1
|
Nabih HK, Yücer R, Mahmoud N, Dawood M, Elbadawi M, Shahhamzehei N, Atia MAM, AbdelSadik A, Hussien TA, Ibrahim MAA, Klauck SM, Hegazy MEF, Efferth T. The cytotoxic activities of the major diterpene extracted from Salvia multicaulis (Bardakosh) are mediated by the regulation of heat-shock response and fatty acid metabolism pathways in human leukemia cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156023. [PMID: 39368339 DOI: 10.1016/j.phymed.2024.156023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/15/2024] [Accepted: 09/02/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Leukemia is one of the most lethal cancers worldwide and represents the sixth-leading cause of cancer deaths. The results of leukemia treatment have not been as positive as desired, and recurrence is common. PURPOSE Thus, there is an urgent requirement for the development of new therapeutic drugs. Salvia multicaulis (Bardakosh) is a widespread species that contains multiple phytochemical components with anti-cancer activities. METHODS We isolated and characterized the major diterpene candesalvone B methyl ester from S. multicaulis and investigated its action as a cytotoxic agent towards sensitive and drug-resistant leukemia cells by the resazurin reduction assay. Additionally, the targeted genes and the affected molecular mechanisms attributed to the potent cytotoxic activities were discovered by transcriptome-wide mRNA expression profiling. The targets predicted to be regulated by candesalvone B methyl ester in each cell line were confirmed by qRT-PCR, molecular docking, microscale thermophoresis, and western blotting. Moreover, cell cycle distribution and apoptosis were analyzed by flow cytometry. RESULTS Candesalvone B methyl ester was cytotoxic with IC50 values of 20.95 ± 0.15 µM against CCRF-CEM cells and 4.13 ± 0.10 µM against multidrug-resistant CEM/ADR5000 leukemia cells. The pathway enrichment analysis disclosed that candesalvone B methyl ester could regulate the heat-shock response signaling pathway via targeting heat shock factor 1 (HSF1) in CCRF-CEM cells and ELOVL fatty acid elongase 5 (ELOVL5) controls the fatty acid metabolism pathway in CEM/ADR5000 cells. Microscale thermophoresis showed the binding of candesalvone B methyl ester with HSF1 and ELOVL5, confirming the results of molecular docking analysis. Down-regulation of both HSF1 and ELOVL5 by candesalvone B methyl ester as detected by both western blotting and RT-qPCR was related to the reversal of drug resistance in the leukemia cells. Furthermore, candesalvone B methyl ester increased the arrest in the sub-G1 phase of the cell cycle in a dose-dependent manner from 1.3 % to 32.3 % with concomitant induction of apoptosis up to 29.0 % in CCRF-CEM leukemic cells upon inhibition of HSF1. CONCLUSION Candesalvone B methyl ester isolated from S. multicaulis exerted cytotoxicity by affecting apoptosis, cell division, and modulation of expression levels of genes contributing to the heat stress signaling and fatty acid metabolism pathways that could relieve drug resistance of leukemia cells.
