1
|
Xia Y, Xie Y, Zhang H, Liu L. STAT4 gene polymorphisms in human diseases. Front Immunol 2024; 15:1479418. [PMID: 39575235 PMCID: PMC11578735 DOI: 10.3389/fimmu.2024.1479418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/11/2024] [Indexed: 11/24/2024] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is a member of the STAT family, which is a group of transcription factors that regulate cytokine signaling. Genetic polymorphisms in STAT4 strongly influence immune responses and disease outcomes, especially in cancer and autoimmune diseases. Several studies have indicated that certain STAT4 gene variants are associated with alterations in STAT4 expression and/or activity and that there is a close relationship between STAT4 polymorphisms and drug efficacy. However, the underlying mechanisms are complex, and the roles of these polymorphisms in disease acquisition, progression, and severity are of widespread concern. Therefore, we provide an overview of the clinical significance of polymorphisms in STAT4 and the mechanisms by which these STAT4 variants are involved in various diseases.
Collapse
Affiliation(s)
- Yan Xia
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Minda Hospital of Hubei Minzu University, Hubei Minzu University, Enshi, Hubei, China
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Hubei Minzu University, Enshi, Hubei, China
| | - Yanni Xie
- Department of Endocrinology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Hubei Minzu University, Enshi, Hubei, China
| | - Hao Zhang
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, Minda Hospital of Hubei Minzu University, Hubei Minzu University, Enshi, Hubei, China
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lunzhi Liu
- Department of Nephrology, Minda Hospital Affiliated to Hubei Minzu University, Hubei Clinical Research Center for Kidney Disease, Hubei Minzu University, Enshi, Hubei, China
| |
Collapse
|
2
|
Zhang K, Luo Z, Wang X. The association of common autoimmune diseases with autoimmune thyroiditis: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1383221. [PMID: 39314521 PMCID: PMC11416997 DOI: 10.3389/fendo.2024.1383221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Numerous observational and retrospective studies have demonstrated an association between Autoimmune Thyroiditis (AIT) and various systemic Autoimmune Diseases (AIDs). However, the causal relationship between them remains uncertain. This study aims to investigate the causal link between AIT and diverse types of AIDs utilizing the Mendelian Randomization (MR) method. Method We assessed the causal relationship between AIT and eight prevalent AIDs. Summary statistics from genome-wide association studies (GWAS) were sourced from the FinnGen biobank and IEU Open GWAS database. Two-sample MR analyses were conducted, with the primary statistical approach being the Inverse Variance Weighting (IVW) method. This was complemented by a series of sensitivity analyses, and the robustness of the findings was evaluated through the estimation of heterogeneity and pleiotropy. Results When AIT was considered as the outcome, MR evidence suggested an association between Rheumatoid arthritis (RA), Type 1 diabetes (T1D), and Systemic lupus erythematosus (SLE) with AIT. Utilizing the Inverse Variance Weighting (IVW) method, we observed an increased risk of AIT with exposure to RA (P = 0.024, OR=1.25; 95% CI = 1.03, 1.52), T1D (P < 0.001, OR=1.27 95% CI = 1.11,1.46), and SLE (P = 0.037, OR=1.14; 95% CI = 1.04,1.26). Conversely, no significant genetic causal relationship with AIT was found for Sjögren's syndrome (SS), Ankylosing Spondylitis (AS), Multiple sclerosis (MS), Crohn's disease (CD), and Ulcerative colitis (UC). Conclusion This study identified RA, T1D, and SLE as triggering factors for AIT. The incidence rate of AIT in patients with RA, T1D, and SLE may be higher than that in the general population. Therefore, individuals with these three diseases should undergo regular monitoring of thyroid-related indicators.
Collapse
MESH Headings
- Humans
- Mendelian Randomization Analysis
- Thyroiditis, Autoimmune/genetics
- Thyroiditis, Autoimmune/epidemiology
- Thyroiditis, Autoimmune/complications
- Genome-Wide Association Study
- Autoimmune Diseases/genetics
- Autoimmune Diseases/epidemiology
- Autoimmune Diseases/complications
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/epidemiology
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/complications
- Arthritis, Rheumatoid/epidemiology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/complications
- Lupus Erythematosus, Systemic/epidemiology
- Genetic Predisposition to Disease
- Polymorphism, Single Nucleotide
Collapse
Affiliation(s)
- Kaiyuan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ziyue Luo
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xinchang Wang
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Castellini-Pérez O, Povedano E, Barturen G, Martínez-Bueno M, Iakovliev A, Kerick M, López-Domínguez R, Marañón C, Martín J, Ballestar E, Borghi MO, Qiu W, Zhu C, Shankara S, Spiliopoulou A, de Rinaldis E, Carnero-Montoro E, Alarcón-Riquelme ME. Molecular subtypes explain lupus epigenomic heterogeneity unveiling new regulatory genetic risk variants. NPJ Genom Med 2024; 9:38. [PMID: 39013887 PMCID: PMC11252280 DOI: 10.1038/s41525-024-00420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/17/2024] [Indexed: 07/18/2024] Open
Abstract
The heterogeneity of systemic lupus erythematosus (SLE) can be explained by epigenetic alterations that disrupt transcriptional programs mediating environmental and genetic risk. This study evaluated the epigenetic contribution to SLE heterogeneity considering molecular and serological subtypes, genetics and transcriptional status, followed by drug target discovery. We performed a stratified epigenome-wide association studies of whole blood DNA methylation from 213 SLE patients and 221 controls. Methylation quantitative trait loci analyses, cytokine and transcription factor activity - epigenetic associations and methylation-expression correlations were conducted. New drug targets were searched for based on differentially methylated genes. In a stratified approach, a total of 974 differential methylation CpG sites with dependency on molecular subtypes and autoantibody profiles were found. Mediation analyses suggested that SLE-associated SNPs in the HLA region exert their risk through DNA methylation changes. Novel genetic variants regulating DNAm in disease or in specific molecular contexts were identified. The epigenetic landscapes showed strong association with transcription factor activity and cytokine levels, conditioned by the molecular context. Epigenetic signals were enriched in known and novel drug targets for SLE. This study reveals possible genetic drivers and consequences of epigenetic variability on SLE heterogeneity and disentangles the DNAm mediation role on SLE genetic risk and novel disease-specific meQTLs. Finally, novel targets for drug development were discovered.
