1
|
Sethy B, Yu ZY, Narwanti I, Upadhyay R, Lai MJ, Lee SB, Liou JP. Design, synthesis, and biological evaluation of adenosine derivatives targeting DOT1L and HAT as anti-leukemia agents. Bioorg Chem 2024; 153:107771. [PMID: 39299178 DOI: 10.1016/j.bioorg.2024.107771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Disruptor of telomeric silencing 1-like (DOT1L) is a key hub in histone lysine methyltransferase and an attractive therapeutic target for treating hematological malignancies including acute myeloid leukemia (AML). In this study, we report the design and synthesis of a new series of adenosine derivatives as DOT1L inhibitors by accommodating a basic linker piperidine-4-ylmethyl motif to respective aryl-urea/benzimidazole scaffolds. The anti-DOT1L enzyme activity analysis demonstrated that compounds 8, 12, and 13 strongly suppressed DOT1L activity with IC50 values ranging from 0.125 to 0.408 µM among all the synthetics, and the structure-activity relationships were summarized. Moreover, compound 12 possessed relatively potent DOT1L inhibitory activity by significantly reduced histone H3 di-methylation at lysine 79 (H3K79me2) level in cells. Subsequently, all the synthetics were screened against various leukemia cell lines, indicating the DOT1L active adenosine derivatives exhibited low to moderate while compound 15 showed strong cellular inhibition despite its unsuccessful DOT1L inhibition. Therefore, acknowledging the distinctive potency of compound 15 against five different leukemia cell lines, including MLL-r (MV4-11) and non-MLL-r cell lines (HL-60, HH, K562, and KG-1), with IC50 values in the 0.45 ∼ 1.66 μM range and its mode of action was explored. Furthermore, compound 15 hindered histone acetylation, induced remarkable DNA damage, and triggered apoptosis. Importantly, normal T lymphocytes only showed moderate response to compound 15. These findings provide a basis for future studies on its potential application against AML.
Collapse
Affiliation(s)
- Bidyadhar Sethy
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Zih-Yao Yu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Iin Narwanti
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Faculty of Pharmacy, Universitas Ahmad Dahlan, Yogyakarta, Indonesia
| | - Richa Upadhyay
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Sung-Bau Lee
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Wang J, Zheng P, Yu J, Yang X, Zhang J. Rational design of small-sized peptidomimetic inhibitors disrupting protein-protein interaction. RSC Med Chem 2024; 15:2212-2225. [PMID: 39026653 PMCID: PMC11253864 DOI: 10.1039/d4md00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 07/20/2024] Open
Abstract
Protein-protein interactions are fundamental to nearly all biological processes. Due to their structural flexibility, peptides have emerged as promising candidates for developing inhibitors targeting large and planar PPI interfaces. However, their limited drug-like properties pose challenges. Hence, rational modifications based on peptide structures are anticipated to expedite the innovation of peptide-based therapeutics. This review comprehensively examines the design strategies for developing small-sized peptidomimetic inhibitors targeting PPI interfaces, which predominantly encompass two primary categories: peptidomimetics with abbreviated sequences and low molecular weights and peptidomimetics mimicking secondary structural conformations. We have also meticulously detailed several instances of designing and optimizing small-sized peptidomimetics targeting PPIs, including MLL1-WDR5, PD-1/PD-L1, and Bak/Bcl-xL, among others, to elucidate the potential application prospects of these design strategies. Hopefully, this review will provide valuable insights and inspiration for the future development of PPI small-sized peptidomimetic inhibitors in pharmaceutical research endeavors.
Collapse
Affiliation(s)
- Junyuan Wang
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Xiuyan Yang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University Shanghai 200025 China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
3
|
Khirsariya P, Pospíŝil P, Maier L, Boudný M, Babáŝ M, Kroutil OE, Mráz M, Vácha R, Paruch K. Synthesis and Profiling of Highly Selective Inhibitors of Methyltransferase DOT1L Based on Carbocyclic C-Nucleosides. J Med Chem 2022; 65:5701-5723. [PMID: 35302777 DOI: 10.1021/acs.jmedchem.1c02228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Histone methyltransferase DOT1L is an attractive therapeutic target for the treatment of hematological malignancies. Here, we report the design, synthesis, and profiling of new DOT1L inhibitors based on nonroutine carbocyclic C-nucleoside scaffolds. The experimentally observed SAR was found to be nontrivial as seemingly minor changes of individual substituents resulted in significant changes in the affinity to DOT1L. Molecular modeling suggested that these trends could be related to significant conformational changes of the protein upon interaction with the inhibitors. The compounds 22 and (-)-53 (MU1656), carbocyclic C-nucleoside analogues of the natural nucleoside derivative EPZ004777, and the clinical candidate EPZ5676 (pinometostat) potently and selectively inhibit DOT1L in vitro as well as in the cell. The most potent compound MU1656 was found to be more metabolically stable and significantly less toxic in vivo than pinometostat itself.