Collapse
Affiliation(s)
- Heba K Nabih
- National Research Centre, Medical Biochemistry Department, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - Rümeysa Yücer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Nuha Mahmoud
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Science, Al-Neelain University, Khartoum, Sudan
| | - Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Nasim Shahhamzehei
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed A M Atia
- Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Ahmed AbdelSadik
- Zoology Department, Faculty of Science, Aswan University, 81528 Aswan, Egypt; Molecular Biotechnology Program, Faculty of Advanced Basic Sciences, Galala University, 43552, New Galala, Egypt
| | - Taha A Hussien
- Pharmacognosy Department, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 10, Egypt
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Mohamed-Elamir F Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; National Research Centre, Chemistry of Medicinal Plants Department, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Gao Y, Luo L, Qu Y, Zhou Q. MFNG is an independent prognostic marker for osteosarcoma. Eur J Med Res 2023; 28:256. [PMID: 37496053 PMCID: PMC10369729 DOI: 10.1186/s40001-023-01139-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/13/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) has been the most common malignancy of the bone in children and adolescents, and the unsatisfactory prognosis of OS sufferers has long been a hard nut. Here, we delved into the markers with a prognostic value for predicting the prognosis of OS patients. METHODS The messenger RNA (mRNA) sequencing data and clinical data of OS were retrieved from a Gene Expression Omnibus (GEO) dataset (GSE39058). Next, prognosis-related genes (PRGs) were filtered with the aid of Kaplan-Meier (K-M) curves and Cox regression analysis (CRA). Later, Gene Ontology (GO) biological process analysis was used in verifying the function of different genes. CCK-8 and cell apoptosis assay were performed to evaluate the function of MFNG in U2OS cells. RESULTS Among the obtained genes, Manic Fringe (MFNG) had the closest relevance to prognosis and clinical traits, thus becoming the research object herein. In light of the expression level of MFNG, patients fell into high- and low-MFNG groups. Patients with elevated MFNG expression had a worse prognosis, according to the survival analysis. It was unveiled by the univariate and multivariate analyses that MFNG expression was an independent adverse prognostic factor for disease-free survival in OS patients (p = 0.006). Meanwhile, MFNG expression was linked to gender and tumor recurrence, and it was higher in patients with OS recurrence. Moreover, overexpression of MFNG promoted the cell proliferation and inhibited the cell apoptosis of U2OS cells. CONCLUSIONS The expression level of MFNG negatively correlated with OS progression, and as an independent adverse prognostic factor for disease-free survival in OS patients. Moreover, MFNG regulated the cell proliferation and apoptosis of OS cells.
Collapse
Affiliation(s)
- Yi Gao
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 25 Heping Bei Lu, Tianning District, Changzhou, 213000, Jiangsu, China
| | - Lili Luo
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 25 Heping Bei Lu, Tianning District, Changzhou, 213000, Jiangsu, China
| | - Yuxing Qu
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 25 Heping Bei Lu, Tianning District, Changzhou, 213000, Jiangsu, China
| | - Qi Zhou
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 25 Heping Bei Lu, Tianning District, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
3
|
High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines 2022; 10:biomedicines10061405. [PMID: 35740427 PMCID: PMC9220202 DOI: 10.3390/biomedicines10061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric acute myeloid leukemia is a clonal disorder characterized by malignant transformation of the hematopoietic stem cell. The incidence and the outcome remain inferior when compared to pediatric ALL, although prognosis has improved in the last decades, with 80% overall survival rate reported in some studies. The standard therapeutic approach is a combined cytarabine and anthracycline-based regimen followed by consolidation with allogeneic stem cell transplantation (allo-SCT) for high-risk AML and allo-SCT for non-high-risk patients only in second complete remission after relapse. In the last decade, several drugs have been used in clinical trials to improve outcomes in pediatric AML treatment.
Collapse
|
4
|
Messling JE, Agger K, Andersen KL, Kromer K, Kuepper HM, Lund AH, Helin K. Targeting RIOK2 ATPase activity leads to decreased protein synthesis and cell death in acute myeloid leukemia. Blood 2022; 139:245-255. [PMID: 34359076 PMCID: PMC8759535 DOI: 10.1182/blood.2021012629] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023] Open
Abstract
Novel therapies for the treatment of acute myeloid leukemia (AML) are urgently needed, because current treatments do not cure most patients with AML. We report a domain-focused, kinome-wide CRISPR-Cas9 screening that identified protein kinase targets for the treatment of AML, which led to the identification of Rio-kinase 2 (RIOK2) as a potential novel target. Loss of RIOK2 led to a decrease in protein synthesis and to ribosomal instability followed by apoptosis in leukemic cells, but not in fibroblasts. Moreover, the ATPase function of RIOK2 was necessary for cell survival. When a small-molecule inhibitor was used, pharmacological inhibition of RIOK2 similarly led to loss of protein synthesis and apoptosis and affected leukemic cell growth in vivo. Our results provide proof of concept for targeting RIOK2 as a potential treatment of patients with AML.
