1
|
Pampana SVL, Biswas B, Jajula S, Rapole S, Ummanni R. Proteomic Analysis of Microsomal Proteins Reveals That MVP Is Crucial for the Secretion of GDF-15, Which in Turn Promotes the Neuroendocrine Differentiation of PCa Cells. J Proteome Res 2024; 23:5540-5553. [PMID: 39472282 DOI: 10.1021/acs.jproteome.4c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Neuroendocrine prostate cancer (NEPC) is an aggressive androgen-independent PCa (AIPC) that tends to resist treatment. Understanding its progression and resistance could improve survival outcomes. Previous studies on PCa cells highlighted microsomal proteins' role in PCa progression, but their role in the progression of NEPC remains unclear. Thus, we investigated microsomal proteins in in vitro differentiated NE-LNCaP cells and their role in NED of PCa. Microsomal proteomics revealed two cancer-associated proteins GDF-15 and MVP as elevated in NE-LNCaP cells with GDF-15 among the top 5 upregulated proteins. MVP is elevated in NE-LNCaP and is also increased in NCI-H660 microsomes compared to LNCaP. GO and protein network analysis showed that different molecular networks are affected by microsomal protein enrichment, and MVP and GDF-15 are mapped to functional subnetworks associated with cancer. Remarkably, GDF-15 and MVP are essential for LNCaP cell differentiation when stimulated with Forskolin. Interestingly, AKT and MAPK/ERK signaling pathways are significantly upregulated in NE-LNCaP and NCI-H660 cells with the direct involvement of GDF-15. In summary, we have uncovered that GDF-15 and MVP are involved in NED, with MVP being essential for GDF-15 secretion, promoting NED in PCa cells. These findings provide insights into NED mechanisms and suggest potential therapeutic targets or biomarkers for NEPC.
Collapse
Affiliation(s)
- Sandhya Venkata Lakshmi Pampana
- Department of Applied Biology, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Biswajit Biswas
- Department of Applied Biology, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Saikiran Jajula
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science, Ganeshkhind, Pune 411007, India
| | - Ramesh Ummanni
- Department of Applied Biology, Indian Institute of Chemical Technology (IICT), Hyderabad 500 007, India
- Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
2
|
Schwartz RE, Conboy IM. Non-Intrinsic, Systemic Mechanisms of Cellular Senescence. Cells 2023; 12:2769. [PMID: 38132089 PMCID: PMC10741531 DOI: 10.3390/cells12242769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Cellular senescence is believed to contribute to aging and disease through the activity of secreted factors that promote inflammation, remodel the extracellular matrix, and adversely modify the behavior of non-senescent cells. While the markers and properties of senescent cells are still under investigation, it is postulated that cellular senescence manifests in vivo as the consequence of cellular damage that accumulates and becomes exacerbated with time. Yet, the notions that senescence has a solely intrinsic and time-dependent nature are questioned by the rapid induction of senescence in young mice and young cells in vitro by exposure to blood from aged animals. Here, we review some of the research on the systemically present factors that increase with age and may contribute to extrinsically induced senescence or "bystander senescence". These include proteins, reactive oxygen species, lipids, and nucleic acids, which may be present in individual soluble form, in vesicles, and in non-membranous multi-component macromolecules.
Collapse
Affiliation(s)
| | - Irina M. Conboy
- Department of Bioengineering, University of California Berkeley, Berkeley, CA 94720, USA;
| |
Collapse
|
3
|
Wang R, Yang Y, Zhang Z, Zhao N, Wiemer EAC, Ben J, Ma J, Yuan L. Major vault protein (MVP) suppresses aging- and estrogen deficiency-related bone loss through Fas-mediated apoptosis in osteoclasts. Cell Death Dis 2023; 14:604. [PMID: 37704623 PMCID: PMC10500014 DOI: 10.1038/s41419-023-05928-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 06/02/2023] [Accepted: 06/23/2023] [Indexed: 09/15/2023]
Abstract
Osteoclasts (OCs), derived from monocyte/macrophage lineage, are key orchestrators in bone remodeling. Targeting osteoclast apoptosis is a promising approach to cut down excessive osteoclast numbers, and thus slow down the rate of bone mass loss that inevitably occurs during aging. However, the therapeutic target of apoptosis in osteoclasts has not been fully studied. Our previous work generated Mvpf/fLyz2-Cre mice, conditionally depleting major vault protein (MVP) in monocyte lineage, and identified MVP as a bone protector for its negative role in osteoclastogenesis in vivo and in vitro. Here, we observed a notable decline of MVP in osteoclasts with aging in mice, encouraging us to further investigate the regulatory role of osteoclast MVP. Then, Mvpf/fLyz2-Cre mice were exploited in two osteoporosis contexts, aging and abrupt loss of estrogen, and we revealed that conditional knockout of MVP inhibited osteoclast apoptosis in vivo and in vitro. Moreover, we reported the interaction between MVP and death receptor Fas, and MVP-Fas signaling cascade was identified to positively regulate the apoptosis of osteoclasts, thus preventing osteoporosis. Collectively, our comprehensive discovery of MVP's regulatory role in osteoclasts provides new insight into osteoclast biology and therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Ruobing Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yan Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zhongyin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Na Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| | - Lichan Yuan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Small but Powerful: The Human Vault RNAs as Multifaceted Modulators of Pro-Survival Characteristics and Tumorigenesis. Cancers (Basel) 2022; 14:cancers14112787. [PMID: 35681764 PMCID: PMC9179338 DOI: 10.3390/cancers14112787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Small non-protein-coding RNAs have been recognized as valuable regulators of gene expression in all three domains of life. Particularly in multicellular organisms, ncRNAs-mediated gene expression control has evolved as a central principle of cellular homeostasis. Thus, it is not surprising that non-coding RNA misregulation has been linked to various diseases. Here, we review the contributions of the four human vault RNAs to cellular proliferation, apoptosis and cancer biology. Abstract The importance of non-coding RNAs for regulating gene expression has been uncovered in model systems spanning all three domains of life. More recently, their involvement in modulating signal transduction, cell proliferation, tumorigenesis and cancer progression has also made them promising tools and targets for oncotherapy. Recent studies revealed a class of highly conserved small ncRNAs, namely vault RNAs, as regulators of several cellular homeostasis mechanisms. The human genome encodes four vault RNA paralogs that share significant sequence and structural similarities, yet they seem to possess distinct roles in mammalian cells. The alteration of vault RNA expression levels has frequently been observed in cancer tissues, thus hinting at a putative role in orchestrating pro-survival characteristics. Over the last decade, significant advances have been achieved in clarifying the relationship between vault RNA and cellular mechanisms involved in cancer development. It became increasingly clear that vault RNAs are involved in controlling apoptosis, lysosome biogenesis and function, as well as autophagy in several malignant cell lines, most likely by modulating signaling pathways (e.g., the pro-survival MAPK cascade). In this review, we discuss the identified and known functions of the human vault RNAs in the context of cell proliferation, tumorigenesis and chemotherapy resistance.