Collapse
Affiliation(s)
- Prashant Khirsariya
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Patrik Pospíŝil
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukáŝ Maier
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Miroslav Boudný
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavska 20, 625 00 Brno, Czech Republic
| | - Martin Babáŝ
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ondr Ej Kroutil
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marek Mráz
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavska 20, 625 00 Brno, Czech Republic
| | - Robert Vácha
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 602 00 Brno, Czech Republic
| |
Collapse
|
4
|
Targeting of histone methyltransferase DOT1L plays a dual role in chemosensitization of retinoblastoma cells and enhances the efficacy of chemotherapy. Cell Death Dis 2021; 12:1141. [PMID: 34887387 PMCID: PMC8660841 DOI: 10.1038/s41419-021-04431-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022]
Abstract
Aberrant and exclusive expression of chromatin regulators in retinoblastoma (RB) in contrast to terminally differentiated normal retina presents a unique opportunity of selective targeting for RB. However, precise roles of these chromatin regulators in RB development and their potential as therapeutic targets have not been defined thoroughly. Here, we report that targeting of disruptor of telomeric silencing 1-like (DOT1L), a histone H3K79 methyltransferase, sensitizes RB cells to chemotherapeutic drugs by impairing the DNA damage response and thereby potentiating apoptosis while it is largely inefficacious as a single-agent therapy. Moreover, we identified high mobility group AT-hook 2 (HMGA2) as a novel DOT1L target gene in RB cells and found that its aberrant expression is dependent on DOT1L. As HMGA2 depletion reduced CHK1 phosphorylation during DNA damage response and augmented the drug sensitivity in RB cells, our results suggested that DOT1L targeting has a dual role in chemosensitization of RB cells by directly interfering with the immediate involvement of DOT1L in early DNA damage response upon genotoxic insults and also by downregulating the expression of HMGA2 as a rather late effect of DOT1L inhibition. Furthermore, we provide the first preclinical evidence demonstrating that combined therapy with a DOT1L inhibitor significantly improves the therapeutic efficacy of etoposide in murine orthotopic xenografts of RB by rendering the response to etoposide more potent and stable. Taken together, these results support the therapeutic benefits of DOT1L targeting in combination with other chemotherapeutic agents in RB, with mechanistic insights into how DOT1L targeting can improve the current chemotherapy in an RB cell-selective manner.
Collapse
|
5
|
Patterson DG, Kania AK, Zuo Z, Scharer CD, Boss JM. Epigenetic gene regulation in plasma cells. Immunol Rev 2021; 303:8-22. [PMID: 34010461 PMCID: PMC8387415 DOI: 10.1111/imr.12975] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
Humoral immunity provides protection from pathogenic infection and is mediated by antibodies following the differentiation of naive B cells (nBs) to antibody-secreting cells (ASCs). This process requires substantial epigenetic and transcriptional rewiring to ultimately repress the nB program and replace it with one conducive to ASC physiology and function. Notably, these reprogramming events occur within the framework of cell division. Efforts to understand the relationship of cell division with reprogramming and ASC differentiation in vivo have uncovered the timing and scope of reprogramming, as well as key factors that influence these events. Herein, we discuss the unique physiology of ASC and how nBs undergo epigenetic and genome architectural reorganization to acquire the necessary functions to support antibody production. We also discuss the stage-wise manner in which reprogramming occurs across cell divisions and how key molecular determinants can influence B cell fate outcomes.
