1
|
Zhang S, Guo A, Wang H, Liu J, Dong C, Ren J, Wang G. Oncogenic MORC2 in cancer development and beyond. Genes Dis 2024; 11:861-873. [PMID: 37692502 PMCID: PMC10491978 DOI: 10.1016/j.gendis.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Microrchidia CW-type zinc finger 2 (MORC2) is a member of the MORC superfamily of nuclear proteins. Growing evidence has shown that MORC2 not only participates in gene transcription and chromatin remodeling but also plays a key in human disease and tumor development by regulating the expression of downstream oncogenes or tumor suppressors. The present review provides an updated overview of MORC2 in the aspect of cancer hallmark and therapeutic resistance and summarizes its upstream regulators and downstream target genes. This systematic review may provide a favorable theoretical basis for emerging players of MORC2 in tumor development and new insight into the potential clinical application of basic science discoveries in the future.
Collapse
Affiliation(s)
- Shan Zhang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Ayao Guo
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Huan Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Jia Liu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Junyi Ren
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
2
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Chappell K, Manna K, Washam CL, Graw S, Alkam D, Thompson MD, Zafar MK, Hazeslip L, Randolph C, Gies A, Bird JT, Byrd AK, Miah S, Byrum SD. Multi-omics data integration reveals correlated regulatory features of triple negative breast cancer. Mol Omics 2021; 17:677-691. [PMID: 34142686 PMCID: PMC8504614 DOI: 10.1039/d1mo00117e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive type of breast cancer with very little treatment options. TNBC is very heterogeneous with large alterations in the genomic, transcriptomic, and proteomic landscapes leading to various subtypes with differing responses to therapeutic treatments. We applied a multi-omics data integration method to evaluate the correlation of important regulatory features in TNBC BRCA1 wild-type MDA-MB-231 and TNBC BRCA1 5382insC mutated HCC1937 cells compared with non-tumorigenic epithelial breast MCF10A cells. The data includes DNA methylation, RNAseq, protein, phosphoproteomics, and histone post-translational modification. Data integration methods identified regulatory features from each omics method that had greater than 80% positive correlation within each TNBC subtype. Key regulatory features at each omics level were identified distinguishing the three cell lines and were involved in important cancer related pathways such as TGFβ signaling, PI3K/AKT/mTOR, and Wnt/beta-catenin signaling. We observed overexpression of PTEN, which antagonizes the PI3K/AKT/mTOR pathway, and MYC, which downregulates the same pathway in the HCC1937 cells relative to the MDA-MB-231 cells. The PI3K/AKT/mTOR and Wnt/beta-catenin pathways are both downregulated in HCC1937 cells relative to MDA-MB-231 cells, which likely explains the divergent sensitivities of these cell lines to inhibitors of downstream signaling pathways. The DNA methylation and RNAseq data is freely available via GEO GSE171958 and the proteomics data is available via the ProteomeXchange PXD025238.
Collapse
Affiliation(s)
- Kevin Chappell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Kanishka Manna
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Charity L Washam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| | - Stefan Graw
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA and Emory University, Atlanta, GA, USA
| | - Duah Alkam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Matthew D Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Maroof Khan Zafar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Lindsey Hazeslip
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Christopher Randolph
- Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA
| | - Allen Gies
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Jordan T Bird
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Winthrop P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, AR 72205, USA
| | - Sayem Miah
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Winthrop P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA. and Arkansas Children's Research Institute, 13 Children's Way, Little Rock, AR 72202, USA and Winthrop P. Rockefeller Cancer Institute, 449 Jack Stephens Dr, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Zhao M, Wang Y, Jiang C, Wang Q, Mi J, Zhang Y, Zuo L, Geng Z, Song X, Ge S, Li J, Wen H, Wang J, Wang Z, Su F. miR-107 regulates the effect of MCM7 on the proliferation and apoptosis of colorectal cancer via the PAK2 pathway. Biochem Pharmacol 2021; 190:114610. [PMID: 34010598 DOI: 10.1016/j.bcp.2021.114610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/01/2022]
Abstract
Microchromosome maintenance protein 7 (MCM7), a DNA replication permitting factor, plays an essential role in initiating DNA replication. MCM7 is reported to be involved in tumor formation and progression, whereas the expression profile and molecular function of MCM7 in colorectal cancer (CRC) remain unknown. In this study, we aimed to evaluate the clinical significance and biological function of MCM7 in CRC and investigated whether MCM7 can be used for a differential diagnosis in CRC and whether it may serve as a more sensitive proliferation marker for CRC evaluation. Moreover, immunohistochemical analysis of MCM7 was performed in a total of 89 specimens, and high MCM7 expression levels were associated with worse overall survival (OS) in CRC patients. Furthermore, the cell functional test suggested that lentivirus-mediated silencing of MCM7 with shRNA in CRC cells significantly inhibited cellular proliferation and promoted apoptosis in vitro and inhibited tumor growth in vivo. Additionally, mechanistic studies further demonstrated that P21-activated protein kinase 2 (PAK2) was regulated by MCM7 via microarray analysis and cell functional recovery tests, and miR-107 played a role in regulating expression MCM7 via miRNA microarray analysis and 3'UTR reporter assays. Taken together, our results suggest that the miR-107/MCM7/PAK2 pathway may participate in cancer progression and that MCM7 may serve as a prognostic biomarker in CRC.
