1
|
Petrov N, Lee HS, Liskovykh M, Teulade-Fichou MP, Masumoto H, Earnshaw WC, Pommier Y, Larionov V, Kouprina N. Terpyridine platinum compounds induce telomere dysfunction and chromosome instability in cancer cells. Oncotarget 2021; 12:1444-1456. [PMID: 34316326 PMCID: PMC8310675 DOI: 10.18632/oncotarget.28020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Telomerase/telomere-targeting therapy is a potentially promising approach for cancer treatment because even transient telomere dysfunction can induce chromosomal instability (CIN) and may be a barrier to tumor growth. We recently developed a dual-HAC (Human Artificial Chromosome) assay that enables identification and ranking of compounds that induce CIN as a result of telomere dysfunction. This assay is based on the use of two isogenic HT1080 cell lines, one carrying a linear HAC (containing telomeres) and the other carrying a circular HAC (lacking telomeres). Disruption of telomeres in response to drug treatment results in specific destabilization of the linear HAC. Results: In this study, we used the dual-HAC assay for the analysis of the platinum-derived G4 ligand Pt-tpy and five of its derivatives: Pt-cpym, Pt-vpym, Pt-ttpy, Pt(PA)-tpy, and Pt-BisQ. Our analysis revealed four compounds, Pt-tpy, Pt-ttpy, Pt-vpym and Pt-cpym, that induce a specific loss of a linear but not a circular HAC. Increased CIN after treatment by these compounds correlates with the induction of double-stranded breaks (DSBs) predominantly localized at telomeres and reflecting telomere-associated DNA damage. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges (CBs) in late mitosis and cytokinesis. These terpyridine platinum-derived G4 ligands are promising compounds for cancer treatment.
Collapse
Affiliation(s)
- Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer, CNRS UMR 9187-INSERM U1196 Institute Curie, Research Center, Campus University Paris-Saclay, Orsay, France
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, Scotland
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Kouprina N, Liskovykh M, Petrov N, Larionov V. Human artificial chromosome (HAC) for measuring chromosome instability (CIN) and identification of genes required for proper chromosome transmission. Exp Cell Res 2019; 387:111805. [PMID: 31877307 DOI: 10.1016/j.yexcr.2019.111805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/24/2023]
Abstract
Chromosomal instability (CIN) is one of the characteristics of cancer inherent for tumor initiation and progression, which is defined as a persistent, high rate of gain/loss of whole chromosomes. In the vast majority of human tumors the molecular basis of CIN remains unknown. The development of a conceptually simple colony color sectoring assay that measures yeast artificial chromosome (YAC) loss provided a powerful genetic tool to assess the rate of chromosome mis-segregation and also identified 937 yeast genes involved in this process. Similarly, a human artificial chromosome (HAC)-based assay has been recently developed and applied to quantify chromosome mis-segregation events in human cells. This assay allowed identification of novel human CIN genes in the library of protein kinases. Among them are PINK1, TRIO, IRAK1, PNCK, and TAOK1. The HAC-based assay may be applied to screen siRNA, shRNA and CRISPR-based libraries to identify the complete spectrum of CIN genes. This will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Liskovykh M, Goncharov NV, Petrov N, Aksenova V, Pegoraro G, Ozbun LL, Reinhold WC, Varma S, Dasso M, Kumeiko V, Masumoto H, Earnshaw WC, Larionov V, Kouprina N. A novel assay to screen siRNA libraries identifies protein kinases required for chromosome transmission. Genome Res 2019; 29:1719-1732. [PMID: 31515286 PMCID: PMC6771407 DOI: 10.1101/gr.254276.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022]
Abstract
One of the hallmarks of cancer is chromosome instability (CIN), which leads to aneuploidy, translocations, and other chromosome aberrations. However, in the vast majority of human tumors the molecular basis of CIN remains unknown, partly because not all genes controlling chromosome transmission have yet been identified. To address this question, we developed an experimental high-throughput imaging (HTI) siRNA assay that allows the identification of novel CIN genes. Our method uses a human artificial chromosome (HAC) expressing the GFP transgene. When this assay was applied to screen an siRNA library of protein kinases, we identified PINK1, TRIO, IRAK1, PNCK, and TAOK1 as potential novel genes whose knockdown induces various mitotic abnormalities and results in chromosome loss. The HAC-based assay can be applied for screening different siRNA libraries (cell cycle regulation, DNA damage response, epigenetics, and transcription factors) to identify additional genes involved in CIN. Identification of the complete spectrum of CIN genes will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nikolay V. Goncharov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,School of Biomedicine, Far Eastern Federal University, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690000, Russia
| | - Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Laurent L. Ozbun
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William C. Reinhold
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690000, Russia
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d, Japan
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
4
|
Kouprina N, Pommier Y, Larionov V. Novel screen for anti-cancer drugs that elevate chromosome instability (CIN) using human artificial chromosome (HAC). Oncotarget 2018; 9:36833-36835. [PMID: 30627324 PMCID: PMC6305142 DOI: 10.18632/oncotarget.26406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 11/25/2022] Open
Abstract
Human artificial chromosomes (HACs) bearing functional kinetochores have been exploited as promising systems for gene delivery and expression and in studies of different epigenetic modifications on kinetochore structure and function. The HAC-based technology has been also used to develop drug screening and assessment strategies to manipulate the CIN (chromosome instability) phenotype in cancer cells. More recently, we designed a new protocol for systematic analysis of compounds specifically targeting telomeres and telomerase. This approach used two isogenic cell lines containing a circular HAC (lacking telomeres) and a linear HAC (containing telomeres): compounds that target telomerase or telomeres should preferentially induce loss of the linear HAC but not the circular HAC. This platform enables identification and ranking of compounds that greatly increase chromosome mis-segregation rates as a result of telomere dysfunction and may expedite the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Lee HS, Carmena M, Liskovykh M, Peat E, Kim JH, Oshimura M, Masumoto H, Teulade-Fichou MP, Pommier Y, Earnshaw WC, Larionov V, Kouprina N. Systematic Analysis of Compounds Specifically Targeting Telomeres and Telomerase for Clinical Implications in Cancer Therapy. Cancer Res 2018; 78:6282-6296. [PMID: 30166419 PMCID: PMC6214708 DOI: 10.1158/0008-5472.can-18-0894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/25/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
The targeting of telomerase and telomere maintenance mechanisms represents a promising therapeutic approach for various types of cancer. In this work, we designed a new protocol to screen for and rank the efficacy of compounds specifically targeting telomeres and telomerase. This approach used two isogenic cell lines containing a circular human artificial chromosome (HAC, lacking telomeres) and a linear HAC (containing telomeres) marked with the EGFP transgene; compounds that target telomerase or telomeres should preferentially induce loss of the linear HAC but not the circular HAC. Our assay allowed quantification of chromosome loss by routine flow cytometry. We applied this dual-HAC assay to rank a set of known and newly developed compounds, including G-quadruplex (G4) ligands. Among the latter group, two compounds, Cu-ttpy and Pt-ttpy, induced a high rate of linear HAC loss with no significant effect on the mitotic stability of a circular HAC. Analysis of the mitotic phenotypes induced by these drugs revealed an elevated rate of chromatin bridges in late mitosis and cytokinesis as well as UFB (ultrafine bridges). Chromosome loss after Pt-ttpy or Cu-ttpy treatment correlated with the induction of telomere-associated DNA damage. Overall, this platform enables identification and ranking of compounds that greatly increase chromosome mis-segregation rates as a result of telomere dysfunction and may expedite the development of new therapeutic strategies for cancer treatment.Significance: An assay provides a unique opportunity to screen thousands of chemical compounds for their ability to inactivate replication of telomeric ends in cancer cells and holds potential to lay the foundation for the discovery of new treatments for cancer. Cancer Res; 78(21); 6282-96. ©2018 AACR.
Collapse
Affiliation(s)
- Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Mar Carmena
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Emma Peat
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - Mitsuo Oshimura
- Institute of Regenerative Medicine and Biofunction, Tottori University, Tottori, Japan
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Marie-Paule Teulade-Fichou
- Chemistry Modelling and Imaging for Biology, CNRS UMR 9187- INSERM U1196 Institute Curie, Research Center, Campus University Paris-Sud, Orsay, France
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, King's Buildings, University of Edinburgh, Max Born Crescent, Edinburgh, Scotland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD.