Collapse
|
5
|
Dong X, Akuetteh PDP, Song J, Ni C, Jin C, Li H, Jiang W, Si Y, Zhang X, Zhang Q, Huang G. Major Vault Protein (MVP) Associated With BRAF V600E Mutation Is an Immune Microenvironment-Related Biomarker Promoting the Progression of Papillary Thyroid Cancer via MAPK/ERK and PI3K/AKT Pathways. Front Cell Dev Biol 2022; 9:688370. [PMID: 35433709 PMCID: PMC9009514 DOI: 10.3389/fcell.2021.688370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Papillary thyroid cancer (PTC) is the most common malignancy of the endocrine system, with an increase in incidence frequency. Major vault protein (MVP) is the main structural protein of the vault complex that has already been investigated in specific cancers. Yet the underlying biological functions and molecular mechanisms of MVP in PTC still remain considerably uncharacterized. Comprehensive analyses are predicated on several public datasets and local RNA-Seq cohort. Clinically, we found that MVP was upregulated in human PTC than in non-cancerous thyroid tissue and was correlated with vital clinicopathological parameters in PTC patients. MVP expression was associated with BRAF V600E, RAS, TERT, and RET status, and it was correlated with worse progression-free survival in PTC patients. Functionally, enrichment analysis provided new clues for the close relationship between MVP with cancer-related signaling pathways and the immune microenvironment in PTC. In PTC with high MVP expression, we found CD8+ T cells, regulatory T cells, and follicular helper T cells have a higher infiltration level. Intriguingly, MVP expression was positively correlated with multiple distinct phases of the anti-cancer immunity cycle. MVP knockdown significantly suppressed cell viability and colony formation, and promoted apoptosis. In addition, downregulated MVP markedly inhibited the migration and invasion potential of PTC cells. The rescue experiments showed that MVP could reverse the level of cell survival and migration. Mechanistically, MVP exerts its oncogenic function in PTC cells through activating PI3K/AKT/mTOR and MAPK/ERK pathways. These results point out that MVP is a reliable biomarker related to the immune microenvironment and provide a basis for elucidating the oncogenic roles of MVP in PTC progression.
Collapse
Affiliation(s)
- Xubin Dong
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Percy David Papa Akuetteh
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Song
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chao Ni
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cong Jin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huihui Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjie Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuhao Si
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohua Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guanli Huang
- Department of Thyroid Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Thyroid Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China
| |
Collapse
|
6
|
Hu L, Li H, Zi M, Li W, Liu J, Yang Y, Zhou D, Kong QP, Zhang Y, He Y. Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic Development. Front Cell Dev Biol 2022; 10:822816. [PMID: 35252191 PMCID: PMC8890612 DOI: 10.3389/fcell.2022.822816] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a process that leads to a state of irreversible cell growth arrest induced by a variety of intrinsic and extrinsic stresses. Senescent cells (SnCs) accumulate with age and have been implicated in various age-related diseases in part via expressing the senescence-associated secretory phenotype. Elimination of SnCs has the potential to delay aging, treat age-related diseases and extend healthspan. However, once cells becoming senescent, they are more resistant to apoptotic stimuli. Senolytics can selectively eliminate SnCs by targeting the SnC anti-apoptotic pathways (SCAPs). They have been developed as a novel pharmacological strategy to treat various age-related diseases. However, the heterogeneity of the SnCs indicates that SnCs depend on different proteins or pathways for their survival. Thus, a better understanding of the underlying mechanisms for apoptotic resistance of SnCs will provide new molecular targets for the development of cell-specific or broad-spectrum therapeutics to clear SnCs. In this review, we discussed the latest research progresses and challenge in senolytic development, described the significance of regulation of senescence and apoptosis in aging, and systematically summarized the SCAPs involved in the apoptotic resistance in SnCs.