Collapse
Affiliation(s)
- Jan-Erik Messling
- Biotech Research and Innovation Centre and
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; and
| | - Karl Agger
- Biotech Research and Innovation Centre and
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; and
| | | | - Kristina Kromer
- Biotech Research and Innovation Centre and
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; and
| | - Hanna M Kuepper
- Biotech Research and Innovation Centre and
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; and
| | | | - Kristian Helin
- Biotech Research and Innovation Centre and
- The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark; and
- Cell Biology Program and
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
5
|
Chen X, Chen X, Huang Y, Lin J, Wu Y, Chen Y. TCP1 increases drug resistance in acute myeloid leukemia by suppressing autophagy via activating AKT/mTOR signaling. Cell Death Dis 2021; 12:1058. [PMID: 34750375 PMCID: PMC8575913 DOI: 10.1038/s41419-021-04336-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
T-complex protein 1 (TCP1) is one of the subunits of chaperonin-containing T complex (CCT), which is involved in protein folding, cell proliferation, apoptosis, cell cycle regulation, and drug resistance. Investigations have demonstrated that TCP1 is a factor being responsible for drug resistance in breast and ovarian cancer. However, the TCP1 role in acute myeloid leukemia (AML) remains elusive. In the present study, we discovered that the TCP1 expression was elevated in AML patients and high TCP1 expression was associated with low complete response rate along with poor overall survival. TCP1 showed higher expression in the adriamycin-resistant leukemia cell line HL60/A and K562/A, comparing to their respective parent cells HL60 and K562 cells. TCP1 inhibition suppressed drug resistance in HL60/A and K562/A cells, whereas TCP1 overexpression in HL60 cells incremented drug resistance, both in vitro and in vivo. Mechanistic investigations revealed that TCP1 inhibited autophagy and adriamycin-induced cell apoptosis, and TCP1-mediated autophagy inhibition conferred resistance to adriamycin-induced cell apoptosis. Furthermore, TCP1 interacted with AKT and mTOR to activate AKT/mTOR signaling, which negatively regulates apoptosis and autophagy. Pharmacological inhibition of AKT/mTOR signal particularly activated autophagy and resensitized TCP1-overexpressing HL60 cells to adriamycin. These findings identify a novel role of TCP1 regarding drug resistance in AML, which advise a new strategy for overcoming drug resistance in AML through targeting TCP1/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xiaofang Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.,Department of Infectious Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Xianling Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yiping Huang
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Jia Lin
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yong Wu
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| | - Yuanzhong Chen
- Fujian Provincial Key Laboratory on Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
6
|
Zhou X, Zhang X, Wu Z, Xu X, Guo M, Zhai X, Zuo D, Wu Y. The novel ALK inhibitor ZX-29 induces apoptosis through inhibiting ALK and inducing ROS-mediated endoplasmic reticulum stress in Karpas299 cells. J Biochem Mol Toxicol 2020; 35:e22666. [PMID: 33140567 DOI: 10.1002/jbt.22666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 10/09/2020] [Accepted: 10/20/2020] [Indexed: 11/08/2022]
Abstract
It is a well-known fact that 60%-85% of anaplastic large cell lymphoma (ALCL) is mainly driven by the anaplastic lymphoma kinase (ALK) fusion protein. Although ALK-positive ALCL patients respond significantly to ALK inhibitors, the development of resistance is inevitable, which requires the development of new therapeutic strategies for ALK-positive ALCL. Here, we investigated the anticancer activities of N-(2((5-chloro-2-((2-methoxy-6-(4-methylpiperazin-1-yl)pyridin-3yl)amino)pyrimidin-4-yl)amino)phenyl)methanesulfonamide (ZX-29), a newly synthesized ALK inhibitor, against nucleophosmin-ALK-positive cell line Karpas299. We demonstrated that ZX-29 decreased Karpas299 cells growth and had better cytotoxicity than ceritinib, which was mediated through downregulating the expression of ALK and related proteins, inducing cell cycle arrest, and promoting cell apoptosis. Moreover, ZX-29-induced cell apoptosis by inducing endoplasmic reticulum stress (ERS). In addition, ZX-29 increased the generation of reactive oxygen species (ROS), and cells pretreatment with N-acetyl- l-cysteine could attenuate ZX-29-induced cell apoptosis and ERS. Taken together, ZX-29 inhibited Karpas299 cell proliferation and induced apoptosis through inhibiting ALK and its downstream protein expression and inducing ROS-mediated ERS. Therefore, our results provide evidence for a novel antitumor candidate for the further investigation.