Collapse
Affiliation(s)
- Menglin Zhao
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Yanyan Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Chenchen Jiang
- Cancer Neurobiology Group, School of Biomedical Sciences & Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; School of Medicine & Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Qiang Wang
- Department of Network Information Center, Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Jiaqi Mi
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Yue Zhang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Lugen Zuo
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Zhijun Geng
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Xue Song
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Sitang Ge
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Hexin Wen
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Juan Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China
| | - Zishu Wang
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China.
| | - Fang Su
- Department of Medical Oncology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, Anhui, PR China.
| |
Collapse
|
5
|
Zhao CC, Zhan MN, Liu WT, Jiao Y, Zhang YY, Lei Y, Zhang TT, Zhang CJ, Du YY, Gu KS, Wei W. Combined LIM kinase 1 and p21-Activated kinase 4 inhibitor treatment exhibits potent preclinical antitumor efficacy in breast cancer. Cancer Lett 2020; 493:120-127. [PMID: 32829006 DOI: 10.1016/j.canlet.2020.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
LIM kinase 1 (LIMK1) and p21-activated kinase 4 (PAK4) are often over-expressed in breast tumors, which causes aggressive cancer phenotypes and unfavorable clinical outcomes. In addition to the well-defined role in regulating cell division, proliferation and invasion, the two kinases promote activation of the MAPK pathway and cause endocrine resistance through phosphorylating estrogen receptor alpha (ERα). PAK4 specifically phosphorylates LIMK1 and its functional partners, indicating possible value of suppressing both kinases in cancers that over-express PAK4 and/or LIMK1. Here, for the first time, we assessed the impact of combining LIMK1 inhibitor LIMKi 3 and PAK4 inhibitor PF-3758309 in preclinical breast cancer models. LIMK1 and PAK4 pharmacological inhibition synergistically reduced the survival of various cancer cell lines, exhibiting specific efficacy in luminal and HER2-enriched models, and suppressed development and ERα-driven signals in a BT474 xenograft model. In silico analysis demonstrated the cell lines with reliance on LIMK1 were the most prone to be susceptible to PAK4 inhibition. Double LIMK1 and PAK4 targeting therapy can be a successful therapeutic strategy for breast cancer, with a unique efficiency in the subtypes of luminal and HER2-enriched tumors.
Collapse
Affiliation(s)
- Chen-Chen Zhao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Meng-Na Zhan
- Department of Pathology, Zhong-Shan Hospital Affiliated to Fudan University, Shanghai, 200023, China
| | - Wan-Ting Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yang Jiao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yi-Yin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Teng-Teng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Cong-Jun Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Ying-Ying Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China
| | - Kang-Sheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| | - Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
6
|
The dynactin subunit DCTN1 controls osteoclastogenesis via the Cdc42/PAK2 pathway. Exp Mol Med 2020; 52:514-528. [PMID: 32210358 PMCID: PMC7156411 DOI: 10.1038/s12276-020-0406-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 01/11/2023] Open
Abstract
Osteoclasts (OCs), cells specialized for bone resorption, are generated from monocyte/macrophage precursors by a differentiation process governed by RANKL. Here, we show that DCTN1, a key component of the dynactin complex, plays important roles in OC differentiation. The expression of DCTN1 was upregulated by RANKL. The inhibition of DCTN1 expression by gene knockdown suppressed OC formation, bone resorption, and the induction of NFATc1 and c-Fos, critical transcription factors for osteoclastogenesis. More importantly, the activation of Cdc42 by RANKL was inhibited upon DCTN1 silencing. The forced expression of constitutively active Cdc42 restored the OC differentiation of precursors with DCTN1 deletion. In addition, PAK2 was found to be activated by RANKL and to function downstream of Cdc42. The DCTN1-Cdc42 axis also inhibited apoptosis and caspase-3 activation. Furthermore, the anti-osteoclastogenic effect of DCTN1 knockdown was verified in an animal model of bone erosion. Intriguingly, DCTN1 overexpression was also detrimental to OC differentiation, suggesting that DCTN1 should be regulated at the appropriate level for effective osteoclastogenesis. Collectively, our results reveal that DCTN1 participates in the activation of Cdc42/PAK2 signaling and the inhibition of apoptosis during osteoclastogenesis. A critical mechanism for maintaining bone health uncovered by scientists in South Korea could provide insights into bone disease development. Bone remodeling is a lifetime process of bone generation that ensures bones remain healthy. Osteoclasts (OC), cells that break down bone, differentiate from white blood cell populations. Disruption to OC formation and function plays a critical role in bone diseases, yet the regulatory mechanisms in OC generation are unclear. Hong-Hee Kim at Seoul National University and co-workers investigated the role of a protein called DCTN1, which is involved in skeletal assembly processes. The team found that inhibiting DCTN1 suppressed the expression of key proteins needed for OC formation in cell cultures and mouse models. Overexpressing DCTN1 was equally damaging, suggesting the protein plays a key regulatory role.