Collapse
Affiliation(s)
- Dillon G. Patterson
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Anna K. Kania
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| | - Zhihong Zuo
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | | | - Jeremy M. Boss
- Department of Microbiology and Immunology, Emory University, Atlanta GA 30322
| |
Collapse
|
6
|
3D genome alterations associated with dysregulated HOXA13 expression in high-risk T-lineage acute lymphoblastic leukemia. Nat Commun 2021; 12:3708. [PMID: 34140506 PMCID: PMC8211852 DOI: 10.1038/s41467-021-24044-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
3D genome alternations can dysregulate gene expression by rewiring enhancer-promoter interactions and lead to diseases. We report integrated analyses of 3D genome alterations and differential gene expressions in 18 newly diagnosed T-lineage acute lymphoblastic leukemia (T-ALL) patients and 4 healthy controls. 3D genome organizations at the levels of compartment, topologically associated domains and loop could hierarchically classify different subtypes of T-ALL according to T cell differentiation trajectory, similar to gene expressions-based classification. Thirty-four previously unrecognized translocations and 44 translocation-mediated neo-loops are mapped by Hi-C analysis. We find that neo-loops formed in the non-coding region of the genome could potentially regulate ectopic expressions of TLX3, TAL2 and HOXA transcription factors via enhancer hijacking. Importantly, both translocation-mediated neo-loops and NUP98-related fusions are associated with HOXA13 ectopic expressions. Patients with HOXA11-A13 expressions, but not other genes in the HOXA cluster, have immature immunophenotype and poor outcomes. Here, we highlight the potentially important roles of 3D genome alterations in the etiology and prognosis of T-ALL. The non-coding genome of T-ALL has not been extensively studied. Here, the authors conduct RNA-seq, ATAC-seq and Hi-C seq analyses and find that T-ALL associated neo-loops may regulate key transcription factors including HOXA13; the aberrant expression of which is associated with poor prognosis.
Collapse
|
7
|
Wen L, Fu L, Shi YB. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development. FASEB J 2017; 31:4821-4831. [PMID: 28739643 DOI: 10.1096/fj.201700131r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/05/2017] [Indexed: 12/18/2022]
Abstract
Histone modifications are associated with transcriptional regulation by diverse transcription factors. Genome-wide correlation studies have revealed that histone activation marks and repression marks are associated with activated and repressed gene expression, respectively. Among the histone activation marks is histone H3 K79 methylation, which is carried out by only a single methyltransferase, disruptor of telomeric silencing-1-like (DOT1L). We have been studying thyroid hormone (T3)-dependent amphibian metamorphosis in two highly related species, the pseudo-tetraploid Xenopus laevis and diploid Xenopus tropicalis, as a model for postembryonic development, a period around birth in mammals that is difficult to study. We previously showed that H3K79 methylation levels are induced at T3 target genes during natural and T3-induced metamorphosis and that Dot1L is itself a T3 target gene. These suggest that T3 induces Dot1L expression, and Dot1L in turn functions as a T3 receptor (TR) coactivator to promote vertebrate development. We show here that in cotransfection studies or in the reconstituted frog oocyte in vivo transcription system, overexpression of Dot1L enhances gene activation by TR in the presence of T3. Furthermore, making use of the ability to carry out transgenesis in X. laevis and gene knockdown in X. tropicalis, we demonstrate that endogenous Dot1L is critical for T3-induced activation of endogenous TR target genes while transgenic Dot1L enhances endogenous TR function in premetamorphic tadpoles in the presence of T3. Our studies thus for the first time provide complementary gain- and loss-of functional evidence in vivo for a cofactor, Dot1L, in gene activation by TR during vertebrate development.-Wen, L., Fu, L., Shi, Y.-B. Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Qu Y, Liu L, Wang J, Xi W, Xia Y, Bai Q, Xiong Y, Long Q, Xu J, Guo J. Dot1l expression predicts adverse postoperative prognosis of patients with clear-cell renal cell carcinoma. Oncotarget 2016; 7:84775-84784. [PMID: 27713173 PMCID: PMC5356697 DOI: 10.18632/oncotarget.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/22/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Disruptor of telomeric silencing 1-like (Dot1l), a histone methyltransferase that targets the histone H3 lysine 79 (H3K79), has been reported that its high expression is associated with various cancers, while the association between Dot1l expression and clear-cell renal cell carcinoma (ccRCC) is still unknown. PATIENTS AND METHODS We retrospectively enrolled 282 patients with ccRCC undergoing nephrectomy from a single institution between 2005 and 2007, with a median follow-up of 99 months. Dot1l expression was evaluated by immunohistochemistry in clinical specimens. We compared the clinical outcomes by Kaplan-Meier survival analyses and assessed the prognostic value of Dot1l expression. Harrell's concordance index (C-index) was used to assess the predictive accuracy of different prognostic models. RESULTS Higher Dot1l expression indicated poorer OS (P<0.001) and RFS (P<0.001) in patients with ccRCC. Moreover, Dot1l expression could stratify ccRCC patients in pT stage, Fuhrman grade and SSIGN/ Leibovich subgroups, which might redefine individual risk stratification. Multivariate analyses further indicated that Dot1l expression was an independent prognostic factor for OS (P=0.007) and RFS (P=0.001). The prognostic accuracy of conventional prognostic models was notably improved with Dot1l integration. Two nomograms and calibration plots were built to predict OS and RFS for patients with ccRCC and performed better based on C-index value. CONCLUSION Dot1l expression is a promising independent prognostic indicator for postoperative recurrence and survival of patients with ccRCC.