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD.
| |
Collapse
|
6
|
Kouprina N, Petrov N, Molina O, Liskovykh M, Pesenti E, Ohzeki JI, Masumoto H, Earnshaw WC, Larionov V. Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies. ACS Synth Biol 2018; 7:1974-1989. [PMID: 30075081 PMCID: PMC6154217 DOI: 10.1021/acssynbio.8b00230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since their description in the late 1990s, Human Artificial Chromosomes (HACs) bearing functional kinetochores have been considered as promising systems for gene delivery and expression. More recently a HAC assembled from a synthetic alphoid DNA array has been exploited in studies of centromeric chromatin and in assessing the impact of different epigenetic modifications on kinetochore structure and function in human cells. This HAC was termed the alphoidtetO-HAC, as the synthetic monomers each contained a tetO sequence in place of the CENP-B box that can be targeted specifically with tetR-fusion proteins. Studies in which the kinetochore chromatin of the alphoidtetO-HAC was specifically modified, revealed that heterochromatin is incompatible with centromere function and that centromeric transcription is important for centromere assembly and maintenance. In addition, the alphoidtetO-HAC was modified to carry large gene inserts that are expressed in target cells under conditions that recapitulate the physiological regulation of endogenous loci. Importantly, the phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. AlphoidtetO-HAC-based technology has also been used to develop new drug screening and assessment strategies to manipulate the CIN phenotype in cancer cells. In summary, the alphoidtetO-HAC is proving to be a versatile tool for studying human chromosome transactions and structure as well as for genome and cancer studies.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| | - Nikolai Petrov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Oscar Molina
- Josep
Carreras Leukaemia Research Institute, School of Medicine, University
of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Mikhail Liskovykh
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Elisa Pesenti
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Jun-ichirou Ohzeki
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan
| | - Hiroshi Masumoto
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan,E-mail: . Tel: +81-438-52-395
| | - William C. Earnshaw
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland,E-mail: . Tel: +44-(0)131-650-7101
| | - Vladimir Larionov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| |
Collapse
|
7
|
Lee NCO, Kim JH, Petrov NS, Lee HS, Masumoto H, Earnshaw WC, Larionov V, Kouprina N. Method to Assemble Genomic DNA Fragments or Genes on Human Artificial Chromosome with Regulated Kinetochore Using a Multi-Integrase System. ACS Synth Biol 2018; 7:63-74. [PMID: 28799737 PMCID: PMC5778389 DOI: 10.1021/acssynbio.7b00209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The production of cells capable of carrying multiple transgenes
to Mb-size genomic loci has multiple applications in biomedicine and
biotechnology. In order to achieve this goal, three key steps are
required: (i) cloning of large genomic segments; (ii) insertion of
multiple DNA blocks at a precise location and (iii) the capability
to eliminate the assembled region from cells. In this study, we designed
the iterative integration system (IIS) that utilizes recombinases
Cre, ΦC31 and ΦBT1, and combined it with a human artificial
chromosome (HAC) possessing a regulated kinetochore (alphoidtetO-HAC). We have demonstrated that the IIS-alphoidtetO-HAC
system is a valuable genetic tool by reassembling a functional gene
from multiple segments on the HAC. IIS-alphoidtetO-HAC
has several notable advantages over other artificial chromosome-based
systems. This includes the potential to assemble an unlimited number
of genomic DNA segments; a DNA assembly process that leaves only a
small insertion (<60 bp) scar between adjacent DNA, allowing genes
reassembled from segments to be spliced correctly; a marker exchange
system that also changes cell color, and counter-selection markers
at each DNA insertion step, simplifying selection of correct clones;
and presence of an error proofing mechanism to remove cells with misincorporated
DNA segments, which improves the integrity of assembly. In addition,
the IIS-alphoidtetO-HAC carrying a locus of interest is
removable, offering the unique possibility to revert the cell line
to its pretransformed state and compare the phenotypes of human cells
with and without a functional copy of a gene(s). Thus, IIS-alphoidtetO-HAC allows investigation of complex biomedical pathways,
gene(s) regulation, and has the potential to engineer synthetic chromosomes
with a predetermined set of genes.