Collapse
|
7
|
Liu F, Cheng Z, Li X, Li Y, Zhang H, Li J, Liu F, Xu H, Li F. A Novel Pak1/ATF2/miR-132 Signaling Axis Is Involved in the Hematogenous Metastasis of Gastric Cancer Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 8:370-382. [PMID: 28918037 PMCID: PMC5537170 DOI: 10.1016/j.omtn.2017.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
We, along with others, have shown previously that P21-activated kinase 1 (Pak1) plays a pivotal role in gastric cancer progression and metastasis. However, whether Pak1 controls gastric cancer metastasis by regulating microRNAs (miRNAs) has never been explored. Here, we report a novel mechanism of Pak1 in tumor metastasis. A detailed examination revealed that Pak1 interacts with and phosphorylates the serine 62 residue of ATF2 and then blocks its translocation into the nucleus. We also confirmed that ATF2 binds to the promoter of miR-132 and tightly regulates its transcription, thus explaining the regulatory mechanism of miR-132 by Pak1. miR-132 also significantly reduced cell adhesion, migration, and invasion of gastric cancer cells in vitro and significantly prevented tumor metastasis in vivo. miR-132 specifically inhibited hematogenous metastasis, but not lymph node or implantation metastases. In order to further delineate the effects of the Pak1/ATF2/miR-132 cascade on gastric cancer progression, we identified several targets of miR-132 using a bioinformatics TargetScan algorithm. Notably, miR-132 reduced the expression of CD44 and fibronectin1 (FN1), and such inhibition enabled lymphocytes to home in on gastric cancer cells and induce tumor apoptosis. Taken together, our studies establish a novel cell-signaling pathway and open new possibilities for therapeutic intervention of gastric cancer.
Collapse
Affiliation(s)
- Funan Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China; Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110122, China
| | - Zhenguo Cheng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Xiaodong Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Furong Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110122, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
PAK4 regulates G6PD activity by p53 degradation involving colon cancer cell growth. Cell Death Dis 2017; 8:e2820. [PMID: 28542136 PMCID: PMC5520749 DOI: 10.1038/cddis.2017.85] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/11/2017] [Accepted: 01/31/2017] [Indexed: 12/21/2022]
Abstract
The p21-activated kinase 4 (PAK4) is overexpressed in different cancers and promotes proliferation of cancer cells. Reprogramming of glucose metabolism is found in most cancer cells which in turn supports rapid proliferation. However, the relationship between PAK4 and glucose metabolism in cancer cells has not been explored. In this study, we reported that PAK4 promoted glucose intake, NADPH production and lipid biosynthesis, leading to an increased proliferation of colon cancer cells. Mechanistically, PAK4 interacted with glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway and increased G6PD activity via enhancing Mdm2-mediated p53 ubiquitination degradation. In addition, we demonstrated a close positive correlation between PAK4 and G6PD expression in colon cancer specimens. Furthermore, expression of PAK4 or G6PD was positively correlated with an aggressive phenotype of clinical colon cancer. These findings revealed a novel glucose metabolism-related mechanism of PAK4 in promoting colon cancer cell growth, suggesting that PAK4 and/or G6PD blockage might be a potential therapeutic strategy for colon cancer.