Collapse
Affiliation(s)
- Olivia Castellini-Pérez
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- University of Granada, Granada, Spain
| | - Elena Povedano
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- Spanish National Research Council (CSIC), Institute of Economy, Geography and Demography, Madrid (IEGD), Madrid, Spain
- Autonomous University of Madrid, Madrid, Spain
| | - Guillermo Barturen
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
- Department of Genetics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Manuel Martínez-Bueno
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Andrii Iakovliev
- Usher Institute of Population Health Sciences and Informatics. University of Edinburgh Medical School, EH8 9YL, Edinburgh, UK
| | - Martin Kerick
- IBPLN-CSIC, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, 18016, Spain
| | - Raúl López-Domínguez
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Concepción Marañón
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain
| | - Javier Martín
- IBPLN-CSIC, Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas, Granada, 18016, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | | | - Weiliang Qiu
- Sanofi, Early Development and Research, Cambridge, MA, USA
| | - Cheng Zhu
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Srinivas Shankara
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Athina Spiliopoulou
- Usher Institute of Population Health Sciences and Informatics. University of Edinburgh Medical School, EH8 9YL, Edinburgh, UK
| | - Emanuele de Rinaldis
- Sanofi, Precision Medicine & Computational Biology (PMCB), R&D, Cambridge, MA, USA
| | - Elena Carnero-Montoro
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain.
- University of Granada, Granada, Spain.
| | - Marta E Alarcón-Riquelme
- GENYO. Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, 18016, Granada, Spain.
- Institute for Environmental Medicine, Karolinska Institutet, 171 67, Solna, Sweden.
| |
Collapse
|
4
|
Raychaudhuri SP, Shah RJ, Banerjee S, Raychaudhuri SK. JAK-STAT Signaling and Beyond in the Pathogenesis of Spondyloarthritis and Their Clinical Significance. Curr Rheumatol Rep 2024; 26:204-213. [PMID: 38492148 PMCID: PMC11116266 DOI: 10.1007/s11926-024-01144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/18/2024]
Abstract
PURPOSE OF REVIEW Janus kinase-signal transducers and activators of transcription cell signaling proteins (JAK-STATs) play a key regulatory role in functioning of several inflammatory cytokines. JAK-STAT signaling proteins are the key regulators of the cytokine/cytokine receptor system involved in the pathogenesis of various autoimmune disease including spondyloarthritis (SpA). This article mainly highlights the JAK-STAT signaling system, its association with the relevant cytokine/cytokine-receptor system, and its regulatory role in pathogenesis of SpA. Also, we have briefly addressed the principle for the use JAKi in SpA and the current status of use of JAK inhibitors (JAKi) in SpA. RECENT FINDINGS Recent developments with newer JAK molecules as well as other molecules beyond JAK inhibitors are now an exciting field for the development of novel therapies for autoimmune diseases and various malignant conditions. In this article, we have provided a special emphasis on how various cell signaling systems beyond JAK/STAT pathway are relevant to SpA and have provided a comprehensive review on this upcoming field in respect to the novel TYK2 inhibitors, RORγT inhibitors, mTOR inhibitors, NGF inhibitors, and various STAT kinase inhibitors. SpA are a group of autoimmune diseases with multifactorial etiologies. SpA is linked with genetic predisposition, environmental risk factors, and the immune system-mediated systemic inflammation. Here, we have provided the regulatory role of JAK/STAT pathway and other intracellular signaling system in the pathogenesis of SpA and its therapeutic relevance.
Collapse
Affiliation(s)
- Siba P Raychaudhuri
- Department of Rheumatology, UC Davis Medical Center, Sacramento, CA, USA.
- VA Sacramento Medical Center, Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA.
- UC Davis School of Medicine, Davis, CA, USA.
| | - Ruchi J Shah
- Department of Rheumatology, UC Davis Medical Center, Sacramento, CA, USA
| | - Sneha Banerjee
- VA Sacramento Medical Center, Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
| | - Smriti K Raychaudhuri
- VA Sacramento Medical Center, Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
| |
Collapse
|
5
|
Frisk C, Das S, Eriksson MJ, Walentinsson A, Corbascio M, Hage C, Kumar C, Ekström M, Maret E, Persson H, Linde C, Persson B. Cardiac biopsies reveal differences in transcriptomics between left and right ventricle in patients with or without diagnostic signs of heart failure. Sci Rep 2024; 14:5811. [PMID: 38461325 PMCID: PMC10924960 DOI: 10.1038/s41598-024-56025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/29/2024] [Indexed: 03/11/2024] Open
Abstract
New or mild heart failure (HF) is mainly caused by left ventricular dysfunction. We hypothesised that gene expression differ between the left (LV) and right ventricle (RV) and secondly by type of LV dysfunction. We compared gene expression through myocardial biopsies from LV and RV of patients undergoing elective coronary bypass surgery (CABG). Patients were categorised based on LV ejection fraction (EF), diastolic function and NT-proBNP into pEF (preserved; LVEF ≥ 45%), rEF (reduced; LVEF < 45%) or normal LV function. Principal component analysis of gene expression displayed two clusters corresponding to LV and RV. Up-regulated genes in LV included natriuretic peptides NPPA and NPPB, transcription factors/coactivators STAT4 and VGLL2, ion channel related HCN2 and LRRC38 associated with cardiac muscle contraction, cytoskeleton, and cellular component movement. Patients with pEF phenotype versus normal differed in gene expression predominantly in LV, supporting that diastolic dysfunction and structural changes reflect early LV disease in pEF. DKK2 was overexpressed in LV of HFpEF phenotype, potentially leading to lower expression levels of β-catenin, α-SMA (smooth muscle actin), and enhanced apoptosis, and could be a possible factor in the development of HFpEF. CXCL14 was down-regulated in both pEF and rEF, and may play a role to promote development of HF.
Collapse
Affiliation(s)
- Christoffer Frisk
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Maria J Eriksson
- Department of Clinical Physiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Anna Walentinsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 431 83, Gothenburg, Sweden
| | - Matthias Corbascio
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
- Department of Thoracic Surgery, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Camilla Hage
- Department of Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Heart and Vascular Theme, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Chanchal Kumar
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, 431 83, Gothenburg, Sweden
- Department of Medicine, Integrated Cardio Metabolic Center (ICMC), Karolinska Institutet, 141 57, Huddinge, Sweden
| | - Mattias Ekström
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, 182 88, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, 182 88, Stockholm, Sweden
| | - Eva Maret
- Department of Clinical Physiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Hans Persson
- Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, 182 88, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, 182 88, Stockholm, Sweden
| | - Cecilia Linde
- Department of Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
- Heart and Vascular Theme, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Bengt Persson
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Box 596, 751 24, Uppsala, Sweden.