Collapse
Affiliation(s)
- Nicholas C. O. Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Nikolai S. Petrov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| |
Collapse
|
8
|
Kim JH, Lee HS, Lee NCO, Goncharov NV, Kumeiko V, Masumoto H, Earnshaw WC, Kouprina N, Larionov V. Development of a novel HAC-based "gain of signal" quantitative assay for measuring chromosome instability (CIN) in cancer cells. Oncotarget 2016; 7:14841-56. [PMID: 26943579 PMCID: PMC4924756 DOI: 10.18632/oncotarget.7854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
Accumulating data indicates that chromosome instability (CIN) common to cancer cells can be used as a target for cancer therapy. At present the rate of chromosome mis-segregation is quantified by laborious techniques such as coupling clonal cell analysis with karyotyping or fluorescence in situ hybridization (FISH). Recently, a novel assay was developed based on the loss of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene ("loss of signal" assay). Using this system, anticancer drugs can be easily ranked on by their effect on HAC loss. However, it is problematic to covert this "loss of signal" assay into a high-throughput screen to identify drugs and mutations that increase CIN levels. To address this point, we re-designed the HAC-based assay. In this new system, the HAC carries a constitutively expressed shRNA against the EGFP transgene integrated into human genome. Thus, cells that inherit the HAC display no green fluorescence, while cells lacking the HAC do. We verified the accuracy of this "gain of signal" assay by measuring the level of CIN induced by known antimitotic drugs and added to the list of previously ranked CIN inducing compounds, two newly characterized inhibitors of the centromere-associated protein CENP-E, PF-2771 and GSK923295 that exhibit the highest effect on chromosome instability measured to date. The "gain of signal" assay was also sensitive enough to detect increase of CIN after siRNA depletion of known genes controlling mitotic progression through distinct mechanisms. Hence this assay can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer. Also described is the possible conversion of this new assay into a high-throughput screen using a fluorescence microplate reader to characterize chemical libraries and identify new conditions that modulate CIN level.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nicholas C. O. Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Nikolay V. Goncharov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
- School of Biomedicine, Far Eastern Federal University, A. V. Zhirmunsky Institute of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, A. V. Zhirmunsky Institute of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu, Japan
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, Scotland
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
9
|
Lee HS, Lee NCO, Kouprina N, Kim JH, Kagansky A, Bates S, Trepel JB, Pommier Y, Sackett D, Larionov V. Effects of Anticancer Drugs on Chromosome Instability and New Clinical Implications for Tumor-Suppressing Therapies. Cancer Res 2016; 76:902-11. [PMID: 26837770 PMCID: PMC4827779 DOI: 10.1158/0008-5472.can-15-1617] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Whole chromosomal instability (CIN), manifested as unequal chromosome distribution during cell division, is a distinguishing feature of most cancer types. CIN is generally considered to drive tumorigenesis, but a threshold level exists whereby further increases in CIN frequency in fact hinder tumor growth. While this attribute is appealing for therapeutic exploitation, drugs that increase CIN beyond this therapeutic threshold are currently limited. In our previous work, we developed a quantitative assay for measuring CIN based on the use of a nonessential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Here, we used this assay to rank 62 different anticancer drugs with respect to their effects on chromosome transmission fidelity. Drugs with various mechanisms of action, such as antimicrotubule activity, histone deacetylase inhibition, mitotic checkpoint inhibition, and targeting of DNA replication and damage responses, were included in the analysis. Ranking of the drugs based on their ability to induce HAC loss revealed that paclitaxel, gemcitabine, dactylolide, LMP400, talazoparib, olaparib, peloruside A, GW843682, VX-680, and cisplatin were the top 10 drugs demonstrating HAC loss at a high frequency. Therefore, identification of currently used compounds that greatly increase chromosome mis-segregation rates should expedite the development of new therapeutic strategies to target and leverage the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Nicholas C O Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Alex Kagansky
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Susan Bates
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Dan Sackett
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland.
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
10
|
Ouaret D, Larsen AK. Protein kinase C β inhibition by enzastaurin leads to mitotic missegregation and preferential cytotoxicity toward colorectal cancer cells with chromosomal instability (CIN). Cell Cycle 2015; 13:2697-706. [PMID: 25486357 DOI: 10.4161/15384101.2015.945383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Enzastaurin is a selective inhibitor of protein kinase C β and a potent inhibitor of tumor angiogenesis. In addition, enzastaurin shows direct cytotoxic activity toward a subset of tumor cells including colorectal cancer cells (CRC). In spite of promising results in animal models, the clinical activity of enzastaurin in CRC patients has been disappointing although a subset of patients seems to derive benefit. In the present study we investigated the biological and cytotoxic activities of enzastaurin toward a panel of well-characterized CRC cell lines in order to clarify the mechanistic basis for the cytotoxic activity. Our results show that enzastaurin is significantly more cytotoxic toward CRC cells with chromosome instability (CIN) compared to cells with microsatellite instability (MSI). Since CIN is usually attributed to mitotic dysfunction, the influence of enzastaurin on cell cycle progression and mitotic transit was characterized for representative CIN and MSI cell lines. Enzastaurin exposure was accompanied by prolonged metaphase arrest in CIN cells followed by the appearance of tetraploid and micronuclei-containing cells as well as by increased apoptosis, whereas no detectable mitotic dysfunctions were observed in MSI cells exposed to isotoxic doses of enzastaurin. Our study identifies enzastaurin as a new, context dependent member of a heterogeneous group of anticancer compounds that induce "mitotic catastrophe," that is mitotic dysfunction accompanied by cell death. These data provide novel insight into the mechanism of action of enzastaurin and may allow the identification of biomarkers useful to identify CRC patients particularly likely, or not, to benefit from treatment with enzastaurin.