Collapse
Affiliation(s)
- Xuejiao Zhou
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoning Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhuzhu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaobo Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Ming Guo
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
7
|
Yiau SKX, Lee C, Mohd Tohit ER, Chang KM, Abdullah M. Potential CD34 signaling through phosphorylated-BAD in chemotherapy-resistant acute myeloid leukemia. J Recept Signal Transduct Res 2019; 39:276-282. [PMID: 31509041 DOI: 10.1080/10799893.2019.1660899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute myeloid leukemia (AML) constitutively express growth factors and cytokines for survival. Chemotherapy alters these signals to induce cell death. However, drug resistance in AML remains a major hindrance to successful treatment and early warning is unavailable. Modulation of signaling pathways during chemotherapy may provide a window to detect response and predict treatment outcome. Blood samples collected from AML patients before and at day-3 of induction therapy were compared for changes in expression of CD117, CD34, pro-inflammatory cytokines and mediators of Akt and MAPK pathways, using multi-color flow cytometry. Nine patients were diagnosed as drug-resistant and seven sensitive to chemotherapy. Twelve were paired. Average percentages of CD34 (66.8 ± 11.7% vs. 26.2 ± 5.8%, p = 0.033) and pBAD (66.9 ± 8.2% vs. 28.9 ± 8.2%, p = 0.016) were significantly increased in chemo-resistant (N = 9) compared to chemo-sensitive (N = 5) samples. Percentages of CD34 were strongly correlated with pBAD (R = 0.785; p = 0.001; N = 14) and pFKHR (R = 0.755; p = 0.002; N = 14) at day-3 induction. Chemo-sensitive cases expressed significantly higher percentages of IL-18Rα (71.9 ± 9.6% vs. 29.8 ± 5.8%, p = 0.016). Though not significantly different in the outcome, IL-1β was strongly associated with activated Akt-S473, IL-6 with phosphorylated JNK and FKHR while TNF-α appeared to trigger Bim, in treated samples. These preliminary results suggested AML cells resistant to chemotherapy increased expression of CD34 and may signal through pBAD while cells sensitive to chemotherapy-induced IL18Rα expression. These were observed early during induction therapy. Identifying CD34 is interesting as it is a convenient marker to monitor drug-resistance in AML patients. Inhibition of CD34 and pBAD signaling may be important in treating drug-resistant AML.