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
6
|
Li C, Zhao J, Kang B, Li S, Tang J, Dong D, Chen Y. Identification and validation of STAT4 as a prognostic biomarker in acute myeloid leukemia. Biosci Rep 2024; 44:BSR20231720. [PMID: 38294290 PMCID: PMC10861362 DOI: 10.1042/bsr20231720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024] Open
Abstract
Acute myelogenous leukemia (AML) is a common malignancy and is supposed to have the ability to escape host immune surveillance. The present study aimed to identify key genes in AML that may affect tumor immunity and to provide prognosis biomarkers of AML. The Cancer Genome Atlas (TCGA) dataset was screened for transcription factors (TFs) involved in immunity and influencing survival, combining Gene Expression Omnibus (GEO) data to validate the impact on patient survival. A prognostic signature was established using four transcription factors, and these genes play an important role in the immune system, with higher regulatory T cell (Treg) scores in high-risk patients compared with the low-risk group. Analysis of individual genes showed that STAT4 and Treg are closely related, which may be due to STAT4 transcribing related genes that affect immunity. STAT4 expression was positively correlated with the proportion of abnormal cells and promoted AML recurrence as verified by AML clinical patient samples. In addition, silencing of STAT4 significantly slowed down the proliferation capacity of HL60 cells. In conclusion, these findings suggest that STAT4 may be a potential biomarker for AML prognosis. As a key gene affecting the prognosis of AML patients, STAT4 has the potential to be a candidate diagnostic and prognostic biomarker for AML.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingyu Kang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingya Tang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanwei Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
7
|
Blekeris T, Gedvilaite G, Kaikaryte K, Kriauciuniene L, Zaliuniene D, Liutkevciene R. Association of STAT4 Gene Polymorphisms (rs10181656, rs7574865, rs7601754, rs10168266) and Serum STAT4 Levels in Age-Related Macular Degeneration. Biomedicines 2023; 12:18. [PMID: 38275379 PMCID: PMC10813583 DOI: 10.3390/biomedicines12010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Age-related macular degeneration (AMD) is a progressive degenerative disease that affects the central part of the retina: the macula. AMD is the most common cause of central vision loss in industrialized countries. Increasing attention is being paid to the study of genetic factors that may influence the manifestation of AMD. STAT4 protein is involved in the pathogenesis of numerous inflammatory processes, so we decided to investigate the association between STAT4 gene polymorphisms (rs10181656, rs7574865, rs7601754, and rs10168266) and age-related macular degeneration. PURPOSE To investigate the association between STAT4 (rs10181656, rs7574865, rs7601754, and rs10168266) gene polymorphisms and STAT4 serum levels in patients with age-related macular degeneration. METHODS AND PARTICIPANTS The study included 150 individuals with early AMD, 150 individuals with exudative AMD, and 200 healthy subjects. DNA was extracted from peripheral blood leukocytes using the DNA salting-out method, and the genotyping was performed using a real-time polymerase chain reaction (RT-PCR) method. STAT4 serum levels were evaluated using the ELISA method. Statistical analysis was performed using "IBM SPSS "Statistics 29.0" software". RESULTS The study revealed no statistically significant differences in the distribution of genotypes and alleles for the STAT4 polymorphisms (rs10181656, rs7574865, rs7601754, and rs10168266) between patients with AMD and the control group. Similarly, a gender-based analysis did not yield any significant differences in the genotype or allele frequencies. Age group comparisons also showed no statistically significant variations in the presence of these STAT4 polymorphisms between AMD patients and the control group. However, notably, individuals with exudative AMD displayed lower levels of serum STAT4 in comparison to the control group (median (IQR): 0.118 (0.042) vs. 0.262 (0.385), p = 0.005). CONCLUSION Investigating STAT4 gene polymorphisms (rs10181656, rs7574865, rs7601754, and rs10168266) did not reveal a significant association with AMD. However, further analysis demonstrated intriguing findings regarding serum STAT4 levels. Exudative AMD patients with at least one G allele of the STAT4 rs10181656 exhibited significantly lower serum STAT4 levels than the control group subjects (p = 0.011). Similarly, those with at least one T allele of STAT4 rs10168266 had lower serum STAT4 levels compared to the control group subjects (p = 0.039). These results suggest a potential link between specific STAT4 genotypes and serum STAT4 levels in exudative AMD patients, shedding light on a novel aspect of the disease.
Collapse
Affiliation(s)
- Tomas Blekeris
- Medical Faculty, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (T.B.); (K.K.)
| | - Greta Gedvilaite
- Medical Faculty, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (T.B.); (K.K.)
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania (R.L.)
| | - Kriste Kaikaryte
- Medical Faculty, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (T.B.); (K.K.)
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania (R.L.)
| | - Loresa Kriauciuniene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania (R.L.)
| | - Dalia Zaliuniene
- Ophthalmology Department, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Rasa Liutkevciene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania (R.L.)
- Ophthalmology Department, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| |
Collapse
|
8
|
Gedvilaite G, Duseikaitė M, Dubinskaite G, Kriauciuniene L, Zemaitiene R, Liutkevicienė R. Optic Neuritis: The Influence of Gene Polymorphisms and Serum Levels of STAT4 (rs10181656, rs7574865, rs7601754, rs10168266). J Clin Med 2023; 13:10. [PMID: 38202017 PMCID: PMC10779575 DOI: 10.3390/jcm13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of the study was to evaluate the associations of STAT4 (rs10181656, rs7574865, rs7601754, rs10168266) gene polymorphisms and STAT4 serum level in patients with optic neuritis. Eighty-one subjects with optic neuritis (ON) and 158 healthy subjects participated in the study. Genotyping was performed using real-time polymerase chain reaction to obtain data. STAT4 serum level was determined using the ELISA method. Statistical analysis revealed that STAT4 rs7574865 allele G was statistically significantly more frequent in patients with ON and multiple sclerosis (MS) than in the control group (84.38% vs. 65.93%, p = 0.003). STAT4 rs10168266 allele C was statistically significantly more frequent in the ON group with MS than in the control group (89.06% vs. 71.75%, p = 0.003). The haplotypes G-G-A-C and C-T-A-T of STAT4 (rs10181656, rs7574865, rs7601754, rs10168266) were associated with an 11.5- and 19.5-fold increased odds of ON occurrence (p = 0.003; p = 0.008, respectively). In optic neuritis without MS occurrence, STAT4 (rs10181656, rs7574865, rs7601754, rs10168266) haplotypes G-G-A-C and C-T-A-T were found to be associated with 32.6- and 9-fold increased odds of ON without MS (p = 0.002, p = 0.016, respectively). The current findings may indicate a risk role of STAT4 (rs10181656, rs7574865, rs7601754, rs10168266) G-G-A-C and C-T-A-T haplotypes in the occurrence of optic neuritis.
Collapse
Affiliation(s)
- Greta Gedvilaite
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.D.); (L.K.); (R.L.)