Collapse
Affiliation(s)
- Li Hu
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Huiqin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meiting Zi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wen Li
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Jing Liu
- Lab of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yang Yang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yunxia Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, Haikou, China.,College of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
7
|
Jiang B, Wang D, Hu Y, Li W, Liu F, Zhu X, Li X, Zhang H, Bai H, Yang Q, Yang X, Ben J, Chen Q. Serum Amyloid A1 Exacerbates Hepatic Steatosis via TLR4 Mediated NF-κB Signaling Pathway. Mol Metab 2022; 59:101462. [PMID: 35247611 PMCID: PMC8938331 DOI: 10.1016/j.molmet.2022.101462] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Chronic inflammatory response plays a prominent role in obesity-related nonalcoholic fatty liver disease (NAFLD). However, the intrahepatic triggering mechanism of inflammation remains obscure. This study aimed to elucidate the role of serum amyloid A1 (SAA1), an acute-phase response protein, in the obesity-induced hepatic inflammation and NAFLD. Methods Male mice were fed a high fat diet (HFD) for 16 weeks, and insulin resistance, hepatic steatosis, and inflammation in mice were monitored. Murine SAA1/2 was genetically manipulated to investigate the role of SAA1 in NAFLD. Results We found that SAA1 was increased in the NAFLD liver in both humans and mice. Knockout of SAA1/2 or knockdown of hepatic SAA1/2 promoted energy expenditure and alleviated HFD-induced metabolic disorder, hepatic steatosis, and inflammation. Endogenous overexpression of SAA1 in hepatocytes by adeno-associated virus 8 (AAV8) transfection aggravated overnutrition-associated gain of body weight, insulin resistance, hepatic lipid accumulation, and liver injury, which were markedly alleviated by knockout of murine toll-like receptor 4 (TLR4). Mechanistically, SAA1 directly bound with TLR4/myeloid differentiation 2 (MD2) to induce TLR4 internalization, leading to the activation of nuclear factor (NF)-κB signaling and production of both SAA1 and other inflammatory cytokines, including interleukin (IL)-6 and C–C chemokine ligand (CCL2) in hepatocytes. Administration of HFD mice with an AAV8-shRNA-SAA1/2 showed a therapeutic effect on hepatic inflammation and NAFLD progression. Conclusions These results demonstrate that SAA1 triggers hepatic steatosis and intrahepatic inflammatory response by forming a SAA1/TLR4/NF-κB/SAA1 feedforward regulatory circuit, which, in turn, leads to NAFLD progression. SAA1 may act as a potential target for the disease intervention. SAA1/2 deficiency alleviates HFD-induced hepatic steatosis and inflammation in mice. SAA1 aggravating overnutrition-associated hepatic steatosis and inflammation is dependent on TLR4. SAA1 directly binds to TLR4/MD2 to induce TLR4 internalization, leading to the activation of NF-κB signaling . SAA1/TLR4/NF-κB/SAA1 positive feedback in hepatocytes may be a potential target for obesity associated NAFLD.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Dongdong Wang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yunfu Hu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Wenxuan Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Fengjiang Liu
- Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiuna Yang
- Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Yuan L, Zhao N, Wang J, Liu Y, Meng L, Guo S, Wiemer EA, Chen Q, Mao Y, Ben J, Ma J. Major vault protein (MVP) negatively regulates osteoclastogenesis via calcineurin-NFATc1 pathway inhibition. Theranostics 2021; 11:7247-7261. [PMID: 34158848 PMCID: PMC8210610 DOI: 10.7150/thno.58468] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: Bone homeostasis is maintained by a balanced interplay of osteoblasts and osteoclasts. Osteoclasts are derived from monocyte/macrophage lineage. Major vault protein (MVP) is known to promote apoptosis and prevent metabolic diseases in macrophage. However, whether MVP is involved in osteoclastogenesis is unknown. Here, we identified an important function of MVP as a negative regulator of osteoclastogenesis and its therapeutic potential in preventing bone loss. Methods: Expression of MVP in osteoclasts was investigated in human tumor tissues with immunohistochemical staining. Next, we generated total body (Mvp-/- ) and monocyte-specific (Mvpf/fLyz2-Cre) MVP gene knockout mice to observe bone phenotype and osteoclastogenesis using micro-CT and bone histomorphometry. Moreover, we examined the effects of MVP on osteoclast differentiation, bone resorption, NFATc1 activation and calcium oscillations in vitro. Finally, we explored the clinical potential of targeting MVP in two osteoporosis mouse models and used an adeno-associated virus (AAV) gene to overexpress MVP locally in mice. Results: We found that Mvp-/- and Mvpf/fLyz2-Cre mice both exhibited osteoporosis-like phenotypes. MVP-deficiency also enhanced calcineurin-NFATc1 signaling and promoted NFATc1 activity, which led to enhanced osteoclastogenesis and bone resorption. Calcineurin inhibition using the small molecule inhibitor FK506 corrected the enhanced osteoclastogenesis in Mvpf/fLyz2-Cre group. Additionally, MVP reexpression in Mvpf/fLyz2-Cre group rescued calcineurin expression. MVP overexpression in wild-type mice prevented pathologic bone loss in mouse models of ovariectomized (OVX) and calvaria-adjacent lipopolysaccharide (LPS)-injected. Conclusions: Our data suggested that MVP negatively regulates osteoclast differentiation and bone resorption via inhibition of calcineurin-NFATc1 signaling. In osteoclast-related bone diseases such as osteoporosis, manipulation of MVP activity may be an attractive therapeutic target.