Collapse
Affiliation(s)
- Stephnie Kang-Xian Yiau
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , Serdang , Malaysia
| | - CinDee Lee
- Institute of Bioscience, Universiti Putra Malaysia , Serdang , Malaysia
| | - Eusni Rahayu Mohd Tohit
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , Serdang , Malaysia
| | - Kian Meng Chang
- Department of Hematology, Hospital Ampang, Jalan Mewah Utara , Ampang , Malaysia
| | - Maha Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia , Serdang , Malaysia.,Institute of Bioscience, Universiti Putra Malaysia , Serdang , Malaysia
| |
Collapse
|
8
|
Lonetti A, Pession A, Masetti R. Targeted Therapies for Pediatric AML: Gaps and Perspective. Front Pediatr 2019; 7:463. [PMID: 31803695 PMCID: PMC6873958 DOI: 10.3389/fped.2019.00463] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic disorder characterized by numerous cytogenetic and molecular aberrations that accounts for ~25% of childhood leukemia diagnoses. The outcome of children with AML has increased remarkably over the past 30 years, with current survival rates up to 70%, mainly due to intensification of standard chemotherapy and improvements in risk classification, supportive care, and minimal residual disease monitoring. However, childhood AML prognosis remains unfavorable and relapse rates are still around 30%. Therefore, novel therapeutic approaches are needed to increase the cure rate. In AML, the presence of gene mutations and rearrangements prompted the identification of effective targeted molecular strategies, including kinase inhibitors, cell pathway inhibitors, and epigenetic modulators. This review will discuss several new drugs that recently received US Food and Drug Administration approval for AML treatment and promising strategies to treat childhood AML, including FLT3 inhibitors, epigenetic modulators, and Hedgehog pathway inhibitors.
Collapse
Affiliation(s)
- Annalisa Lonetti
- "Giorgio Prodi" Interdepartmental Cancer Research Centre, University of Bologna, Bologna, Italy
| | - Andrea Pession
- "Giorgio Prodi" Interdepartmental Cancer Research Centre, University of Bologna, Bologna, Italy.,Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, Bologna, Italy
| | - Riccardo Masetti
- Pediatric Hematology-Oncology Unit, Department of Medical and Surgical Sciences DIMEC, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Herschbein L, Liesveld JL. Dueling for dual inhibition: Means to enhance effectiveness of PI3K/Akt/mTOR inhibitors in AML. Blood Rev 2017; 32:235-248. [PMID: 29276026 DOI: 10.1016/j.blre.2017.11.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/10/2017] [Accepted: 11/30/2017] [Indexed: 01/04/2023]
Abstract
The phosphatidylinositol 3-kinase/protein kinase B (Akt)/mechanistic target of rapamycin (PI3K/Akt/mTOR) pathway is amplified in 60-80% of patients with acute myelogenous leukemia (AML). Since this complex pathway is crucial to cell functions such as growth, proliferation, and survival, inhibition of this pathway would be postulated to inhibit leukemia initiation and propagation. Inhibition of the mTORC1 pathway has met with limited success in AML due to multiple resistance mechanisms including direct insensitivity of the mTORC1 complex, feedback activation of the PI3k/Akt signaling network, insulin growth factor-1 (IGF-1) activation of PI3K, and others. This review explores the role of mTOR inhibition in AML, mechanisms of resistance, and means to improve outcomes through use of dual mTORC1/2 inhibitors or dual TORC/PI3K inhibitors. How these inhibitors interface with currently available therapies in AML will require additional preclinical experiments and conduct of well-designed clinical trials.
Collapse
Affiliation(s)
- Lauren Herschbein
- Department of Medicine, The James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA.