Collapse
Affiliation(s)
- Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Xi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
9
|
Sahni H, Ross S, Barbarulo A, Solanki A, Lau CI, Furmanski A, Saldaña JI, Ono M, Hubank M, Barenco M, Crompton T. A genome wide transcriptional model of the complex response to pre-TCR signalling during thymocyte differentiation. Oncotarget 2016; 6:28646-60. [PMID: 26415229 PMCID: PMC4745683 DOI: 10.18632/oncotarget.5796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/08/2015] [Indexed: 01/19/2023] Open
Abstract
Developing thymocytes require pre-TCR signalling to differentiate from CD4-CD8- double negative to CD4+CD8+ double positive cell. Here we followed the transcriptional response to pre-TCR signalling in a synchronised population of differentiating double negative thymocytes. This time series analysis revealed a complex transcriptional response, in which thousands of genes were up and down-regulated before changes in cell surface phenotype were detected. Genome-wide measurement of RNA degradation of individual genes showed great heterogeneity in the rate of degradation between different genes. We therefore used time course expression and degradation data and a genome wide transcriptional modelling (GWTM) strategy to model the transcriptional response of genes up-regulated on pre-TCR signal transduction. This analysis revealed five major temporally distinct transcriptional activities that up regulate transcription through time, whereas down-regulation of expression occurred in three waves. Our model thus placed known regulators in a temporal perspective, and in addition identified novel candidate regulators of thymocyte differentiation.
Collapse
Affiliation(s)
- Hemant Sahni
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Susan Ross
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | | | - Anisha Solanki
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ching-In Lau
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Anna Furmanski
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | | | - Masahiro Ono
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mike Hubank
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Martino Barenco
- Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Tessa Crompton
- Institute of Child Health, University College London, London WC1N 1EH, UK
| |
Collapse
|
10
|
Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol 2016; 9:49. [PMID: 27316347 PMCID: PMC4912745 DOI: 10.1186/s13045-016-0279-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
Post-translational methylation of histone lysine or arginine residues plays important roles in gene regulation and other physiological processes. Aberrant histone methylation caused by a gene mutation, translocation, or overexpression can often lead to initiation of a disease such as cancer. Small molecule inhibitors of such histone modifying enzymes that correct the abnormal methylation could be used as novel therapeutics for these diseases, or as chemical probes for investigation of epigenetics. Discovery and development of histone methylation modulators are in an early stage and undergo a rapid expansion in the past few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Several compounds have been in clinical trials for safety, pharmacokinetics, and efficacy, targeting several types of cancer. This review summarizes the biochemistry, structures, and biology of cancer-relevant histone methylation modifying enzymes, small molecule inhibitors and their preclinical and clinical antitumor activities. Perspectives for targeting histone methylation for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Fangrui Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jingyu Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Thysen S, Luyten FP, Lories RJU. Targets, models and challenges in osteoarthritis research. Dis Model Mech 2015; 8:17-30. [PMID: 25561745 PMCID: PMC4283647 DOI: 10.1242/dmm.016881] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis is a chronic degenerative disorder of the joint and represents one of the most common diseases worldwide. Its prevalence and severity are increasing owing to aging of the population, but treatment options remain largely limited to painkillers and anti-inflammatory drugs, which only provide symptomatic relief. In the late stages of the disease, surgical interventions are often necessary to partially restore joint function. Although the focus of osteoarthritis research has been originally on the articular cartilage, novel findings are now pointing to osteoarthritis as a disease of the whole joint, in which failure of different joint components can occur. In this Review, we summarize recent progress in the field, including data from novel ‘omics’ technologies and from a number of preclinical and clinical trials. We describe different in vitro and in vivo systems that can be used to study molecules, pathways and cells that are involved in osteoarthritis. We illustrate that a comprehensive and multisystem approach is necessary to understand the complexity and heterogeneity of the disease and to better guide the development of novel therapeutic strategies for osteoarthritis.
Collapse
Affiliation(s)
- Sarah Thysen
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium
| | - Frank P Luyten
- Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium. Division of Rheumatology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium
| | - Rik J U Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Center, KU Leuven, 3000 Leuven, Belgium. Division of Rheumatology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
McGrath J, Trojer P. Targeting histone lysine methylation in cancer. Pharmacol Ther 2015; 150:1-22. [PMID: 25578037 DOI: 10.1016/j.pharmthera.2015.01.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
Within the vast landscape of histone modifications lysine methylation has gained increasing attention because of its profound regulatory potential. The methylation of lysine residues on histone proteins modulates chromatin structure and thereby contributes to the regulation of DNA-based nuclear processes such as transcription, replication and repair. Protein families with opposing catalytic activities, lysine methyltransferases (KMTs) and demethylases (KDMs), dynamically control levels of histone lysine methylation and individual enzymes within these families have become candidate oncology targets in recent years. A number of high quality small molecule inhibitors of these enzymes have been identified. Several of these compounds elicit selective cancer cell killing in vitro and robust efficacy in vivo, suggesting that targeting 'histone lysine methylation pathways' may be a relevant, emerging cancer therapeutic strategy. Here, we discuss individual histone lysine methylation pathway targets, the properties of currently available small molecule inhibitors and their application in the context of cancer.