Collapse
|
9
|
Frascotti G, Galbiati E, Mazzucchelli M, Pozzi M, Salvioni L, Vertemara J, Tortora P. The Vault Nanoparticle: A Gigantic Ribonucleoprotein Assembly Involved in Diverse Physiological and Pathological Phenomena and an Ideal Nanovector for Drug Delivery and Therapy. Cancers (Basel) 2021; 13:cancers13040707. [PMID: 33572350 PMCID: PMC7916137 DOI: 10.3390/cancers13040707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent decades, a molecular complex referred to as vault nanoparticle has attracted much attention by the scientific community, due to its unique properties. At the molecular scale, it is a huge assembly consisting of 78 97-kDa polypeptide chains enclosing an internal cavity, wherein enzymes involved in DNA integrity maintenance and some small noncoding RNAs are accommodated. Basically, two reasons justify this interest. On the one hand, this complex represents an ideal tool for the targeted delivery of drugs, provided it is suitably engineered, either chemically or genetically; on the other hand, it has been shown to be involved in several cellular pathways and mechanisms that most often result in multidrug resistance. It is therefore expected that a better understanding of the physiological roles of this ribonucleoproteic complex may help develop new therapeutic strategies capable of coping with cancer progression. Here, we provide a comprehensive review of the current knowledge. Abstract The vault nanoparticle is a eukaryotic ribonucleoprotein complex consisting of 78 individual 97 kDa-“major vault protein” (MVP) molecules that form two symmetrical, cup-shaped, hollow halves. It has a huge size (72.5 × 41 × 41 nm) and an internal cavity, wherein the vault poly(ADP-ribose) polymerase (vPARP), telomerase-associated protein-1 (TEP1), and some small untranslated RNAs are accommodated. Plenty of literature reports on the biological role(s) of this nanocomplex, as well as its involvement in diseases, mostly oncological ones. Nevertheless, much has still to be understood as to how vault participates in normal and pathological mechanisms. In this comprehensive review, current understanding of its biological roles is discussed. By different mechanisms, vault’s individual components are involved in major cellular phenomena, which result in protection against cellular stresses, such as DNA-damaging agents, irradiation, hypoxia, hyperosmotic, and oxidative conditions. These diverse cellular functions are accomplished by different mechanisms, mainly gene expression reprogramming, activation of proliferative/prosurvival signaling pathways, export from the nucleus of DNA-damaging drugs, and import of specific proteins. The cellular functions of this nanocomplex may also result in the onset of pathological conditions, mainly (but not exclusively) tumor proliferation and multidrug resistance. The current understanding of its biological roles in physiological and pathological processes should also provide new hints to extend the scope of its exploitation as a nanocarrier for drug delivery.
Collapse
|
10
|
Bai H, Wang C, Qi Y, Xu J, Li N, Chen L, Jiang B, Zhu X, Zhang H, Li X, Yang Q, Ma J, Xu Y, Ben J, Chen Q. Major vault protein suppresses lung cancer cell proliferation by inhibiting STAT3 signaling pathway. BMC Cancer 2019; 19:454. [PMID: 31092229 PMCID: PMC6521381 DOI: 10.1186/s12885-019-5665-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/30/2019] [Indexed: 01/07/2023] Open
Abstract
Background Major vault protein (MVP) is the major component of vault, a eukaryotic organelle involved in multiple cellular processes, and is important in multiple cellular processes and diseases including the drug resistance in cancer chemotherapies. However, the role of MVP in lung cancer remains unclear. Methods We examined MVP expression in 120 non-small cell lung cancer (NSCLC) tumors and matched normal tissues by immunohistochemistry. Its relationship with NSCLC prognosis was determined by investigating the patient cohort and analyzing the data from a published dataset consisting with more than 1900 lung cancer patients. We further performed shRNA-introduced knockdown of MVP in Lewis lung carcinoma (LLC) cells and examined its effects on the tumor formation in a xenograft mouse model and the tumor cell proliferation, apoptosis, and signal transduction in vitro. Results We found that MVP was up-regulated significantly in tumor tissues compared with the matched tumor-adjacent normal tissues. The increased expression of MVP in lung adenocarcinoma was associated with a better prognosis. Knockdown of MVP in LLC cells promoted xenografted lung cancer formation in mice, which was accompanied with accelerated tumor cell proliferation and suppressed cell apoptosis in vitro. Knockdown of MVP stimulated STAT3 phosphorylation, nuclear localization, and activation of JAK2 and RAF/MEK/ERK pathways in LLC cells. Administration of STAT3 inhibitor WP1066 could prevent MVP knockdown induced tumorigenesis. Conclusions Our findings demonstrate that MVP may act as a lung tumor suppressor via inhibiting STAT3 pathway. MVP would be a potential target for novel therapies of lung adenocarcinoma. Electronic supplementary material The online version of this article (10.1186/s12885-019-5665-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Chenchen Wang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yu Qi
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology, Nanjing Medical University, Nanjing, China
| | - Nan Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.,Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Lili Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Bin Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Portet A, Pinaud S, Chaparro C, Galinier R, Dheilly NM, Portela J, Charriere GM, Allienne JF, Duval D, Gourbal B. Sympatric versus allopatric evolutionary contexts shape differential immune response in Biomphalaria / Schistosoma interaction. PLoS Pathog 2019; 15:e1007647. [PMID: 30893368 PMCID: PMC6443186 DOI: 10.1371/journal.ppat.1007647] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 04/01/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022] Open
Abstract