| | - Jane L Liesveld
- Department of Medicine, The James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
10
|
Tao YF, Li ZH, Du WW, Xu LX, Ren JL, Li XL, Fang F, Xie Y, Li M, Qian GH, Li YH, Li YP, Li G, Wu Y, Feng X, Wang J, He WQ, Hu SY, Lu J, Pan J. Inhibiting PLK1 induces autophagy of acute myeloid leukemia cells via mammalian target of rapamycin pathway dephosphorylation. Oncol Rep 2017; 37:1419-1429. [PMID: 28184925 PMCID: PMC5364848 DOI: 10.3892/or.2017.5417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Decreased autophagy is accompanied by the development of a myeloproliferative state or acute myeloid leukemia (AML). AML cells are often sensitive to autophagy‑inducing stimuli, prompting the idea that targeting autophagy can be useful in AML cytotoxic therapy. AML NB4 cells overexpressing microtubule-associated protein 1 light chain 3-green fluorescent protein were screened with 69 inhibitors to analyze autophagy activity. AML cells were treated with the polo-like kinase 1 (PLK1) inhibitors RO3280 and BI2536 before autophagy analysis. Cleaved LC3 (LC3-II) and the phosphorylation of mammalian target of rapamycin (mTOR), adenosine monophosphate-activated protein kinase, and Unc-51-like kinase 1 during autophagy was detected with western blotting. Autophagosomes were detected using transmission electron microscopy. Several inhibitors had promising autophagy inducer effects: BI2536, MLN0905, SK1-I, SBE13 HCL and RO3280. Moreover, these inhibitors all targeted PLK1. Autophagy activity was increased in the NB4 cells treated with RO3280 and BI2536. Inhibition of PLK1 expression in NB4, K562 and HL-60 leukemia cells with RNA interference increased LC3-II and autophagy activity. The phosphorylation of mTOR was reduced significantly in NB4 cells treated with RO3280 and BI2536, and was also reduced significantly when PLK1 expression was downregulated in the NB4, K562 and HL-60 cells. We demonstrate that PLK1 inhibition induces AML cell autophagy and that it results in mTOR dephosphorylation. These results may provide new insights into the molecular mechanism of PLK1 in regulating autophagy.
Collapse
MESH Headings
- Animals
- Autophagy
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Cycle Proteins/antagonists & inhibitors
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation
- Child
- Female
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Neoplasm Staging
- Phosphorylation
- Prognosis
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Survival Rate
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Polo-Like Kinase 1
Collapse
Affiliation(s)
- Yan-Fang Tao
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Zhi-Heng Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Wei-Wei Du
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Li-Xiao Xu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jun-Li Ren
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xiao-Lu Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Fang Fang
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yi Xie
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Mei Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Guang-Hui Qian
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yan-Hong Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yi-Ping Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Gang Li
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yi Wu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xing Feng
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jian Wang
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Wei-Qi He
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shao-Yan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jun Lu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jian Pan
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
11
|
Dinner S, Platanias LC. Targeting the mTOR Pathway in Leukemia. J Cell Biochem 2016; 117:1745-52. [PMID: 27018341 DOI: 10.1002/jcb.25559] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022]
Abstract
Optimal function of multiple intracellular signaling pathways is essential for normal regulation of cellular transcription, translation, growth, proliferation, and survival. Dysregulation or aberrant activation of such cascades can lead to inappropriate cell survival and abnormal cell proliferation in leukemia. Successful treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors targeting the BCR-ABL fusion gene is a prime example of effectively inhibiting intracellular signaling cascades. However, even in these patients resistance can develop via emergence of mutations or feedback activation of other pathways that cause refractory disease. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway has been observed in different types of leukemia, including CML, acute myeloid leukemia, and acute lymphoblastic leukemia. Abnormal mTOR activity may contribute to chemotherapy resistance, while it may also be effectively targeted via molecular means and/or development of specific pharmacological inhibitors. This review discusses the role of PI3K/Akt/mTOR dysre-gulation in leukemia and summarizes the emergence of preliminary data for the development of novel therapeutic approaches. J. Cell. Biochem. 117: 1745-1752, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shira Dinner
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611
| | - Leonidas C Platanias
- Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, 60611.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612
| |
Collapse
|
12
|
Pandey R, Kapur R. Targeting phosphatidylinositol-3-kinase pathway for the treatment of Philadelphia-negative myeloproliferative neoplasms. Mol Cancer 2015; 14:118. [PMID: 26062813 PMCID: PMC4464249 DOI: 10.1186/s12943-015-0388-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/18/2015] [Indexed: 12/24/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are a diverse group of chronic hematological disorders that involve unregulated clonal proliferation of white blood cells. Sevearl of them are associated with mutations in receptor tyrosine kinases or cytokine receptor associated tyrosine kinases rendering them independent of cytokine-mediated regulation. Classically they have been broadly divided into BCR-ABL1 fusion + ve (Ph + ve) or -ve (Ph-ve) MPNs. Identification of BCR-ABL1 tyrosine kinase as a driver of chronic myeloid leukemia (CML) and successful application of small molecule inhibitors of the tyrosine kinases in the clinic have triggered the search for kinase dependent pathways in other Ph-ve MPNs. In the past few years, identification of mutations in JAK2 associated with a majority of MPNs raised the hopes for similar success with specific targeting of JAK2. However, targeting JAK2 kinase activity has met with limited success. Subsequently, mutations in genes other than JAK2 have been identified. These mutations specifically associate with certain MPNs and can drive cytokine independent growth. Therefore, targeting alternate molecules and pathways may be more successful in management of MPNs. Among other pathways, phosphatidylinositol -3 kinase (PI3K) has emerged as a promising target as different cell surface receptor induced signaling pathways converge on the PI3K signaling axis to regulate cell metabolism, growth, proliferation, and survival. Herein, we will review the clinically relevant inhibitors of the PI3K pathway that have been evaluated or hold promise for the treatment of Ph-ve MPNs.