Collapse
|
9
|
Yue K, Wang X, Wu Y, Zhou X, He Q, Duan Y. microRNA-7 regulates cell growth, migration and invasion via direct targeting of PAK1 in thyroid cancer. Mol Med Rep 2016; 14:2127-34. [PMID: 27430434 DOI: 10.3892/mmr.2016.5477] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/28/2016] [Indexed: 11/06/2022] Open
Abstract
The expression and function of microRNA-7 (miR-7) has been studied in a variety of different cancer types. However, to date, no studies have investigated the expression of miR‑7 in human thyroid cancer. In the present study, the expression levels and biological function of miR‑7 were investigated in human thyroid cancer, with the aim of evaluating whether it may serve as a therapeutic biomarker. The expression levels of miR‑7 in human thyroid cancer tissues, matched, adjacent normal tissues, normal thyroid tissues and human thyroid cancer cell lines were determined using RT‑qPCR and western blot analysis. To explore the functional role of miR‑7 in human thyroid cancer cell lines, MTT assays, cell migration and invasion assays were employed. TargetScan software identified p21 activated kinase‑1 (PAK1) as a putative interacting partner of miR‑7. Therefore, functional assays were performed to explore the effects of endogenous PAK1 in thyroid cancer. In the present study, miR‑7 was significantly downregulated in thyroid cancer tissues and cells compared with normal thyroid tissue samples. A correlation between miR‑7 expression and thyroid tumor stage was also observed. Ectopic expression of miR‑7 was found to suppress the proliferation, migra-tion and invasion of thyroid cancer cells in vitro. Dual-luciferase reporter assays demonstrated that PAK1 was a direct target of miR-7 in vitro. RT-qPCR and western blot analysis demonstrated that miR‑7 negatively regulates PAK1 protein expression but has no effect on PAK1 mRNA expression. Knockdown of PAK1 expression markedly suppressed thyroid cancer cell proliferation, migration and invasion. These results suggest that miR‑7 functions as a tumor suppressor by targeting PAK1 directly and may therefore present a novel therapeutic target for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Kai Yue
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xudong Wang
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yansheng Wu
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xuan Zhou
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Qinghua He
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yuansheng Duan
- Department of Maxillofacial and E.N.T Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
10
|
PAK1-mediated MORC2 phosphorylation promotes gastric tumorigenesis. Oncotarget 2016; 6:9877-86. [PMID: 25888627 PMCID: PMC4496403 DOI: 10.18632/oncotarget.3185] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/23/2015] [Indexed: 01/10/2023] Open
Abstract
To date, microrchidia (MORC) family CW-type zinc-finger 2 (MORC2), has been found to be involved in p21-activated kinase1 (PAK1) pathway to maintain genomic integrity. Here, we explore its novel role in cancer. We demonstrate that PAK1-mediated MORC2 phosphorylation promotes cell cycle progression, defective phosphorylation of MORC2-S677A results in attenuated cell proliferation and tumorigenicity of gastric cancer cells, which is significantly enhanced in overexpression of phospho-mimic MORC2-S677E form, suggesting the importance of MORC2 phosphorylation in tumorigenesis. More importantly, phosphorylation of MORC2 correlates positively with PAK1 expression in clinical gastric cancer. Furthermore, high expression of PAK1 and phosphorylation of MORC2 appear to be associated with poor prognosis of clinical gastric cancer. Collectively, these findings revealed a novel function of MORC2 phosphorylation in promoting gastric cell proliferation in vitro and tumorigenesis in vivo, suggesting that blocking PAK1-mediated MORC2 phosphorylation might be a potential therapeutic strategy for gastric tumorigenesis.
Collapse
|
11
|
Zeng Y, Broxmeyer HE, Staser K, Chitteti BR, Park SJ, Hahn S, Cooper S, Sun Z, Jiang L, Yang X, Yuan J, Kosoff R, Sandusky G, Srour EF, Chernoff J, Clapp DW. Pak2 regulates hematopoietic progenitor cell proliferation, survival, and differentiation. Stem Cells 2016; 33:1630-41. [PMID: 25586960 DOI: 10.1002/stem.1951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
p21-Activated kinase 2 (Pak2), a serine/threonine kinase, has been previously shown to be essential for hematopoietic stem cell (HSC) engraftment. However, Pak2 modulation of long-term hematopoiesis and lineage commitment remain unreported. Using a conditional Pak2 knockout mouse model, we found that disruption of Pak2 in HSCs induced profound leukopenia and a mild macrocytic anemia. Although loss of Pak2 in HSCs leads to less efficient short- and long-term competitive hematopoiesis than wild-type cells, it does not affect HSC self-renewal per se. Pak2 disruption decreased the survival and proliferation of multicytokine stimulated immature progenitors. Loss of Pak2 skewed lineage differentiation toward granulocytopoiesis and monocytopoiesis in mice as evidenced by (a) a three- to sixfold increase in the percentage of peripheral blood granulocytes and a significant increase in the percentage of granulocyte-monocyte progenitors in mice transplanted with Pak2-disrupted bone marrow (BM); (b)Pak2-disrupted BM and c-kit(+) cells yielded higher numbers of more mature subsets of granulocyte-monocyte colonies and polymorphonuclear neutrophils, respectively, when cultured in the presence of granulocyte-macrophage colony-stimulating factor. Pak2 disruption resulted, respectively, in decreased and increased gene expression of transcription factors JunB and c-Myc, which may suggest underlying mechanisms by which Pak2 regulates granulocyte-monocyte lineage commitment. Furthermore, Pak2 disruption led to (a) higher percentage of CD4(+) CD8(+) double positive T cells and lower percentages of CD4(+) CD8(-) or CD4(-) CD8(+) single positive T cells in thymus and (b) decreased numbers of mature B cells and increased numbers of Pre-Pro B cells in BM, suggesting defects in lymphopoiesis.