Selective pressures between hosts and their parasites can result in reciprocal evolution or adaptation of specific life history traits. Local adaptation of resident hosts and parasites should lead to increase parasite infectivity/virulence (higher compatibility) when infecting hosts from the same location (in sympatry) than from a foreign location (in allopatry). Analysis of geographic variations in compatibility phenotypes is the most common proxy used to infer local adaptation. However, in some cases, allopatric host-parasite systems demonstrate similar or greater compatibility than in sympatry. In such cases, the potential for local adaptation remains unclear. Here, we study the interaction between Schistosoma and its vector snail Biomphalaria in which such discrepancy in local versus foreign compatibility phenotype has been reported. Herein, we aim at bridging this gap of knowledge by comparing life history traits (immune cellular response, host mortality, and parasite growth) and molecular responses in highly compatible sympatric and allopatric Schistosoma/Biomphalaria interactions originating from different geographic localities (Brazil, Venezuela and Burundi). We found that despite displaying similar prevalence phenotypes, sympatric schistosomes triggered a rapid immune suppression (dual-RNAseq analyses) in the snails within 24h post infection, whereas infection by allopatric schistosomes (regardless of the species) was associated with immune cell proliferation and triggered a non-specific generalized immune response after 96h. We observed that, sympatric schistosomes grow more rapidly. Finally, we identify miRNAs differentially expressed by Schistosoma mansoni that target host immune genes and could be responsible for hijacking the host immune response during the sympatric interaction. We show that despite having similar prevalence phenotypes, sympatric and allopatric snail-Schistosoma interactions displayed strong differences in their immunobiological molecular dialogue. Understanding the mechanisms allowing parasites to adapt rapidly and efficiently to new hosts is critical to control disease emergence and risks of Schistosomiasis outbreaks. Schistosomiasis, the second most widespread human parasitic disease after malaria, is caused by helminth parasites of the genus Schistosoma. More than 200 million people in 74 countries suffer from the pathological, and societal consequences of this disease. To complete its life cycle, the parasite requires an intermediate host, a freshwater snail of the genus Biomphalaria for its transmission. Given the limited options for treating Schistosoma mansoni infections in humans, much research has focused on developing methods to control transmission by its intermediate snail host. Biomphalaria glabrata. Comparative studies have shown that infection of the snail triggers complex cellular and humoral immune responses resulting in significant variations in parasite infectivity and snail susceptibility, known as the so-called polymorphism of compatibility. However, studies have mostly focused on characterizing the immunobiological mechanisms in sympatric interactions. Herein we used a combination of molecular and phenotypic approaches to compare the effect of infection in various sympatric and allopatric evolutionary contexts, allowing us to better understand the mechanisms of host-parasite local adaptation. Learning more about the immunobiological interactions between B. glabrata and S. mansoni could have important socioeconomic and public health impacts by changing the way we attempt to eradicate parasitic diseases and prevent or control schistosomiasis in the field.
Collapse
Affiliation(s)
- Anaïs Portet
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Silvain Pinaud
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Cristian Chaparro
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Richard Galinier
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nolwenn M. Dheilly
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States of America
| | - Julien Portela
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Guillaume M. Charriere
- Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domitia, Université de Montpellier, Montpellier, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, Interactions Hôtes Pathogènes Environnements UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
12
|
Buneeva O, Kopylov A, Kapitsa I, Ivanova E, Zgoda V, Medvedev A. The Effect of Neurotoxin MPTP and Neuroprotector Isatin on the Profile of Ubiquitinated Brain Mitochondrial Proteins. Cells 2018; 7:E91. [PMID: 30065189 PMCID: PMC6115780 DOI: 10.3390/cells7080091] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are a crucial target for the actions of neurotoxins, causing symptoms of Parkinson's disease in various experimental animal models, and also neuroprotectors. There is evidence that mitochondrial dysfunction induced by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) influences functioning of the ubiquitin-proteasomal system (UPS) responsible for selective proteolytic degradation of proteins from various intracellular compartments (including mitochondria) and neuroprotective effects of certain anti-Parkisonian agents (monoamine oxidase inhibitors) may be associated with their effects on the UPS. In this study, we have investigated the effect of the neurotoxin MPTP and neuroprotector isatin, and their combination on the profile of ubiquitinated brain mitochondrial proteins. The development of movement disorders induced by MPTP administration caused dramatic changes in the profile of ubiquitinated proteins associated with mitochondria. Pretreatment with the neuroprotector isatin decreased manifestations of MPTP-induced Parkinsonism, and had a significant impact on the profile of ubiquitinated mitochondrial proteins (including oxidative modified proteins). Administration of isatin alone to intact mice also influenced the profile of ubiquitinated mitochondrial proteins, and increased the proportion of oxidized proteins carrying the ubiquitination signature. These alterations in the ubiquitination of mitochondrial proteins observed within 2 h after administration of MPTP and isatin obviously reflect immediate short-term biological responses to these treatments.