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Monika Duseikaitė
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.D.); (L.K.); (R.L.)
| | - Gabrielė Dubinskaite
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.D.); (L.K.); (R.L.)
| | - Reda Zemaitiene
- Department of Ophthalmology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Rasa Liutkevicienė
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (M.D.); (L.K.); (R.L.)
| |
Collapse
|
9
|
Assiri MA, Albekairi TH, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Shahid M, Aldossari AA, Almutairi MM, Almanaa TN, Alwetaid MY, Ahmad SF. The Exposure to Lead (Pb) Exacerbates Immunological Abnormalities in BTBR T + Itpr 3tf/J Mice through the Regulation of Signaling Pathways Relevant to T Cells. Int J Mol Sci 2023; 24:16218. [PMID: 38003408 PMCID: PMC10671427 DOI: 10.3390/ijms242216218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental illness characterized by abnormal social interactions, communication difficulties, and repetitive and limited behaviors or interests. The BTBR T+ Itpr3tf/J (BTBR) mice have been used extensively to research the ASD-like phenotype. Lead (Pb) is a hazardous chemical linked to organ damage in the human body. It is regarded as one of the most common metal exposure sources and has been connected to the development of neurological abnormalities. We used flow cytometry to investigate the molecular mechanism behind the effect of Pb exposure on subsets of CD4+ T cells in the spleen expressing IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Furthermore, using RT-PCR, we studied the effect of Pb on the expression of numerous genes in brain tissue, including IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, AhR, IL-10, and Foxp3. Pb exposure increased the population of CD4+IFN-γ+, CD4+T-bet+, CD4+STAT1+, CD4+STAT4+, CD4+IL-9+, CD4+IRF4+, CD4+IL-22+, and CD4+AhR+ cells in BTBR mice. In contrast, CD4+IL-10+ and CD4+Foxp3+ cells were downregulated in the spleen cells of Pb-exposed BTBR mice compared to those treated with vehicle. Furthermore, Pb exposure led to a significant increase in IFN-γ, T-bet, STAT1, STAT4, IL-9, IRF4, IL-22, and AhR mRNA expression in BTBR mice. In contrast, IL-10 and Foxp3 mRNA expression was significantly lower in those treated with the vehicle. Our data suggest that Pb exposure exacerbates immunological dysfunctions associated with ASD. These data imply that Pb exposure may increase the risk of ASD.
Collapse
Affiliation(s)
- Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Thamer H. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mushtaq A. Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Sabry M. Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Saleh A. Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Mohammed M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| | - Taghreed N. Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.Y.A.)
| | - Mohammad Y. Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia (M.Y.A.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia (S.A.B.)
| |
Collapse
|
10
|
Zhang XL, Hollander CM, Khan MY, D'silva M, Ma H, Yang X, Bai R, Keeter CK, Galkina EV, Nadler JL, Stanton PK. Myeloid cell deficiency of the inflammatory transcription factor Stat4 protects long-term synaptic plasticity from the effects of a high-fat, high-cholesterol diet. Commun Biol 2023; 6:967. [PMID: 37783748 PMCID: PMC10545833 DOI: 10.1038/s42003-023-05304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Neuroinflammation is associated with neurodegenerative diseases, including Alzheimer's and Parkinson's. The cytokine interleukin-12 activates signal transducer and activator of transcription 4 (Stat4), and consumption of a high-fat, high-cholesterol diet (HFD-C) and Stat4 activity are associated with inflammation, atherosclerosis, and a diabetic metabolic phenotype. In studies of in vitro hippocampal slices from control Stat4fl/flLdlr-/- mice fed a HFD-C diabetogenic diet, we show that Schaffer collateral-CA1 synapses exhibited larger reductions in activity-dependent, long-term potentiation (LTP) of synaptic transmission, compared to mice fed a standard diet. Glucose tolerance and insulin sensitivity shifts produced by HFD-C diet were reduced in Stat4ΔLysMLdlr-/- mice compared to Stat4fl/flLdlr-/- controls. Stat4ΔLysMLdlr-/- mice, which lack Stat4 under control of the LysMCre promoter, were resistant to HFD-C induced impairments in LTP. In contrast, Schaffer collateral-CA1 synapses in Stat4ΔLysMLdlr-/- mice fed the HFD-C diet showed larger LTP than control Stat4fl/flLdlr-/- mice. Expression of a number of neuroinflammatory and synaptic plasticity genes was reduced by HFD-C diet in control mice, and less affected by HFD-C diet in Stat4ΔLysMLdlr-/- mice. These data suggest that suppression of Stat4 activation may protect against effects of Western diet on cognition, type 2 diabetes, and reduce risk of Alzheimer's disease and other neurodegenerative disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Callie M Hollander
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Mohammad Yasir Khan
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Melinee D'silva
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Haoqin Ma
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Xinyuan Yang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Robin Bai
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Coles K Keeter
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Elena V Galkina
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
- ACOS-Research VA Northern California Health Care System, Sacramento, CA, 95655, USA
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
11
|
Li C, Wang S, Ma X, Wang T, Lu R, Jia X, Leng Z, Kong X, Zhang J, Li L. Ranitidine as an adjuvant regulates macrophage polarization and activates CTLs through the PI3K-Akt2 signaling pathway. Int Immunopharmacol 2023; 116:109729. [PMID: 37800555 DOI: 10.1016/j.intimp.2023.109729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 02/19/2023]
Abstract
Adjuvants are an indispensable component of vaccines, but there are few adjuvants for human vaccines. H2 receptor blockers, inhibiting gastric acid secretion, have immune enhancement effects. Ranitidine (RAN) is a water-soluble H2 receptor blocker, and whether it has an immune-enhancing effect is still unknown. In this study, flow cytometry, western blotting, and immunofluorescence methods were used to analyze whether RAN could activate macrophage polarization to the M1 phenotype in vivo and in vitro. Here, we found that the M1 inflammatory cytokine levels and surface markers in RAW264.7 cells were upregulated by NF-κB activation, possibly through the PI3K-Akt2 signaling pathway, after RAN treatment. Endocytic function was also enhanced by feedback regulation of Akt2/GSK3β/Dynmin1 signaling. Furthermore, to evaluate the adjuvant function of RAN, we used OVA plus RAN as a vaccine to inhibit the growth of B16-OVA tumors in mice. We also found that in the RAN adjuvant group, macrophage polarization to M1, Th1 cell differentiation, and cytotoxic T lymphocyte (CTL) activation were significantly upregulated. The tumor growth of mice was inhibited, and the survival rate of mice was significantly improved. This study provides new evidence for the mechanism by which RAN activates the immune response and is expected to provide a new strategy for the research and development of tumor vaccine adjuvants.