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Pediatrics, Steele Children's Research Center, University of Arizona School of Medicine, Tucson, Arizona, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
GUO BINGYU, LI XIAODONG, SONG SHUAI, CHEN MENG, CHENG MAOSHENG, ZHAO DONGMEI, LI FENG. (−)-β-hydrastine suppresses the proliferation and invasion of human lung adenocarcinoma cells by inhibiting PAK4 kinase activity. Oncol Rep 2016; 35:2246-56. [DOI: 10.3892/or.2016.4594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/15/2015] [Indexed: 11/06/2022] Open
|
13
|
Li Y, Ke Q, Shao Y, Zhu G, Li Y, Geng N, Jin F, Li F. GATA1 induces epithelial-mesenchymal transition in breast cancer cells through PAK5 oncogenic signaling. Oncotarget 2015; 6:4345-56. [PMID: 25726523 PMCID: PMC4414194 DOI: 10.18632/oncotarget.2999] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/21/2014] [Indexed: 11/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a key process in tumor metastatic cascade that is characterized by the loss of cell-cell junctions, resulting in the acquisition of migratory and invasive properties. E-cadherin is a major component of intercellular junctions and the reduction or loss of its expression is a hallmark of EMT. Transcription factor GATA1 has a critical anti-apoptotic role in breast cancer, but its function for metastasis has not been investigated. Here, we found that GATA1, as a novel E-cadherin repressor, promotes EMT in breast cancer cells. GATA1 binds to E-cadherin promoter, down-regulates E-cadherin expression, disrupts intercellular junction and promotes metastasis of breast cancer cell in vivo. Moreover, GATA1 is a new substrate of p21-activated kinase 5 (PAK5), which is phosphorylated on serine 161 and 187 (S161 and S187). GATA1 recruits HDAC3/4 to E-cadherin promoter, which is reduced by GATA1 S161A S187A mutant. These data indicate that phosphorylated GATA1 recruits more HDAC3/4 to promote transcriptional repression of E-cadherin, leading to the EMT of breast cancer cells. Our findings provide insights into the novel function of GATA1, contributing to a better understanding of the EMT, indicating that GATA1 and its phosphorylation may play an important role in the metastasis of breast cancer.
Collapse
Affiliation(s)
- Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qiang Ke
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ge Zhu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Nanxi Geng
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Feng Jin
- Department of Breast Surgery, Department of Surgical Oncology, Research Unit of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
14
|
PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway. Diagn Pathol 2015; 10:177. [PMID: 26411419 PMCID: PMC4584462 DOI: 10.1186/s13000-015-0404-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/28/2015] [Indexed: 01/16/2023] Open
Abstract
Background Multiple protein or microRNA markers have been recognized to contribute to the progression and recurrence of cervical cancers. Particular those, which are associated with the chemo- or radio-resistance of cervical cancers, have been proposed to be promising and to facilitate the definition for cervical cancer treatment options. Methods This study was designed to explore the potential prognosis value of p21-activated kinase (PAK)-4 in cervical cancer, via the Kaplan–Meier analysis, log-rank test and Cox regression analysis, and then to investigate the regulatory role of PAK4 in the cisplatin resistance in cervical cancer cells, via the strategies of both PAK4 overexpression and PAK4 knockout. Results It was demonstrated that PAK4 was upregulated in cervical cancer tissues, in an association with the cancer’s malignance variables such as FIGO stage, lymph node or distant metastasis and the poor histological grade. The high PAK4 expression was also independently associated with poor prognosis to cervical cancer patients. Moreover, PAK4 confers cisplatin resistance in cervical cancer Hela or Caski cells. In addition, the PI3K/Akt pathway has been implicated in the PAK4-confered cisplatin resistance. And the PI3K/Akt inhibitor, LY294002, markedly deteriorated the cisplatin-mediated viability reduction of Hela or Caski cells, indicating the involvement of PI3K/Akt pathway in the cisplatin resistance in cervical cancer cells. Conclusion This study has confirmed the significant prognostic role of PAK4 level in cervical cancer patients and has recognized the regulatory role in cervical cancer progression. Moreover, our study has indicated that PAK4 also confers the chemoresistance of cervical cancer cells in a PI3K/Akt-dependent way. Thus, our study indicates PAK4 as a promising marker for cervical cancer treatment.