Collapse
Affiliation(s)
- John McGrath
- Constellation Pharmaceuticals, 215 1st Street Suite 200, Cambridge, MA, 02142, USA
| | - Patrick Trojer
- Constellation Pharmaceuticals, 215 1st Street Suite 200, Cambridge, MA, 02142, USA.
| |
Collapse
|
13
|
Wen L, Fu L, Guo X, Chen Y, Shi YB. Histone methyltransferase Dot1L plays a role in postembryonic development in Xenopus tropicalis. FASEB J 2014; 29:385-93. [PMID: 25366346 DOI: 10.1096/fj.14-252171] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Histone methylations have been implicated to play important roles in diverse cellular processes. Of particular interest is the methylation of histone H3K79, which is catalyzed by an evolutionarily conserved methyltransferase, disruptor of telomeric silencing (Dot1)-like (Dot1L). To investigate the role of Dot1L during vertebrate development, we have generated a Dot1L-specific transcription activator-like effector nuclease (TALEN) nuclease to knockdown endogenous Dot1L in Xenopus tropicalis, a diploid species highly related to the well-known developmental model Xenopus laevis, a pseudotetraploid amphibian. We show that the TALEN was extremely efficient in mutating Dot1L when expressed in fertilized eggs, creating essentially Dot1L knockout embryos with little H3K79 methylation. Importantly, we observed that Dot1L knockdown had no apparent effect on embryogenesis because normally feeding tadpoles were formed, consistent with the lack of maternal Dot1L expression. On the other hand, Dot1L knockdown severely retarded the growth of the tadpoles and led to tadpole lethality prior to metamorphosis. These findings suggest that Dot1L and H3K79 methylation play an important role for tadpole growth and development prior to metamorphosis into a frog. Our findings further reveal interesting similarities and differences between Xenopus and mouse development and suggest the existence of 2 separate phases of vertebrate development with distinct requirements for epigenetic modifications.
Collapse
Affiliation(s)
- Luan Wen
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), U.S. National Institutes of Health, Bethesda, Maryland, USA; and
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), U.S. National Institutes of Health, Bethesda, Maryland, USA; and
| | - Xiaogang Guo
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science City, Luogang, Guangzhou, China
| | - Yonglong Chen
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Science City, Luogang, Guangzhou, China
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), U.S. National Institutes of Health, Bethesda, Maryland, USA; and
| |
Collapse
|
14
|
The emerging roles of DOT1L in leukemia and normal development. Leukemia 2014; 28:2131-8. [DOI: 10.1038/leu.2014.169] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/06/2014] [Accepted: 05/15/2014] [Indexed: 01/30/2023]
|
15
|
Maginn EN, de Sousa CH, Wasan HS, Stronach EA. Opportunities for translation: targeting DNA repair pathways in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2014; 1846:45-54. [PMID: 24727386 DOI: 10.1016/j.bbcan.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the poorest prognosis neoplasms. It is typified by high levels of genomic aberrations and copy-number variation, intra-tumoural heterogeneity and resistance to conventional chemotherapy. Improved therapeutic options, ideally targeted against cancer-specific biological mechanisms, are urgently needed. Although induction of DNA damage and/or modulation of DNA damage response pathways are associated with the activity of a number of conventional PDAC chemotherapies, the effectiveness of this approach in the treatment of PDAC has not been comprehensively reviewed. Here, we review chemotherapeutic agents that have shown anti-cancer activity in PDAC and whose mechanisms of action involve modulation of DNA repair pathways. In addition, we highlight novel potential targets within these pathways based on the emerging understanding of PDAC biology and their exploitation as targets in other cancers.