Collapse
Affiliation(s)
- Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Shuang Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| | - Xiaoran Ma
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Tiantian Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ran Lu
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xihui Jia
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Zhe Leng
- Department of Gynecology, Qingdao Women and Children's Hospital, Qingdao 266000, China
| | - Xiaowen Kong
- School of Stomatology, Qingdao University, Qingdao 266071, China
| | - Jinyu Zhang
- School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
12
|
A High-Throughput Fluorescence Polarization-Based Assay for the SH2 Domain of STAT4. Methods Protoc 2022; 5:mps5060093. [PMID: 36548135 PMCID: PMC9781101 DOI: 10.3390/mps5060093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
The signal transducer and activation of transcription (STAT) proteins are a family of Src homology 2 (SH2) domain-containing transcription factors. The family member STAT4 is a mediator of IL-12 signalling and has been implicated in the pathogenesis of multiple autoimmune diseases. The activity of STAT4 requires binding of phosphotyrosine-containing motifs to its SH2 domain. Selective inhibitors of the STAT4 SH2 domain have not been published to date. Here, we present a fluorescence polarization-based assay for the identification of inhibitors of the STAT4 SH2 domain. The assay is based on the interaction between the STAT4 SH2 domain and the fluorophore-labelled peptide 5-carboxyfluorescein-GpYLPQNID (Kd = 34 ± 4 nM). The assay is stable with respect to DMSO concentrations of up to 10% and incubation times of at least 8 h. The Z'-value of 0.85 ± 0.01 indicates that the assay is suited for use in high-throughput screening campaigns aimed at identifying new therapeutic modalities for the treatment of autoimmune diseases.
Collapse
|
13
|
Mehrpouya-Bahrami P, Moriarty AK, De Melo P, Keeter WC, Alakhras NS, Nelson AS, Hoover M, Barrios MS, Nadler JL, Serezani CH, Kaplan MH, Galkina EV. STAT4 is expressed in neutrophils and promotes antimicrobial immunity. JCI Insight 2021; 6:e141326. [PMID: 34138758 PMCID: PMC8410094 DOI: 10.1172/jci.insight.141326] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/03/2021] [Indexed: 01/27/2023] Open
Abstract
Signal transducer and activator of transcription 4 (STAT4) is expressed in hematopoietic cells and plays a key role in the differentiation of T helper 1 cells. Although STAT4 is required for immunity to intracellular pathogens, the T cell-independent protective mechanisms of STAT4 are not clearly defined. In this report, we demonstrate that STAT4-deficient mice were acutely sensitive to methicillin-resistant Staphylococcus aureus (MRSA) infection. We show that STAT4 was expressed in neutrophils and activated by IL-12 via a JAK2-dependent pathway. We demonstrate that STAT4 was required for multiple neutrophil functions, including IL-12-induced ROS production, chemotaxis, and production of the neutrophil extracellular traps. Importantly, myeloid-specific and neutrophil-specific deletion of STAT4 resulted in enhanced susceptibility to MRSA, demonstrating the key role of STAT4 in the in vivo function of these cells. Thus, these studies identify STAT4 as an essential regulator of neutrophil functions and a component of innate immune responses in vivo.
Collapse
Affiliation(s)
- Pegah Mehrpouya-Bahrami
- Department of Microbiology and Immunology and,Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Alina K. Moriarty
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Paulo De Melo
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - W. Coles Keeter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Nada S. Alakhras
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Andrew S. Nelson
- Department of Microbiology and Immunology and,Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Madeline Hoover
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maria S. Barrios
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Jerry L. Nadler
- Departments of Medicine and Pharmacology, School of Medicine, New York Medical College, Valhalla, New York, USA
| | - C. Henrique Serezani
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology and,Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Elena V. Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, USA
| |
Collapse
|
14
|
Li Y, Wang J, Chen W, Chen X, Wang J. Overexpression of STAT4 under hypoxia promotes EMT through miR-200a/STAT4 signal pathway. Life Sci 2021; 273:119263. [PMID: 33636177 DOI: 10.1016/j.lfs.2021.119263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
AIMS Previous reports have found that STAT4 is involved in the epithelial-mesenchymal transition (EMT), thereby regulating the metastasis and invasion of ovarian cancer. However, the mechanisms underlying remain unclear. MAIN METHODS We first established hypoxia-induced in vivo and in vitro models. The expression levels of signal transducer and activator of transcription 4 (STAT4), the markers of EMT and microRNA-200a (miR-200a) were assessed by western blot and qRT-PCR analysis, respectively. Through the bioinformatics analysis and luciferase assay, the relationship between miR-200a and SATA4 was performed. The gain- and loss-function experiments were performed to examine the role of miR-200a/STAT4 axis. KEY FINDINGS The results showed that the protein level of STAT4 was significantly up-regulated in our hypoxia-exposed models, and contributed to the regulating of EMT. Besides, we found STAT4 was a direct target of miR-200a. Overexpression of miR-200a repressed the expression of STAT4, and inhibited EMT progress, whereas the silencing of miR-200a promoted the STAT4-mediated EMT regulation both in vitro and in vivo. SIGNIFICANCE Our results provided a potential molecular mechanism by which miR-200a involved in hypoxia-induced metastasis and invasion in ovarian cancer, suggesting a possible target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R.China.
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, PR China.
| | - Wenyu Chen
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R.China
| | - Xiaoping Chen
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R.China
| | - Jianhua Wang
- Department of Obstetrics and Gynecology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, Jiangsu, 224001, P.R.China
| |
Collapse
|
15
|
Wang L, Xu D, Cai L, Dai J, Li Y, Xu H. Expression and survival analysis of the STAT gene family in diffuse gliomas using integrated bioinformatics. Curr Res Transl Med 2021; 69:103274. [PMID: 33836320 DOI: 10.1016/j.retram.2020.103274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 10/21/2022]
Abstract
Signal Transducer and Activator of Transcription (STAT) belongs to the acyltransferase family and participates in cell viability response to different cell stimuli and pathogens. By mediating the expression of a variety of genes, the STAT family plays a prominent part in mammal immunity, proliferation and differentiation. Dysregulations and mutations of STAT factors have been revealed in many kinds of cancers including diffuse gliomas; however, expression characteristic and prognostic value of STAT in diffuse gliomas remain to be elucidated. In this study, we analyzed the transcriptional and survival data of gliomas using ONCOMINE, cBioPortal, GEPIA, COXPRESDB and WEBGESTALTR databases. The results demonstrated that the transcriptional level of STAT1, STAT3 and STAT5A in gliomas was significantly higher than that in normal tissue. Furthermore, dysregulations of STAT1, STAT3, STAT4, STAT5B and STAT6 were referred to as the potential biomarkers to sub-group analysis of gliomas. Survival analysis by the Kaplan-Meier Plotter suggested that glioma patients with high expression of STAT1, STAT3 and STAT5B tended to have poor survival. These data revealed that the STAT family may be an essential aspect of glioma progression and prognosis.