Collapse
Affiliation(s)
- Olga Buneeva
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| | - Arthur Kopylov
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| | - Inga Kapitsa
- Zakusov Institute of Pharmacology, 8 Baltiskaya Street, Moscow 124315, Russia.
| | - Elena Ivanova
- Zakusov Institute of Pharmacology, 8 Baltiskaya Street, Moscow 124315, Russia.
| | - Victor Zgoda
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| | - Alexei Medvedev
- Department of Proteomic Research and Mass Spectrometry, Institute of Biomedical Chemistry, 10 Pogodinskaya Street, Moscow 119121, Russia.
| |
Collapse
|
13
|
Özcan S, Alessio N, Acar MB, Mert E, Omerli F, Peluso G, Galderisi U. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany NY) 2017; 8:1316-29. [PMID: 27288264 PMCID: PMC4993333 DOI: 10.18632/aging.100971] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/28/2016] [Indexed: 01/10/2023]
Abstract
Senescent cells secrete senescence-associated secretory phenotype (SASP) proteins to carry out several functions, such as sensitizing surrounding cells to senesce; immunomodulation; impairing or fostering cancer growth; and promoting tissue development. Identifying secreted factors that achieve such tasks is a challenging issue since the profile of secreted proteins depends on genotoxic stress and cell type. Currently, researchers are trying to identify common markers for SASP. The present investigation compared the secretome composition of five different senescent phenotypes in two different cell types: bone marrow and adipose mesenchymal stromal cells (MSC). We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation, and replicative exhaustion. We took advantage of LC-MS/MS proteome identification and subsequent gene ontology (GO) evaluation to perform an unbiased analysis (hypothesis free manner) of senescent secretomes. GO analysis allowed us to distribute SASP components into four classes: extracellular matrix/cytoskeleton/cell junctions; metabolic processes; ox-redox factors; and regulators of gene expression. We used Ingenuity Pathway Analysis (IPA) to determine common pathways among the different senescent phenotypes. This investigation, along with identification of eleven proteins that were exclusively expressed in all the analyzed senescent phenotypes, permitted the identification of three key signaling paths: MMP2 - TIMP2; IGFBP3 - PAI-1; and Peroxiredoxin 6 - ERP46 - PARK7 - Cathepsin D - Major vault protein. We suggest that these paths could be involved in the paracrine circuit that induces senescence in neighboring cells and may confer apoptosis resistance to senescent cells.
Collapse
Affiliation(s)
- Servet Özcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Nicola Alessio
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| | - Mustafa B Acar
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Eda Mert
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | - Fatih Omerli
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Department of Biology, Faculty of Sciences, Erciyes University, Kayseri, Turkey
| | | | - Umberto Galderisi
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA.,Department of Experimental Medicine, Biotechnology and Molecular Biology Section, Second University of Naples, Naples, Italy
| |
Collapse
|
14
|
Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer. Int J Mol Sci 2016; 17:ijms17060945. [PMID: 27322246 PMCID: PMC4926478 DOI: 10.3390/ijms17060945] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.
Collapse
|
15
|
Zhang K, Chen C, Liu Y, Chen H, Liu JP. Cellular senescence occurred widespread to multiple selective sites in the fetal tissues and organs of mice. Clin Exp Pharmacol Physiol 2014; 41:965-75. [DOI: 10.1111/1440-1681.12328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/16/2014] [Accepted: 09/30/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Kexiong Zhang
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou Zhejiang Province China
| | - Chengshu Chen
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou Zhejiang Province China
| | - Yingying Liu
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou Zhejiang Province China
| | - Hao Chen
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou Zhejiang Province China
| | - Jun-Ping Liu
- Institute of Aging Research; Hangzhou Normal University School of Medicine; Hangzhou Zhejiang Province China
- Department of Immunology; Central Eastern Clinical School, Monash University; Melbourne Vic. Australia
- Centre for Cancer Research; Monash Institute of Medical Research; Clayton Vic. Australia
| |
Collapse
|
16
|
Pasillas MP, Shields S, Reilly R, Strnadel J, Behl C, Park R, Yates JR, Klemke R, Gonias SL, Coppinger JA. Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulating ERK1/2 activation. Mol Cell Proteomics 2014; 14:1-14. [PMID: 24997994 DOI: 10.1074/mcp.m114.037697] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapy-induced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP). Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We demonstrate that Bag3 and MVP contribute to apoptosis resistance in therapy-induced senescence by increasing the level of activation of extracellular signal-regulated kinase1/2 (ERK1/2). Silencing of either Bag3 or MVP decreased ERK1/2 activation and promoted apoptosis in adriamycin-treated cells. An increase in nuclear accumulation of MVP is observed during therapy-induced senescence and the shift in MVP subcellular localization is Bag3-dependent. We propose a model in which Bag3 binds to MVP and facilitates MVP accumulation in the nucleus, which sustains ERK1/2 activation. We confirmed that silencing of Bag3 or MVP shifts the response toward apoptosis and regulates ERK1/2 activation in a panel of diverse breast cancer cell lines. This study highlights Bag3-MVP as an important complex that regulates a potent prosurvival signaling pathway and contributes to chemotherapy resistance in breast cancer.