Collapse
Affiliation(s)
- Elaina N Maginn
- Molecular Therapy Laboratory, Department of Cancer and Surgery, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom.
| | - Camila H de Sousa
- Molecular Therapy Laboratory, Department of Cancer and Surgery, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Harpreet S Wasan
- Molecular Therapy Laboratory, Department of Cancer and Surgery, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Euan A Stronach
- Molecular Therapy Laboratory, Department of Cancer and Surgery, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| |
Collapse
|
16
|
The molecular basis of acute myeloid leukemia. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
17
|
Anglin JL, Song Y. A medicinal chemistry perspective for targeting histone H3 lysine-79 methyltransferase DOT1L. J Med Chem 2013; 56:8972-83. [PMID: 23879463 DOI: 10.1021/jm4007752] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Histone H3 lysine79 (H3K79) methyltransferase DOT1L plays an important role in the activation and maintenance of gene transcription. It is essential for embryonic development as well as normal functions of the hematopoietic system, heart, and kidney in adults. DOT1L has been found to be a drug target for acute leukemia with mixed lineage leukemia (MLL) gene translocations. The rearranged onco-MLL can recruit DOT1L, causing aberrant H3K79 methylation, overexpression of leukemia relevant genes, and eventually leukemogenesis. Potent DOT1L inhibitors possess selective activity against this type of leukemia in cell-based and animal studies, with the most advanced compound being in clinical trials. In the medicinal chemistry point of view, we review the biochemistry, cancer biology, and current inhibitors of DOT1L, as well as biophysical (including X-ray crystallographic) investigation of DOT1L-inhibitor interactions. Potential future directions in the context of drug discovery and development targeting DOT1L are discussed.
Collapse
Affiliation(s)
- Justin L Anglin
- Department of Pharmacology, Baylor College of Medicine , 1 Baylor Plaza, Houston, Texas 77030, United States
| | | |
Collapse
|
18
|
Wigle TJ, Copeland RA. Drugging the human methylome: an emerging modality for reversible control of aberrant gene transcription. Curr Opin Chem Biol 2013; 17:369-78. [PMID: 23619004 DOI: 10.1016/j.cbpa.2013.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/28/2013] [Indexed: 01/16/2023]
Abstract
Protein and DNA methylation have emerged as critical mechanisms for the control of regulated gene transcription. In humans, the addition, recognition and removal of methyl groups are orchestrated by at least 344 proteins that we collectively refer to as the 'methylome'. The large size of the methylome likely reflects the importance of precise control over this small covalent modification. An increasing number of reports implicating the misregulation of methylation in disease make the proteins governing this modification attractive target for small molecule drug discovery. In light of the emerging opportunities for the development of therapeutics that modulate methylation-dependent pathways, this review examines the protein families that constitute the methylome, with emphasis on the methylation of arginine and lysine residues of proteins. Genetic aberrations that give rise to disease are highlighted, in addition to recent proof-of-concept successes in the development of small molecule modulators of methylome constituents.
Collapse
Affiliation(s)
- Tim J Wigle
- Epizyme Inc., 400 Technology Square, 4th Floor, Cambridge, MA 02139, United States
| | | |
Collapse
|
19
|
Matsuura K, Fujimoto K, Das B, Fu L, Lu CD, Shi YB. Histone H3K79 methyltransferase Dot1L is directly activated by thyroid hormone receptor during Xenopus metamorphosis. Cell Biosci 2012; 2:25. [PMID: 22800560 PMCID: PMC3414807 DOI: 10.1186/2045-3701-2-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/16/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Thyroid hormone (T3) is important for adult organ function and vertebrate development. Amphibian metamorphosis is totally dependent on T3 and offers a unique opportunity to study how T3 controls postembryonic development in vertebrates. Earlier studies have demonstrated that TR mediates the metamorphic effects of T3 in Xenopus laevis. Liganded TR recruits histone modifying coactivator complexes to target genes during metamorphosis. This leads to nucleosomal removal and histone modifications, including methylation of histone H3 lysine (K) 79, in the promoter regions, and the activation of T3-inducible genes. RESULTS We show that Dot1L, the only histone methyltransferase capable of methylating H3K79, is directly regulated by TR via binding to a T3 response element in the promoter region during metamorphosis in Xenopus tropicalis, a highly related species of Xenopus laevis. We further show that Dot1L expression in both the intestine and tail correlates with the transformation of the organs. CONCLUSIONS Our findings suggest that TR activates Dot1L, which in turn participates in metamorphosis through a positive feedback to enhance H3K79 methylation and gene activation by liganded TR.