Collapse
|
15
|
PAK5-mediated E47 phosphorylation promotes epithelial-mesenchymal transition and metastasis of colon cancer. Oncogene 2015. [PMID: 26212009 DOI: 10.1038/onc.2015.259] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The p21-activated kinase 5 (PAK5) is overexpressed in advanced cancer and the transcription factor E47 is a direct repressor of E-cadherin and inducer of epithelial-mesenchymal transition (EMT). However, the relationship between PAK5 and E47 has not been explored. In this study, we found that PAK5-mediated E47 phosphorylation promoted EMT in advanced colon cancer. PAK5 interacted with E47 and phosphorylated E47 on Ser39 under hepatocyte growth factor (HGF) stimulation, which decreased cell-cell cohesion, increased cell migration and invasion in vitro and promoted metastasis in a xenograft model. Furthermore, phosphorylation of E47 facilitated its accumulating in nucleus in an importin α-dependent manner, and enhanced E47 binding to E-cadherin promoter directly, leading to inhibition of E-cadherin transcription. In contrast, PAK5-knockdown resulted in blockage of HGF-induced E47 phosphorylation, attenuated association of E47 with importin α and decreased E47 binding to E-cadherin promoter. In addition, we demonstrated a close correlation between PAK5 and phospho-Ser39 E47 expression in colon cancer specimens. More importantly, high expression of phospho-E47 was associated with an aggressive phenotype of colon cancer and nuclear phospho-E47 staining was found in certain cases of colon cancer with metastasis. Collectively, E47 is a novel substrate of PAK5, and PAK5-mediated phosphorylation of E47 promotes EMT and metastasis of colon cancer, suggesting that phosphorylated E47 on Ser39 may be a potential therapeutic target in progressive colon cancer.
Collapse
|
16
|
Li D, Zhang Y, Li Z, Wang X, Qu X, Liu Y. Activated Pak4 expression correlates with poor prognosis in human gastric cancer patients. Tumour Biol 2015; 36:9431-6. [PMID: 26124003 DOI: 10.1007/s13277-015-3368-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/24/2015] [Indexed: 01/23/2023] Open
Abstract
Despite considerable advances in gastrectomy and chemotherapy, the prognosis of gastric cancer (GC) has not noticeably improved due to lymph node or distant metastases. P21-activated serine/threonine kinase 4 (Pak4) plays an important role in cell morphology and cytoskeletal reorganization-both prerequisite steps for cell migration. However, it is still unclear if activated Pak4 (p-Pak4) is related to prognosis in GC patients. In our study, the level of p-Pak4 in 95 GC tissue specimens was examined by immunohistochemistry (IHC). We observed significant correlation between the level of p-Pak4 and grosstype (advanced stage GC vs. early stage GC, P = 0.04). Moreover, GC patients with higher p-Pak4 levels had a poorer prognosis than those with lower p-Pak4 levels (17 vs. 38 months, P = 0.001). Multivariate analysis showed that high phosphorylation level of Pak4, advanced stage GC, and lymph node metastasis were independent prognostic factors for GC patients (p-Pak4, P = 0.026; advanced stage GC, P = 0.030; lymph node metastasis, P = 0.016). In addition, in vitro assays indicated that knockdown of Pak4 accompanied with decreased p-Pak4, inhibited cell migration via downregulation of the traditional downstream signaling pathways of Pak4, LIMK1, and cofilin. In conclusion, this report reveals that high level of p-Pak4 correlates with poor prognosis in GC, thereby suggesting that p-Pak4 might be a potential prognostic marker for GC.
Collapse
Affiliation(s)
- Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Ye Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Ximing Wang
- Department of Respiratory and Infectious disease of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, No. 155, North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
17
|
Abstract
p21-Activated protein kinases (PAKs) are centrally involved in a plethora of cellular processes and functions. Their function as effectors of small GTPases Rac1 and Cdc42 has been extensively studied during the past two decades, particularly in the realms of cell proliferation, apoptosis, and hence tumorigenesis, as well as cytoskeletal remodeling and related cellular events in health and disease. In recent years, a large number of studies have shed light onto the fundamental role of group I PAKs, most notably PAK1, in metabolic homeostasis. In skeletal muscle, PAK1 was shown to mediate the function of insulin on stimulating GLUT4 translocation and glucose uptake, while in pancreatic β-cells, PAK1 participates in insulin granule localization and vesicle release. Furthermore, we demonstrated that PAK1 mediates the cross talk between insulin and Wnt/β-catenin signaling pathways and hence regulates gut proglucagon gene expression and the production of the incretin hormone glucagon-like peptide-1 (GLP-1). The utilization of chemical inhibitors of PAK and the characterization of Pak1(-/-) mice enabled us to gain mechanistic insights as well as to assess the overall contribution of PAKs in metabolic homeostasis. This review summarizes our current understanding of PAKs, with an emphasis on the emerging roles of PAK1 in glucose homeostasis.