Collapse
Affiliation(s)
- Liang Wang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, China.
| | - Dan Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, China
| | - Longbiao Cai
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, China
| | - Jia Dai
- Tianmen Power Supply Company, State Grid Corporation of China, Hubei, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, China.
| |
Collapse
|
16
|
Ishikawa Y, Terao C. Genetics of systemic sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2020; 5:192-201. [PMID: 35382527 PMCID: PMC8922623 DOI: 10.1177/2397198320913695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/23/2020] [Indexed: 01/05/2024]
Abstract
Systemic sclerosis is an autoimmune disease characterized by generalized fibrosis in connective tissues and internal organs as consequences of microvascular dysfunction and immune dysfunctions, which leads to premature death in affected individuals. The etiology of systemic sclerosis is complex and poorly understood, but as with most autoimmune diseases, it is widely accepted that both environmental and genetic factors contribute to disease risk. During the last decade, the number of genetic markers convincingly associated with systemic sclerosis has exponentially increased. In this article, we briefly mention the genetic components of systemic sclerosis. Then, we review the classical and novel genetic associations with systemic sclerosis, analyzing the firmest and replicated signals within non-human leukocyte antigen genes, identified by both candidate gene approach and genome-wide association studies. We also provide an insight into the future perspectives that will shed more light into the complex genetic background of the disease. Despite the remarkable advance of systemic sclerosis genetics during the last decade, the use of the new genetic technologies such as next-generation sequencing, as well as the deep phenotyping of the study cohorts, to fully characterize the genetic component of this disease is imperative to identify causal variants, which leads to more targeted and effective treatment of systemic sclerosis.
Collapse
Affiliation(s)
- Yuki Ishikawa
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
17
|
Gao Y, Sun W, Cha X, Wang H. 'Psoriasis 1' reduces T‑lymphocyte‑mediated inflammation in patients with psoriasis by inhibiting vitamin D receptor‑mediated STAT4 inactivation. Int J Mol Med 2020; 46:1538-1550. [PMID: 32945358 PMCID: PMC7447312 DOI: 10.3892/ijmm.2020.4695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 06/15/2020] [Indexed: 12/25/2022] Open
Abstract
Psoriasis is an immune-mediated dermatosis characterized by T-lymphocyte-mediated epidermal hyperplasia, for which there are currently no effective clinical treatments. 'Psoriasis 1' is a Chinese herbal medicine formulation that has been recently used extensively in China for treating patients with psoriasis. However, the molecular mechanism of action of this potent formulation has not yet been fully elucidated. In the present study, the effects of 'Psoriasis 1' on T ymphocytes in patients with psoriasis were investigated and the underlying molecular mechanism was discussed. Blood samples were collected from 40 patients with psoriasis. ELISA was employed to assess the levels of tumour necrosis factor-α, interferon-γ, interleukin (IL)-2, IL-6, transforming growth factor-β, IL-4, IL-12, IL-23 and vitamin D (VD). Western blot and quantitative PCR analyses were used to investigate the expression levels of VD receptor (VDR) and signal transducer and activator of transcription (STAT)4 in T lymphocytes. 'Psoriasis 1' was observed to significantly increase CD4+ T cells. It also notably upregulated the mRNA and protein expression of VDR, and downregulated the mRNA and protein expression of STAT4. Moreover, the suppression of VDR was found to aggravate the inflammatory response, which was reversed by 'Psoriasis 1.' Thus, this formulation reportedly decreased the inflammation mediated by T lymphocytes in patients with psoriasis through inhibiting VDR-mediated STAT4 inactivation.
Collapse
Affiliation(s)
- Yang Gao
- Division of Rheumatology, Guang An Men Hospital, China Academy of Chinese Medical Science, Beijing 100053, P.R. China
| | - Wen Sun
- Department of Dermatology, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China
| | - Xushan Cha
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Hailong Wang
- Division of Rheumatology, Guang An Men Hospital, China Academy of Chinese Medical Science, Beijing 100053, P.R. China
| |
Collapse
|
18
|
Machaj F, Rosik J, Szostak B, Pawlik A. The evolution in our understanding of the genetics of rheumatoid arthritis and the impact on novel drug discovery. Expert Opin Drug Discov 2019; 15:85-99. [PMID: 31661990 DOI: 10.1080/17460441.2020.1682992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Rheumatoid arthritis (RA) is an autoimmune disease that is characterized by chronic inflammation of the joints and affects 1% of the population. Polymorphisms of genes that encode proteins that primarily participate in inflammation may influence RA occurrence or become useful biomarkers for certain types of anti-rheumatic treatment.Areas covered: The authors summarize the recent progress in our understanding of the genetics of RA. In the last few years, multiple variants of genes that are associated with RA risk have been identified. The development of new technologies and the detection of new potential therapeutic targets that contribute to novel drug discovery are also described.Expert opinion: There is still the need to search for new genes which may be a potential target for RA therapy. The challenge is to develop appropriate strategies for achieving insight into the molecular pathways involved in RA pathogenesis. Understanding the genetics, immunogenetics, epigenetics and immunology of RA could help to identify new targets for RA therapy. The development of new technologies has enabled the detection of a number of new genes, particularly genes associated with proinflammatory cytokines and chemokines, B- and T-cell activation pathways, signal transducers and transcriptional activators, which might be potential therapeutic targets in RA.
Collapse
Affiliation(s)
- Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
19
|
Transcriptomics of cardiac biopsies reveals differences in patients with or without diagnostic parameters for heart failure with preserved ejection fraction. Sci Rep 2019; 9:3179. [PMID: 30816197 PMCID: PMC6395693 DOI: 10.1038/s41598-019-39445-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
Heart failure affects 2–3% of adult Western population. Prevalence of heart failure with preserved left ventricular (LV) ejection fraction (HFpEF) increases. Studies suggest HFpEF patients to have altered myocardial structure and functional changes such as incomplete relaxation and increased cardiac stiffness. We hypothesised that patients undergoing elective coronary bypass surgery (CABG) with HFpEF characteristics would show distinctive gene expression compared to patients with normal LV physiology. Myocardial biopsies for mRNA expression analysis were obtained from sixteen patients with LV ejection fraction ≥45%. Five out of 16 patients (31%) had echocardiographic characteristics and increased NTproBNP levels indicative of HFpEF and this group was used as HFpEF proxy, while 11 patients had Normal LV physiology. Utilising principal component analysis, the gene expression data clustered into two groups, corresponding to HFpEF proxy and Normal physiology, and 743 differentially expressed genes were identified. The associated top biological functions were cardiac muscle contraction, oxidative phosphorylation, cellular remodelling and matrix organisation. Our results also indicate that upstream regulatory events, including inhibition of transcription factors STAT4, SRF and TP53, and activation of transcription repressors HEY2 and KDM5A, could provide explanatory mechanisms to observed gene expression differences and ultimately cardiac dysfunction in the HFpEF proxy group.