Collapse
Affiliation(s)
- Kazuo Matsuura
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA
| | - Kenta Fujimoto
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA.,Present address: Division of Gene Structure and Function, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, 350-1241, Japan
| | - Biswajit Das
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA.,Present address: Laboratory of Immunopathogenesis and Bioinformatics, Clinical Services Program, SAIC-Frederick, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Liezhen Fu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA
| | - Christopher D Lu
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Program in Cellular Regulation and Metabolism (PCRM), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 18 Library Dr, Bethesda, MD, 20892, USA
| |
Collapse
|
20
|
Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis. Proc Natl Acad Sci U S A 2012; 109:8218-23. [PMID: 22566624 DOI: 10.1073/pnas.1119899109] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hip osteoarthritis (HOA) is one of the most disabling and common joint disorders with a large genetic component that is, however, still ill-defined. To date, genome-wide association studies (GWAS) in osteoarthritis (OA) and specifically in HOA have yielded only few loci, which is partly explained by heterogeneity in the OA definition. Therefore, we here focused on radiographically measured joint-space width (JSW), a proxy for cartilage thickness and an important underlying intermediate trait for HOA. In a GWAS of 6,523 individuals on hip-JSW, we identified the G allele of rs12982744 on chromosome 19p13.3 to be associated with a 5% larger JSW (P = 4.8 × 10(-10)). The association was replicated in 4,442 individuals from three United Kingdom cohorts with an overall meta-analysis P value of 1.1 × 10(-11). The SNP was also strongly associated with a 12% reduced risk for HOA (P = 1 × 10(-4)). The SNP is located in the DOT1L gene, which is an evolutionarily conserved histone methyltransferase, recently identified as a potentially dedicated enzyme for Wnt target-gene activation in leukemia. Immunohistochemical staining of the DOT1L protein in mouse limbs supports a role for DOT1L in chondrogenic differentiation and adult articular cartilage. DOT1L is also expressed in OA articular chondrocytes. Silencing of Dot1l inhibited chondrogenesis in vitro. Dot1l knockdown reduces proteoglycan and collagen content, and mineralization during chondrogenesis. In the ATDC5 chondrogenesis model system, DOT1L interacts with TCF and Wnt signaling. These data are a further step to better understand the role of Wnt-signaling during chondrogenesis and cartilage homeostasis. DOT1L may represent a therapeutic target for OA.
Collapse
|
21
|
Wei Y, Gañán-Gómez I, Salazar-Dimicoli S, McCay SL, Garcia-Manero G. Histone methylation in myelodysplastic syndromes. Epigenomics 2012; 3:193-205. [PMID: 22122281 DOI: 10.2217/epi.11.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Histone methylation is a type of epigenetic modification that is critical for the regulation of gene expression. Numerous studies have demonstrated that abnormalities of this newly characterized epigenetic modification are involved in the development of multiple diseases, including cancer. There is also emerging evidence for a link between histone methylation and the pathogenesis of myeloid neoplasms, including myelodysplastic syndromes (MDS). This article provides an overview of recent progress in the studies of histone methylation in myeloid malignancies, with an emphasis on MDS. We cover each type of histone methylation modification and their regulatory mechanisms, as well as their abnormalities in MDS or potential connections to MDS. We also summarize the recent progress in the development of inhibitors targeting histone methylation and their applications as potential therapeutic agents.
Collapse
Affiliation(s)
- Yue Wei
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
22
|
Wakeman TP, Wang Q, Feng J, Wang XF. Bat3 facilitates H3K79 dimethylation by DOT1L and promotes DNA damage-induced 53BP1 foci at G1/G2 cell-cycle phases. EMBO J 2012; 31:2169-81. [PMID: 22373577 DOI: 10.1038/emboj.2012.50] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 02/07/2012] [Indexed: 11/09/2022] Open
Abstract
The methyltransferase DOT1L methylates histone H3 at K79 to facilitate specific biological events. H3K79 dimethylation (H3K79-2Me) by DOT1L influences the DNA damage response by promoting 53BP1 recruitment to DNA damage sites; however, it is unclear if this methylation is required as 53BP1 interacts with dimethylated H4 (H4K20-2Me) with a much higher affinity. We demonstrate that H3K79-2Me, while negligible during S-phase, is required for ionizing radiation (IR)-induced 53BP1 foci formation during G1/G2-phases when H4K20-2Me levels are low. Further, we describe an essential role for HLA-B-associated transcript 3 (Bat3) in regulating this process in U2OS cells. Bat3 co-localizes with DOT1L at histone H3, and Bat3 knockdown results in decreased DOT1L-H3 interaction and H3K79-2Me, leading to a reduction in IR-induced 53BP1 foci formation, defects in DNA repair and increased sensitivity to IR. We demonstrate that a conserved Bat3 ubiquitin-like motif and a conserved DOT1L ubiquitin-interacting motif promote DOT1L-Bat3 interaction to facilitate efficient H3K79-2Me and IR-induced 53BP1 foci formation during G1/G2-phases. Taken together, our findings identify a novel role for Bat3 in regulating DOT1L function, which plays a critical role in DNA damage response.
