineated a signaling network, in addition to specific pathways/biological processes, emanating from the ERBB2 signaling cascade, as a potential useful target of clinical treatment. Integrated analysis of public data from gastric tumors revealed frequent (10 - 20 %) amplification of the genes NFKBIE, PTK2, and PIK3CA, each of which resides in an ERBB2-derived subpathway network. CONCLUSION Our comprehensive bioinformatics analyses of highly heterogeneous cancer cells, combined with tumor "omics" profiles, can optimally characterize the expression patterns and activity of specific tumor biomarkers. Subsequent in vitro and in vivo validation, of specific disease biomarkers (using multiple methodologies), can improve prediction of patient stratification according to drug response or nonresponse.
Collapse
Affiliation(s)
- Hae Ryung Chang
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Cancer Biology Research Laboratory, Institut Pasteur Korea, Bundang, Seongnam-si, Gyeonggi-do, Republic of Korea.
| | - Hee Seo Park
- Animal Sciences Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Young Zoo Ahn
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Seungyoon Nam
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Department of Life Sciences, College of BioNano Technology, Gachon University, Sungnam, South Korea. .,College of Medicine, Gachon University, Incheon, South Korea.
| | - Hae Rim Jung
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Sungjin Park
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Department of Life Sciences, College of BioNano Technology, Gachon University, Sungnam, South Korea. .,College of Medicine, Gachon University, Incheon, South Korea.
| | - Sang Jin Lee
- Animal Sciences Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea.
| | - Curt Balch
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy, Toledo, OH, USA.
| | - Garth Powis
- Cancer Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Ja-Lok Ku
- SNU Korean Cell Line Bank, Cancer Research Institute, Seoul National University, Seoul, Republic of Korea.
| | - Yon Hui Kim
- New Experimental Therapeutics Branch, National Cancer Center of Korea, Ilsan, Goyang-si, Gyeonggi-do, Republic of Korea. .,Cancer Biology Research Laboratory, Institut Pasteur Korea, Bundang, Seongnam-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
19
|
Ishii Y, Nhiayi MK, Tse E, Cheng J, Massimino M, Durden DL, Vigneri P, Wang JYJ. Knockout Serum Replacement Promotes Cell Survival by Preventing BIM from Inducing Mitochondrial Cytochrome C Release. PLoS One 2015; 10:e0140585. [PMID: 26473951 PMCID: PMC4608728 DOI: 10.1371/journal.pone.0140585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/27/2015] [Indexed: 12/21/2022] Open
Abstract
Knockout serum replacement (KOSR) is a nutrient supplement commonly used to replace serum for culturing stem cells. We show here that KOSR has pro-survival activity in chronic myelogenous leukemia (CML) cells transformed by the BCR-ABL oncogene. Inhibitors of BCR-ABL tyrosine kinase kill CML cells by stimulating pro-apoptotic BIM and inhibiting anti-apoptotic BCL2, BCLxL and MCL1. We found that KOSR protects CML cells from killing by BCR-ABL inhibitors—imatinib, dasatinib and nilotinib. The protective effect of KOSR is reversible and not due to the selective outgrowth of drug-resistant clones. In KOSR-protected CML cells, imatinib still inhibited the BCR-ABL tyrosine kinase, reduced the phosphorylation of STAT, ERK and AKT, down-regulated BCL2, BCLxL, MCL1 and up-regulated BIM. However, these pro-apoptotic alterations failed to cause cytochrome c release from the mitochondria. With mitochondria isolated from KOSR-cultured CML cells, we showed that addition of recombinant BIM protein also failed to cause cytochrome c release. Besides the kinase inhibitors, KOSR could protect cells from menadione, an inducer of oxidative stress, but it did not protect cells from DNA damaging agents. Switching from serum to KOSR caused a transient increase in reactive oxygen species and AKT phosphorylation in CML cells that were protected by KOSR but not in those that were not protected by this nutrient supplement. Treatment of KOSR-cultured cells with the PH-domain inhibitor MK2206 blocked AKT phosphorylation, abrogated the formation of BIM-resistant mitochondria and stimulated cell death. These results show that KOSR has cell-context dependent pro-survival activity that is linked to AKT activation and the inhibition of BIM-induced cytochrome c release from the mitochondria.
Collapse
Affiliation(s)
- Yuki Ishii
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - May Keu Nhiayi
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Edison Tse
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
| | - Jonathan Cheng
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Michele Massimino
- Department of Clinical and Molecular Bio-Medicine, University of Catania, Catania, Italy
| | - Donald L. Durden
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
- Department of Pediatrics, School of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Paolo Vigneri
- Department of Clinical and Molecular Bio-Medicine, University of Catania, Catania, Italy
| | - Jean Y. J. Wang
- Division of Hematology-Oncology, Department of Medicine, School of Medicine, University of California San Diego, San Diego, California, United States of America
- Moores Cancer Center, University of California San Diego, San Diego, California, United States of America
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol 2015; 35:180-90. [PMID: 26192967 DOI: 10.1016/j.semcancer.2015.07.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a key cascade downstream of several protein kinases, especially membrane-bound receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) family members. Hyperactivation of the PI3K/Akt pathway is correlated with tumor development, progression, poor prognosis, and resistance to cancer therapies, such as radiotherapy, in human solid tumors. Akt/PKB (Protein Kinase B) members are the major kinases that act downstream of PI3K, and these are involved in a variety of cellular functions, including growth, proliferation, glucose metabolism, invasion, metastasis, angiogenesis, and survival. Accumulating evidence indicates that activated Akt is one of the major predictive markers for solid tumor responsiveness to chemo/radiotherapy. DNA double-strand breaks (DNA-DSB), are the prime cause of cell death induced by ionizing radiation. Preclinical in vitro and in vivo studies have shown that constitutive activation of Akt and stress-induced activation of the PI3K/Akt pathway accelerate the repair of DNA-DSB and, consequently, lead to therapy resistance. Analyzing dysregulations of Akt, such as point mutations, gene amplification or overexpression, which results in the constitutive activation of Akt, might be of special importance in the context of radiotherapy outcomes. Such studies, as well as studies of the mechanism(s) by which activated Akt1 regulates repair of DNA-DSB, might help to identify combinations using the appropriate molecular targeting strategies with conventional radiotherapy to overcome radioresistance in solid tumors. In this review, we discuss the dysregulation of the components of upstream regulators of Akt as well as specific modifications of Akt isoforms that enhance Akt activity. Likewise, the mechanisms by which Akt interferes with repair of DNA after exposure to ionizing radiation, will be reviewed. Finally, the current status of Akt targeting in combination with radiotherapy will be discussed.
Collapse
|