Collapse
Key Words
- CIN, chromosome instability
- CRC, colorectal cancer
- DMSO, Dimethyl sulfoxide
- MAP, mitogen-activated protein
- MEK, mitogen-activated protein kinase kinase
- MMC, mitomycin C
- MN, micronuclei
- MSI, microsatellite instability
- PKC, protein kinase C
- RACK, receptor of activated protein kinase C
- TP53, tumor protein p53
- VEGF, vascular endothelial cell growth factor
- VEGFR, vascular endothelial cell growth factor receptor
- chromosome instability (CIN)
- colorectal cancer (CRC)
- enzastaurin
- mitotic catastrophe
- protein kinase C (PKC) β inhibition
Collapse
Affiliation(s)
- Djamila Ouaret
- a Laboratory of Cancer Biology and Therapeutics; Center de Recherche Saint-Antoine ; Paris , France
| | | |
Collapse
|
11
|
Lee HS, Lee NCO, Grimes BR, Samoshkin A, Kononenko AV, Bansal R, Masumoto H, Earnshaw WC, Kouprina N, Larionov V. A new assay for measuring chromosome instability (CIN) and identification of drugs that elevate CIN in cancer cells. BMC Cancer 2013; 13:252. [PMID: 23694679 PMCID: PMC3671967 DOI: 10.1186/1471-2407-13-252] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/14/2013] [Indexed: 12/17/2022] Open
Abstract
Background Aneuploidy is a feature of most cancer cells that is often accompanied by an elevated rate of chromosome mis-segregation termed chromosome instability (CIN). While CIN can act as a driver of cancer genome evolution and tumor progression, recent findings point to the existence of a threshold level beyond which CIN becomes a barrier to tumor growth and therefore can be exploited therapeutically. Drugs known to increase CIN beyond the therapeutic threshold are currently few in number, and the clinical promise of targeting the CIN phenotype warrants new screening efforts. However, none of the existing methods, including the in vitro micronuclei (MNi) assay, developed to quantify CIN, is entirely satisfactory. Methods We have developed a new assay for measuring CIN. This quantitative assay for chromosome mis-segregation is based on the use of a non-essential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Thus, cells that inherit the HAC display green fluorescence, while cells lacking the HAC do not. This allows the measurement of HAC loss rate by routine flow cytometry. Results Using the HAC-based chromosome loss assay, we have analyzed several well-known anti-mitotic, spindle-targeting compounds, all of which have been reported to induce micronuclei formation and chromosome loss. For each drug, the rate of HAC loss was accurately measured by flow cytometry as a proportion of non-fluorescent cells in the cell population which was verified by FISH analysis. Based on our estimates, despite their similar cytotoxicity, the analyzed drugs affect the rates of HAC mis-segregation during mitotic divisions differently. The highest rate of HAC mis-segregation was observed for the microtubule-stabilizing drugs, taxol and peloruside A. Conclusion Thus, this new and simple assay allows for a quick and efficient screen of hundreds of drugs to identify those affecting chromosome mis-segregation. It also allows ranking of compounds with the same or similar mechanism of action based on their effect on the rate of chromosome loss. The identification of new compounds that increase chromosome mis-segregation rates should expedite the development of new therapeutic strategies to target the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Hee-Sheung Lee
- Laboratory of Molecular Pharmacology, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yao Y, Dai W. Shugoshins function as a guardian for chromosomal stability in nuclear division. Cell Cycle 2012; 11:2631-42. [PMID: 22732496 PMCID: PMC3850027 DOI: 10.4161/cc.20633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 11/19/2022] Open
Abstract
Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.
Collapse
Affiliation(s)
- Yixin Yao
- Departments of Environmental Medicine and Pharmacology; New York University School of Medicine; Tuxedo, NY USA
| | - Wei Dai
- Departments of Environmental Medicine and Pharmacology; New York University School of Medicine; Tuxedo, NY USA
| |
Collapse
|
13
|
Todorović-Raković N. Genome-based versus gene-based theory of cancer: Possibleimplications for clinical practice. J Biosci 2011; 36:719-24. [DOI: 10.1007/s12038-011-9099-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|