Collapse
Affiliation(s)
- Timothy P Wakeman
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
23
|
Balgobind BV, Zwaan CM, Pieters R, Van den Heuvel-Eibrink MM. The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia 2011; 25:1239-48. [DOI: 10.1038/leu.2011.90] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation. Blood 2011; 117:4759-68. [PMID: 21398221 DOI: 10.1182/blood-2010-12-327668] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disruptor of telomeric silencing 1-like (Dot1l) is a histone 3 lysine 79 methyltransferase. Studies of constitutive Dot1l knockout mice show that Dot1l is essential for embryonic development and prenatal hematopoiesis. DOT1L also interacts with translocation partners of Mixed Lineage Leukemia (MLL) gene, which is commonly translocated in human leukemia. However, the requirement of Dot1l in postnatal hematopoiesis and leukemogenesis of MLL translocation proteins has not been conclusively shown. With a conditional Dot1l knockout mouse model, we examined the consequences of Dot1l loss in postnatal hematopoiesis and MLL translocation leukemia. Deletion of Dot1l led to pancytopenia and failure of hematopoietic homeostasis, and Dot1l-deficient cells minimally reconstituted recipient bone marrow in competitive transplantation experiments. In addition, MLL-AF9 cells required Dot1l for oncogenic transformation, whereas cells with other leukemic oncogenes, such as Hoxa9/Meis1 and E2A-HLF, did not. These findings illustrate a crucial role of Dot1l in normal hematopoiesis and leukemogenesis of specific oncogenes.
Collapse
|
25
|
Frederiks F, Stulemeijer IJE, Ovaa H, van Leeuwen F. A modified epigenetics toolbox to study histone modifications on the nucleosome core. Chembiochem 2010; 12:308-13. [PMID: 21243718 DOI: 10.1002/cbic.201000617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Indexed: 11/06/2022]
Abstract
In the eukaryotic cell nucleus, the DNA is packaged in a structure called chromatin. The fundamental building block of chromatin is the nucleosome, which is composed of DNA wrapped around an octamer of four distinct histone proteins. Post-translational modifications (PTMs) of histone proteins can affect chromatin structure and function and thereby play critical roles in regulating gene expression. Most histone PTMs are found in unstructured histone tails that protrude from the nucleosome core. As a consequence, (synthetic) peptide truncations of these tails provide convenient substrates for the analysis of histone binding proteins and modifying enzymes. Modifications located on residues that reside in the nucleosome core are more difficult to study because short peptides do not recapitulate this defined structured state well. Methylation of histone H3 on Lys79 (H3K79), mediated by the Dot1 enzyme, is an example of such a core PTM. This modification, which is highly conserved, is linked to human leukemia, and pharmacological modulation of Dot1 activity could be a strategy to treat leukemia. Here we review the available and emerging genetic, biochemical, and chemical methods that together are starting to reveal the function and regulation of this and other histone modifications on the nucleosome core.
Collapse
Affiliation(s)
- Floor Frederiks
- Division of Gene Regulation, Netherlands Cancer Institute, Netherlands Proteomics Centre, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
26
|
Small molecule modulators of histone acetylation and methylation: a disease perspective. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:810-28. [PMID: 20888936 DOI: 10.1016/j.bbagrm.2010.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 09/18/2010] [Accepted: 09/24/2010] [Indexed: 11/22/2022]
Abstract
Chromatin modifications have gained immense significance in the past few decades as key regulators of gene expression. The enzymes responsible for these modifications along with the other non-histone proteins, remodeling factors and small RNAs modulate the chromatin dynamicity, which in turn directs the chromatin function. A concerted action of different modifying enzymes catalyzes these modifications, which are read by effector modules and converted to functional outcomes by various protein complexes. Several small molecules in the physiological system such as acetyl CoA, NAD(+), and ATP are actively involved in regulating these functional outcomes. Recent understanding in the field of epigenetics indicate the possibility of the existence of a network, 'the epigenetic language' involving cross talk among different modifications that could regulate cellular processes like transcription, replication and repair. Hence, these modifications are essential for the cellular homeostasis, and any alteration in this balance leads to a pathophysiological condition or disease manifestation. Therefore, it is becoming more evident that modulators of these modifying enzymes could be an attractive therapeutic strategy, popularly referred to as 'Epigenetic therapy.' Although this field is currently monopolized by DNA methylation and histone deacetylase inhibitors, this review highlights the modulators of the other modifications namely histone acetylation, lysine methylation and arginine methylation and argues in favor of their therapeutic potential.
Collapse
|