Collapse
Affiliation(s)
- Martina P Pasillas
- From the ‡Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Sarah Shields
- §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Rebecca Reilly
- §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jan Strnadel
- From the ‡Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Christian Behl
- ¶Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Duesbergweg 6, D-55099 Mainz, Germany
| | - Robin Park
- ‖Department of Chemical Physiology, the Scripps Research Institute, La, Jolla, California 92037
| | - John R Yates
- ‖Department of Chemical Physiology, the Scripps Research Institute, La, Jolla, California 92037
| | - Richard Klemke
- From the ‡Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Steven L Gonias
- From the ‡Department of Pathology, University of California San Diego, La Jolla, CA 92093
| | - Judith A Coppinger
- From the ‡Department of Pathology, University of California San Diego, La Jolla, CA 92093; §Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland;
| |
Collapse
|
17
|
Boatti L, Robotti E, Marengo E, Viarengo A, Marsano F. Effects of nickel, chlorpyrifos and their mixture on the Dictyostelium discoideum proteome. Int J Mol Sci 2012; 13:15679-705. [PMID: 23443088 PMCID: PMC3546656 DOI: 10.3390/ijms131215679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/16/2022] Open
Abstract
Mixtures of chemicals can have additive, synergistic or antagonistic interactions. We investigated the effects of the exposure to nickel, the organophosphate insecticide chlorpyrifos at effect concentrations (EC) of 25% and 50% and their binary mixture (Ec25 + EC25) on Dictyostelium discoideum amoebae based on lysosomal membrane stability (LMS). We treated D. discoideum with these compounds under controlled laboratory conditions and evaluated the changes in protein levels using a two-dimensional gel electrophoresis (2DE) proteomic approach. Nickel treatment at EC25 induced changes in 14 protein spots, 12 of which were down-regulated. Treatment with nickel at EC50 resulted in changes in 15 spots, 10 of which were down-regulated. Treatment with chlorpyrifos at EC25 induced changes in six spots, all of which were down-regulated; treatment with chlorpyrifos at EC50 induced changes in 13 spots, five of which were down-regulated. The mixture corresponding to EC25 of each compound induced changes in 19 spots, 13 of which were down-regulated. The data together reveal that a different protein expression signature exists for each treatment, and that only a few proteins are modulated in multiple different treatments. For a simple binary mixture, the proteomic response does not allow for the identification of each toxicant. The protein spots that showed significant differences were identified by mass spectrometry, which revealed modulations of proteins involved in metal detoxification, stress adaptation, the oxidative stress response and other cellular processes.
Collapse
Affiliation(s)
- Lara Boatti
- Department of Science & Technological Innovation (DiSIT), The University of Eastern Piedmont Amedeo Avogadro, Alessandria, Novara, Vercelli, Viale Teresa Michel, 11-15121 Alessandria, Italy.
| | | | | | | | | |
Collapse
|
18
|
Lara PC, Pruschy M, Zimmermann M, Henríquez-Hernández LA. MVP and vaults: a role in the radiation response. Radiat Oncol 2011; 6:148. [PMID: 22040803 PMCID: PMC3216873 DOI: 10.1186/1748-717x-6-148] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/31/2011] [Indexed: 01/05/2023] Open
Abstract
Vaults are evolutionary highly conserved ribonucleoproteins particles with a hollow barrel-like structure. The main component of vaults represents the 110 kDa major vault protein (MVP), whereas two minor vaults proteins comprise the 193 kDa vault poly(ADP-ribose) polymerase (vPARP) and the 240 kDa telomerase-associated protein-1 (TEP-1). Additionally, at least one small and untranslated RNA is found as a constitutive component. MVP seems to play an important role in the development of multidrug resistance. This particle has also been implicated in the regulation of several cellular processes including transport mechanisms, signal transmission and immune responses. Vaults are considered a prognostic marker for different cancer types. The level of MVP expression predicts the clinical outcome after chemotherapy in different tumour types. Recently, new roles have been assigned to MVP and vaults including the association with the insulin-like growth factor-1, hypoxia-inducible factor-1alpha, and the two major DNA double-strand break repair machineries: non-homologous endjoining and homologous recombination. Furthermore, MVP has been proposed as a useful prognostic factor associated with radiotherapy resistance. Here, we review these novel actions of vaults and discuss a putative role of MVP and vaults in the response to radiotherapy.
Collapse
Affiliation(s)
- Pedro C Lara
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr Negrín, C/Barranco de La Ballena s/n, 35010, Las Palmas de Gran Canaria, Spain
| | | | | | | |
Collapse
|
19
|
Dortet L, Mostowy S, Louaka AS, Gouin E, Nahori MA, Wiemer EA, Dussurget O, Cossart P. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog 2011; 7:e1002168. [PMID: 21829365 PMCID: PMC3150275 DOI: 10.1371/journal.ppat.1002168] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/31/2011] [Indexed: 12/12/2022] Open
Abstract
L. monocytogenes is a facultative intracellular bacterium responsible for listeriosis. It is able to invade, survive and replicate in phagocytic and non-phagocytic cells. The infectious process at the cellular level has been extensively studied and many virulence factors have been identified. Yet, the role of InlK, a member of the internalin family specific to L. monocytogenes, remains unknown. Here, we first show using deletion analysis and in vivo infection, that InlK is a bona fide virulence factor, poorly expressed in vitro and well expressed in vivo, and that it is anchored to the bacterial surface by sortase A. We then demonstrate by a yeast two hybrid screen using InlK as a bait, validated by pulldown experiments and immunofluorescence analysis that intracytosolic bacteria via an interaction with the protein InlK interact with the Major Vault Protein (MVP), the main component of cytoplasmic ribonucleoproteic particules named vaults. Although vaults have been implicated in several cellular processes, their role has remained elusive. Our analysis demonstrates that MVP recruitment disguises intracytosolic bacteria from autophagic recognition, leading to an increased survival rate of InlK over-expressing bacteria compared to InlK(-) bacteria. Together these results reveal that MVP is hijacked by L. monocytogenes in order to counteract the autophagy process, a finding that could have major implications in deciphering the cellular role of vault particles.