Collapse
Affiliation(s)
- Ruchi Pandey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Molecular Biology and Biochemistry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
13
|
Abstract
Both acute myeloid leukemia and chronic myeloid leukemia are thought to arise from a subpopulation of primitive cells, termed leukemic stem cells that share properties with somatic stem cells. Leukemic stem cells are capable of continued self-renewal, and are resistant to conventional chemotherapy and are considered to be responsible for disease relapse. In recent years, improved understanding of the underlying mechanisms of myeloid leukemia biology has led to the development of novel and targeted therapies. This review focuses on clinically relevant patent applications and their relevance within the known literature in two areas of prevailing therapeutic interest, namely monoclonal antibody therapy and small molecule inhibitors in disease-relevant signaling pathways.
Collapse
|
14
|
Vachhani P, Bose P, Rahmani M, Grant S. Rational combination of dual PI3K/mTOR blockade and Bcl-2/-xL inhibition in AML. Physiol Genomics 2014; 46:448-56. [PMID: 24824212 DOI: 10.1152/physiolgenomics.00173.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) continues to represent an area of critical unmet need with respect to new and effective targeted therapies. The Bcl-2 family of pro- and antiapoptotic proteins stands at the crossroads of cellular survival and death, and the expression of and interactions between these proteins determine tumor cell fate. Malignant cells, which are often primed for apoptosis, are particularly vulnerable to the simultaneous disruption of cooperative survival signaling pathways. Indeed, the single agent activity of agents such as mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase kinase (MEK) inhibitors in AML has been modest. Much work in recent years has focused on strategies to enhance the therapeutic potential of the bona fide BH3-mimetic, ABT-737, which inhibits B-cell lymphoma 2 (Bcl-2) and Bcl-xL. Most of these strategies target Mcl-1, an antiapoptotic protein not inhibited by ABT-737. The phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways are central to the growth, proliferation, and survival of AML cells, and there is much interest currently in pharmacologically interrupting these pathways. Dual inhibitors of PI3K and mTOR overcome some intrinsic disadvantages of rapamycin and its derivatives, which selectively inhibit mTOR. In this review, we discuss why combining dual PI3K/mTOR blockade with inhibition of Bcl-2 and Bcl-xL, by virtue of allowing coordinate inhibition of three mutually synergistic pathways in AML cells, may be a particularly attractive therapeutic strategy in AML, the success of which may be predicted for by basal Akt activation.
Collapse
Affiliation(s)
- Pankit Vachhani
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Prithviraj Bose
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia; Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia
| | - Mohamed Rahmani
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia; Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia
| | - Steven Grant
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia; Institute of Molecular Medicine, Virginia Commonwealth University; and Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia
| |
Collapse
|
15
|
|