Collapse
|
18
|
PAK4 confers cisplatin resistance in gastric cancer cells via PI3K/Akt- and MEK/ERK-dependent pathways. Biosci Rep 2014; 34:BSR20130102. [PMID: 27919028 PMCID: PMC3941610 DOI: 10.1042/bsr20130102] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/16/2013] [Accepted: 01/06/2014] [Indexed: 12/22/2022] Open
Abstract
CDDP [cisplatin or cis-diamminedichloroplatinum(II)] and CDDP-based combination chemotherapy have been confirmed effective against gastric cancer. However, CDDP efficiency is limited because of development of drug resistance. In this study, we found that PAK4 (p21-activated kinase 4) expression and activity were elevated in gastric cancer cells with acquired CDDP resistance (AGS/CDDP and MKN-45/CDDP) compared with their parental cells. Inhibition of PAK4 or knockdown of PAK4 expression by specific siRNA (small interfering RNA)-sensitized CDDP-resistant cells to CDDP and overcome CDDP resistance. Combination treatment of LY294002 [the inhibitor of PI3K (phosphoinositide 3-kinase)/Akt (protein kinase B or PKB) pathway] or PD98509 {the inhibitor of MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] pathway} with PF-3758309 (the PAK4 inhibitor) resulted in increased CDDP efficacy compared with LY294002 or PD98509 alone. However, after the concomitant treatment of LY294002 and PD98509, PF-3758309 administration exerted no additional enhancement of CDDP cytotoxicity in CDDP-resistant cells. Inhibition of PAK4 by PF-3758309 could significantly suppress MEK/ERK and PI3K/Akt signalling in CDDP-resistant cells. Furthermore, inhibition of PI3K/Akt pathway while not MEK/ERK pathway could inhibit PAK4 activity in these cells. The in vivo results were similar with those of in vitro. In conclusion, these results indicate that PAK4 confers CDDP resistance via the activation of MEK/ERK and PI3K/Akt pathways. PAK4 and PI3K/Akt pathways can reciprocally activate each other. Therefore, PAK4 may be a potential target for overcoming CDDP resistance in gastric cancer.
Collapse
|
19
|
Oncogenic PAK4 regulates Smad2/3 axis involving gastric tumorigenesis. Oncogene 2013; 33:3473-84. [PMID: 23934187 DOI: 10.1038/onc.2013.300] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 06/10/2013] [Accepted: 06/17/2013] [Indexed: 12/31/2022]
Abstract
The alteration of p21-activated kinase 4 (PAK4) and transforming growth factor-beta (TGF-β) signaling effector Smad2/3 was detected in several types of tumors, which acts as oncogenic factor and tumor suppressor, but the relationship between these events has not been explored. Here, we demonstrate that PAK4 interacts with and modulates phosphorylation of Smad2/3 via both kinase-dependent and kinase-independent mechanisms, which attenuate Smad2/3 axis transactivation and TGF-β-mediated growth inhibition in gastric cancer cells. First, PAK4 interaction with Smad2/3, which is independent of PAK4 kinase activity, blocks TGF-β1-induced phosphorylation of Smad2 Ser465/467 or Smad3 Ser423/425 and the consequent activation. In addition, PAK4 phosphorylates Smad2 on Ser465, leading to the degradation of Smad2 through ubiquitin-proteasome-dependent pathway under hepatocyte growth factor (HGF) stimulation. Interestingly, PAK4 expression correlates negatively with phospho-Ser465/467 Smad2 but positively with phospho-Ser465 Smad2 in gastric cancer tissues. Furthermore, the expressions of HGF, phospho-Ser474 PAK4 and phospho-Ser465 Smad2 are markedly increased in gastric cancer tissues, and the expression of Smad2 is decreased in gastric cancer tissues. Our results document an oncogenic role of PAK4 in repression of Smad2/3 transactivation that involved in tumorigenesis, and suggest PAK4 as a potential therapeutic target for gastric cancer.
Collapse
|
20
|
Li Y, Wang D, Zhang H, Wang C, Dai W, Cheng Z, Wang G, Li F. P21-Activated Kinase 4 Regulates the Cyclin-Dependent Kinase Inhibitor P57Kip2in Human Breast Cancer. Anat Rec (Hoboken) 2013; 296:1561-7. [DOI: 10.1002/ar.22754] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/14/2013] [Accepted: 05/23/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Yanshu Li
- Department of Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education; China Medical University; Shenyang 110001 China
| | - Di Wang
- Department of Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education; China Medical University; Shenyang 110001 China
| | - Hongyan Zhang
- Department of Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education; China Medical University; Shenyang 110001 China
| | - Chunyu Wang
- Department of Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education; China Medical University; Shenyang 110001 China
| | - Wei Dai
- Department of Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education; China Medical University; Shenyang 110001 China
| | - Zhenguo Cheng
- Department of Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education; China Medical University; Shenyang 110001 China
| | - Guanqiao Wang
- Department of Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education; China Medical University; Shenyang 110001 China
| | - Feng Li
- Department of Cell Biology; Key Laboratory of Cell Biology; Ministry of Public Health; and Key Laboratory of Medical Cell Biology; Ministry of Education; China Medical University; Shenyang 110001 China
| |
Collapse
|
21
|
Liu T, Li Y, Gu H, Zhu G, Li J, Cao L, Li F. p21-Activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2). J Biol Chem 2012; 288:3359-69. [PMID: 23132866 DOI: 10.1074/jbc.m112.384289] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The androgen receptor (AR) signaling pathway plays a crucial role in the development and growth of prostate malignancies. Regulation of AR homeostasis in prostate tumorigenesis has not yet been fully characterized. In this study, we demonstrate that p21-activated kinase 6 (PAK6) inhibits prostate tumorigenesis by regulating AR homeostasis. First, we demonstrated that in normal prostate epithelium, AR co-localizes with PAK6 in the cytoplasm and translocates into the nucleus in malignant prostate. Furthermore, AR phosphorylation at Ser-578 by PAK6 promotes AR-E3 ligase murine double minute-2 (Mdm2) association, causing AR degradation upon androgen stimuli. We also showed that PAK6 phosphorylates Mdm2 on Thr-158 and Ser-186, which is critical for AR ubiquitin-mediated degradation. Moreover, we found that Thr-158 collaborates with Ser-186 for AR-Mdm2 association and AR ubiquitin-mediated degradation as it facilitates PAK6-mediated AR homeostasis. PAK6 knockdown promotes prostate tumor growth in vivo. Interestingly, we found a strong inverse correlation between PAK6 and AR expression in the cytoplasm of prostate cancer cells. These observations indicate that PAK6 may be important for the maintenance of androgen-induced AR signaling homeostasis and in prostate malignancy, as well as being a possible new therapeutic target for AR-positive and hormone-sensitive prostate cancer.