Collapse
Affiliation(s)
- Laurent Dortet
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
- Service de Bactériologie-Virologie, Hôpital de Bicêtre, Assistance Publique/Hôpitaux de Paris, Faculté de Médecine et Université Paris-Sud, Le Kremlin- Bicêtre Cedex, France
| | - Serge Mostowy
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
| | - Ascel Samba Louaka
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
| | - Edith Gouin
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
| | - Erik A.C. Wiemer
- Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Olivier Dussurget
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
- Université Paris Diderot-Paris 7, Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- INSERM, U604, Paris, France
- INRA, USC 2020, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Warnatz HJ, Schmidt D, Manke T, Piccini I, Sultan M, Borodina T, Balzereit D, Wruck W, Soldatov A, Vingron M, Lehrach H, Yaspo ML. The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle. J Biol Chem 2011; 286:23521-32. [PMID: 21555518 PMCID: PMC3123115 DOI: 10.1074/jbc.m111.220178] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/03/2011] [Indexed: 12/22/2022] Open
Abstract
The regulation of gene expression in response to environmental signals and metabolic imbalances is a key step in maintaining cellular homeostasis. BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAF recognition elements, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we combined chromatin immunoprecipitation sequencing analysis of BACH1 target genes in HEK 293 cells with knockdown of BACH1 using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays. The 59 BACH1 target genes identified by chromatin immunoprecipitation sequencing were found highly enriched in genes showing expression changes after BACH1 knockdown, demonstrating the impact of BACH1 repression on transcription. In addition to known and new BACH1 targets involved in heme degradation (HMOX1, FTL, FTH1, ME1, and SLC48A1) and redox regulation (GCLC, GCLM, and SLC7A11), we also discovered BACH1 target genes affecting cell cycle and apoptosis pathways (ITPR2, CALM1, SQSTM1, TFE3, EWSR1, CDK6, BCL2L11, and MAFG) as well as subcellular transport processes (CLSTN1, PSAP, MAPT, and vault RNA). The newly identified impact of BACH1 on genes involved in neurodegenerative processes and proliferation provides an interesting basis for future dissection of BACH1-mediated gene repression in neurodegeneration and virus-induced cancerogenesis.
Collapse
Affiliation(s)
| | | | - Thomas Manke
- Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Marc Sultan
- From the Departments of Vertebrate Genomics and
| | | | | | - Wasco Wruck
- From the Departments of Vertebrate Genomics and
| | | | - Martin Vingron
- Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | | |
Collapse
|
21
|
Dhahbi JM, Atamna H, Boffelli D, Magis W, Spindler SR, Martin DIK. Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence. PLoS One 2011; 6:e20509. [PMID: 21637828 PMCID: PMC3102725 DOI: 10.1371/journal.pone.0020509] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/29/2011] [Indexed: 11/19/2022] Open
Abstract
In cell senescence, cultured cells cease proliferating and acquire aberrant gene expression patterns. MicroRNAs (miRNAs) modulate gene expression through translational repression or mRNA degradation and have been implicated in senescence. We used deep sequencing to carry out a comprehensive survey of miRNA expression and involvement in cell senescence. Informatic analysis of small RNA sequence datasets from young and senescent IMR90 human fibroblasts identifies many miRNAs that are regulated (either up or down) with cell senescence. Comparison with mRNA expression profiles reveals potential mRNA targets of these senescence-regulated miRNAs. The target mRNAs are enriched for genes involved in biological processes associated with cell senescence. This result greatly extends existing information on the role of miRNAs in cell senescence and is consistent with miRNAs having a causal role in the process.
Collapse
Affiliation(s)
- Joseph M. Dhahbi
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- Department of Biochemistry, University of California Riverside, Riverside, California, United States of America
- * E-mail: (JMD); (HA); (DIKM)
| | - Hani Atamna
- Department of Basic Sciences, Neuroscience, The Commonwealth Medical College, Scranton, Pennsylvania, United States of America
- * E-mail: (JMD); (HA); (DIKM)
| | - Dario Boffelli
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Wendy Magis
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Stephen R. Spindler
- Department of Biochemistry, University of California Riverside, Riverside, California, United States of America
| | - David I. K. Martin
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail: (JMD); (HA); (DIKM)
| |
Collapse
|
22
|
Li G, Luna C, Qiu J, Epstein DL, Gonzalez P. Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev 2009; 130:731-41. [PMID: 19782699 PMCID: PMC2795064 DOI: 10.1016/j.mad.2009.09.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 08/14/2009] [Accepted: 09/16/2009] [Indexed: 02/08/2023]
Abstract
We investigated miRNA expression changes associated with stress-induced premature senescence (SIPS) in primary cultures of human diploid fibroblast (HDF) and human trabecular meshwork (HTM) cells. Twenty-five miRNAs were identified by miRNA microarray analysis and their changes in expression were validated by TaqMan real-time RT-PCR in three independent cell lines of HTM and HDF. SIPS in both HTM and HDF cell types was associated with significant down-regulation of four members of the miR-15 family and five miRNAs of the miR-106b family located in the oncogenic clusters miR-17-92, miR-106a-363, and miR-106b-25. SIPS was also associated with up-regulation of two miRNAs (182 and 183) from the miR-183-96-182 cluster. Transfection with miR-106a agomir inhibited the up-regulation of p21(CDKN1A) associated with SIPS while transfection with miR-106a antagomir led to increased p21(CDKN1A) expression in senescent cells. In addition, we identified retinoic acid receptor gamma (RARG) as a target of miR-182 and showed that this protein was down-regulated during SIPS in HDF and HTM cells. These results suggest that changes in miRNA expression might contribute to phenotypic alterations of senescent cells by modulating the expression of key regulatory proteins such as p21(CDKN1A) as well as by targeting genes that are down-regulated in senescent cells such as RARG.
Collapse
Affiliation(s)
- Guorong Li
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | - Coralia Luna
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | - Jianming Qiu
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | - David L. Epstein
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| | - Pedro Gonzalez
- Department of Ophthalmology, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|