Collapse
|
20
|
Rezaei R, Aslani S, Dashti N, Jamshidi A, Gharibdoost F, Mahmoudi M. Genetic implications in the pathogenesis of systemic sclerosis. Int J Rheum Dis 2018; 21:1478-1486. [DOI: 10.1111/1756-185x.13344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ramazan Rezaei
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Immunology School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Saeed Aslani
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Navid Dashti
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
- Department of Immunology School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
21
|
Malkiel S, Barlev AN, Atisha-Fregoso Y, Suurmond J, Diamond B. Plasma Cell Differentiation Pathways in Systemic Lupus Erythematosus. Front Immunol 2018; 9:427. [PMID: 29556239 PMCID: PMC5845388 DOI: 10.3389/fimmu.2018.00427] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/16/2018] [Indexed: 01/20/2023] Open
Abstract
Plasma cells (PCs) are responsible for the production of protective antibodies against infectious agents but they also produce pathogenic antibodies in autoimmune diseases, such as systemic lupus erythematosus (SLE). Traditionally, high affinity IgG autoantibodies are thought to arise through germinal center (GC) responses. However, class switching and somatic hypermutation can occur in extrafollicular (EF) locations, and this pathway has also been implicated in SLE. The pathway from which PCs originate may determine several characteristics, such as PC lifespan and sensitivity to therapeutics. Although both GC and EF responses have been implicated in SLE, we hypothesize that one of these pathways dominates in each individual patient and genetic risk factors may drive this predominance. While it will be important to distinguish polymorphisms that contribute to a GC-driven or EF B cell response to develop targeted treatments, the challenge will be not only to identify the differentiation pathway but the molecular mechanisms involved. In B cells, this task is complicated by the cross-talk between the B cell receptor, toll-like receptors (TLR), and cytokine signaling molecules, which contribute to both GC and EF responses. While risk variants that affect the function of dendritic cells and T follicular helper cells are likely to primarily influence GC responses, it will be important to discover whether some risk variants in the interferon and TLR pathways preferentially influence EF responses. Identifying the pathways of autoreactive PC differentiation in SLE may help us to understand patient heterogeneity and thereby guide precision therapy.
Collapse
Affiliation(s)
- Susan Malkiel
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Ashley N Barlev
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Yemil Atisha-Fregoso
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States.,Tecnologico de Monterrey, Monterrey, Mexico
| | - Jolien Suurmond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Betty Diamond
- Center of Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, United States
| |
Collapse
|
22
|
Kuebler WM, Bonnet S, Tabuchi A. Inflammation and autoimmunity in pulmonary hypertension: is there a role for endothelial adhesion molecules? (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893218757596. [PMID: 29480134 PMCID: PMC5865459 DOI: 10.1177/2045893218757596] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While pulmonary hypertension (PH) has traditionally not been considered as a disease that is directly linked to or, potentially, even caused by inflammation, a rapidly growing body of evidence has demonstrated the accumulation of a variety of inflammatory and immune cells in PH lungs, in and around the wall of remodeled pulmonary resistance vessels and in the vicinity of plexiform lesions, respectively. Concomitantly, abundant production and release of various inflammatory mediators has been documented in both PH patients and experimental models of PH. While these findings unequivocally demonstrate an inflammatory component in PH, they have fueled an intense and presently ongoing debate as to the nature of this inflammatory aspect: is it a mere bystander of or response to the actual disease process, or is it a pathomechanistic contributor or potentially even a trigger of endothelial injury, smooth muscle hypertrophy and hyperplasia, and the resulting lung vascular remodeling? In this review, we will discuss the present evidence for an inflammatory component in PH disease with a specific focus on the potential role of the endothelium in this scenario and highlight future avenues of experimental investigation which may lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| | | | - Arata Tabuchi
- 1 Charite Universitatsmedizin Berlin Institut fur Physiologie, Berlin, Germany
| |
Collapse
|
23
|
Semeraro ML, Glenn LM, Morris MA. The Four-Way Stop Sign: Viruses, 12-Lipoxygenase, Islets, and Natural Killer Cells in Type 1 Diabetes Progression. Front Endocrinol (Lausanne) 2017; 8:246. [PMID: 28993759 PMCID: PMC5622285 DOI: 10.3389/fendo.2017.00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells represent an important effector arm against viral infection, and mounting evidence suggests that viral infection plays a role in the development of type 1 diabetes (T1D) in at least a portion of patients. NK cells recognize their target cells through a delicate balance of inhibitory and stimulatory receptors on their surface. If unbalanced, NK cells have great potential to wreak havoc in the pancreas due to the beta cell expression of the as-yet-defined NKp46 ligand through interactions with the activating NKp46 receptor found on the surface of most NK cells. Blocking interactions between NKp46 and its ligand protects mice from STZ-induced diabetes, but differential expression non-diabetic and diabetic donor samples have not been tested. Additional studies have shown that peripheral blood NK cells from human T1D patients have altered phenotypes that reduce the lytic and functional ability of the NK cells. Investigations of humanT1D pancreas tissues have indicated that the presence of NK cells may be beneficial despite their infrequent detection. In non-obese diabetic (NOD) mice, we have noted that NK cells express high levels of the proinflammatory mediator 12/15-lipoxygenase (12/15-LO), and decreased levels of stimulatory receptors. Conversely, NK cells of 12/15-LO deficient NOD mice, which are protected from diabetes development, express significantly higher levels of stimulatory receptors. Furthermore, the human NK92 cell line expresses the ALOX12 protein [human 12-lipoxygenase (12-LO), related to mouse 12/15-LO] via Western blotting. Human 12-LO is upregulated in the pancreas of both T1D and T2D human donors with insulin-containing islets, showing a link between 12-LO expression and diabetes progression. Therefore, our hypothesis is that NK cells in those susceptible to developing T1D are unable to function properly during viral infections of pancreatic beta cells due to increased 12-LO expression and activation, which contributes to increased interferon-gamma production and an imbalance in activating and inhibitory NK cell receptors, and may contribute to downstream autoimmune T cell responses. The work presented here outlines evidence from our lab, as well as published literature, supporting our hypothesis, including novel data.