Collapse
Affiliation(s)
- Tong Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Ministry of Education, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | |
Collapse
|
22
|
P21-activated kinase 4 overexpression in metastatic gastric cancer patients. Transl Oncol 2011; 4:345-9. [PMID: 22190998 DOI: 10.1593/tlo.11145] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION P21-activated kinase 4 (PAK), a subfamily of serine/threonine kinases originally known as a regulator of cytoskeletal dynamics and cell motility, has recently been revealed to play a key role in oncogenic signaling pathways. We studied the frequency and clinical features of PAK4-overexpressed metastatic gastric cancer. PATIENTS AND METHODS PAK4 overexpression was screened by Western blot in 18 human gastric cancer cell lines. Immunohistochemical staining of PAK4 protein was performed in tumor specimens of 49 metastatic gastric cancer patients who received palliative capecitabine/cisplatin as first-line treatment. RESULTS PAK4 protein overexpression was detected strongly in five gastric cell lines (AGS, MGK-28, MKN-74, SNU-216, SNU-601) and weakly in four cell lines (KATOIII, MKN-1, SNU-620, and SNU-719). PAK4 knockdown by small interfering RNA induced apoptosis in PAK4-overexpressed AGS gastric cancer cells. Immunohistochemical staining revealed PAK4 overexpressions in 4 (8.1%) of 49 metastatic gastric cancer specimens. None of the four patients with PAK4(+) responded to capecitabine/cisplatin chemotherapy, and PAK4(+) gastric cancer patients had a trend of poorer survival compared with PAK(-)(P = .876). CONCLUSIONS We demonstrated PAK4 overexpression in a subset of gastric cancer patients, implicating a role in gastric cancer tumorigenesis. Its prognostic significance and efficacy as a drug target should be further studied.
Collapse
|
23
|
IRX1 influences peritoneal spreading and metastasis via inhibiting BDKRB2-dependent neovascularization on gastric cancer. Oncogene 2011; 30:4498-508. [PMID: 21602894 PMCID: PMC3208739 DOI: 10.1038/onc.2011.154] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The overexpression of IRX1 gene correlates with the growth arrest in gastric cancer. Furthermore, overexpression of IRX1 gene suppresses peritoneal spreading and long distance metastasis. To explore the precise mechanisms, we investigated whether restoring IRX1 expression affects the angiogenesis or vasculogenic mimicry (VM). Human umbilical vein endothelial cells (HUVECs) and chick embryo and SGC-7901 gastric cancer cells were used for angiogenesis and VM analysis. Small interfering RNA was used for analyzing the function of BDKRB2, a downstream target gene of IRX1. As results, the remarkable suppression on peritoneal spreading and pulmonary metastasis of SGC-7901 cells by IRX1 transfectant correlates to reduced angiogenesis as well as VM formation. Using the supernatant from SGC-7901/IRX1 cells, we found a strong inhibiting effect on angiogenesis both in vitro and in chick embryo. SGC-7901/IRX1 cells revealed strong inhibiting effect on VM formation too. By gene-specific RNA interference for BDKRB2, or its effector PAK1, we got an effective inhibition on tube formation, cell proliferation, cell migration and invasion in vitro. In conclusion, enforcing IRX1 expression effectively suppresses peritoneal spreading and pulmonary metastasis via anti-angiogenesis and anti-VM mechanisms, in addition to previously found cell growth and invasion. BDKRB2 and its downstream effector might be potential targets for anti-cancer strategy.
Collapse
|