Collapse
Affiliation(s)
- Michele L. Semeraro
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lindsey M. Glenn
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Margaret A. Morris
- Department of Internal Medicine, Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
24
|
Yang L, Zhang YJ. Antagonizing cytokine-mediated JAK-STAT signaling by porcine reproductive and respiratory syndrome virus. Vet Microbiol 2017; 209:57-65. [PMID: 28069291 PMCID: PMC7117332 DOI: 10.1016/j.vetmic.2016.12.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/22/2016] [Accepted: 12/27/2016] [Indexed: 12/18/2022]
Abstract
Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway is activated by myriad cytokines, which are involved in regulation of cell growth, proliferation, differentiation, apoptosis, angiogenesis, immunity and inflammatory response. Because of its significance in immune response, JAK-STAT pathway is often targeted by pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV causes reproductive failure in sows and respiratory disease in pigs of all ages. A typical feature of the immune response to PRRSV infection in pigs is delayed production and low titer of virus neutralizing antibodies, and weak cell-mediated immune response. One of the possible reasons for the weak protective immune response is that PRRSV interferes with cytokine-mediated JAK-STAT signaling. PRRSV inhibits interferon-activated JAK-STAT signaling by blocking nuclear translocation of STAT1 and STAT2. The mechanism is that PRRSV non-structural protein 1β (nsp1β) induces degradation of karyopherin α1 (KPNA1), a critical adaptor in nucleo-cytoplasmic transport. PRRSV also antagonizes IL6-activated JAK-STAT3 signaling via inducing degradation of STAT3. In this review, we briefly introduce JAK-STAT signaling, summarize the PRRSV interference with it, and provide perspective on the perturbation in the context of PRRSV-elicited immune response.
Collapse
Affiliation(s)
- Liping Yang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Yan-Jin Zhang
- Molecular Virology Laboratory, VA-MD College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
25
|
Shi Z, Zhang Q, Chen H, Lian Z, Liu J, Feng H, Miao X, Du Q, Zhou H. STAT4 Polymorphisms are Associated with Neuromyelitis Optica Spectrum Disorders. Neuromolecular Med 2017; 19:493-500. [PMID: 28852993 DOI: 10.1007/s12017-017-8463-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/22/2017] [Indexed: 02/05/2023]
Abstract
STAT4 plays a crucial role in the functioning of the innate and adaptive immune cells and has been identified as a susceptibility gene in numerous autoimmune disorders. However, its association with neuromyelitis optica spectrum disorders (NMOSD) remains uncertain. Here, we performed a case-control study to determine whether STAT4 contributed to the risk of NMOSD. We tested five STAT4 SNPs in 233 patients with established NMOSD and 492 healthy controls. Chi-square tests and logistic regression analyses were performed with four genetic models, including allelic, additive, dominant, and recessive models, to identify associations with NMOSD. The results of multiple test comparisons were corrected using the Benjamini and Hochberg false discovery rate (FDR-BH). After correcting for multiple test comparisons, the minor alleles of four STAT4 SNPs exhibited significant association with increased risk of NMOSD (rs7574865 T, odds ratio [OR] = 1.66, 95% confidence interval [CI] 1.32-2.08, P corr = 0.000; rs10181656 G, OR = 1.62, 95% CI 1.29-2.03, P corr = 0.000; rs10168266 T, OR = 1.59, 95% CI 1.27-2.00, P corr = 0.001; and rs13426947 A, OR = 1.51, 95% CI 1.21-1.90, P corr = 0.004). Identical results were observed in the dominant, recessive, and additive models. In contrast, the G allele of rs7601754 displayed a protective effect against NMOSD (OR = 0.53, 95% CI 0.36-0.76, P corr = 0.006). Our study indicates that STAT4 polymorphisms are associated with the risk of NMOSD, which provides novel insights into the underlying mechanisms of this disease.
Collapse
Affiliation(s)
- Ziyan Shi
- Department of Neurology, West China Hospital, Sichuan University, No. 28 Dianxin Nanjie Street, Chengdu, 610041, China
| | - Qin Zhang
- Department of Neurology, West China Hospital, Sichuan University, No. 28 Dianxin Nanjie Street, Chengdu, 610041, China
| | - Hongxi Chen
- Department of Neurology, West China Hospital, Sichuan University, No. 28 Dianxin Nanjie Street, Chengdu, 610041, China
| | - Zhiyun Lian
- Department of Neurology, West China Hospital, Sichuan University, No. 28 Dianxin Nanjie Street, Chengdu, 610041, China
| | - Ju Liu
- Department of Neurology, West China Hospital, Sichuan University, No. 28 Dianxin Nanjie Street, Chengdu, 610041, China
| | - Huiru Feng
- Department of Neurology, West China Hospital, Sichuan University, No. 28 Dianxin Nanjie Street, Chengdu, 610041, China
| | - Xiaohui Miao
- Department of Neurology, West China Hospital, Sichuan University, No. 28 Dianxin Nanjie Street, Chengdu, 610041, China
| | - Qin Du
- Department of Neurology, West China Hospital, Sichuan University, No. 28 Dianxin Nanjie Street, Chengdu, 610041, China
| | - Hongyu Zhou
- Department of Neurology, West China Hospital, Sichuan University, No. 28 Dianxin Nanjie Street, Chengdu, 610041, China.
| |
Collapse
|
26
|
Saelee P, Kearly A, Nutt SL, Garrett-Sinha LA. Genome-Wide Identification of Target Genes for the Key B Cell Transcription Factor Ets1. Front Immunol 2017; 8:383. [PMID: 28439269 PMCID: PMC5383717 DOI: 10.3389/fimmu.2017.00383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/17/2017] [Indexed: 12/16/2022] Open
Abstract
Background The transcription factor Ets1 is highly expressed in B lymphocytes. Loss of Ets1 leads to premature B cell differentiation into antibody-secreting cells (ASCs), secretion of autoantibodies, and development of autoimmune disease. Despite the importance of Ets1 in B cell biology, few Ets1 target genes are known in these cells. Results To obtain a more complete picture of the function of Ets1 in regulating B cell differentiation, we performed Ets1 ChIP-seq in primary mouse B cells to identify >10,000-binding sites, many of which were localized near genes that play important roles in B cell activation and differentiation. Although Ets1 bound to many sites in the genome, it was required for regulation of less than 5% of them as evidenced by gene expression changes in B cells lacking Ets1. The cohort of genes whose expression was altered included numerous genes that have been associated with autoimmune disease susceptibility. We focused our attention on four such Ets1 target genes Ptpn22, Stat4, Egr1, and Prdm1 to assess how they might contribute to Ets1 function in limiting ASC formation. We found that dysregulation of these particular targets cannot explain altered ASC differentiation in the absence of Ets1. Conclusion We have identified genome-wide binding targets for Ets1 in B cells and determined that a relatively small number of these putative target genes require Ets1 for their normal expression. Interestingly, a cohort of genes associated with autoimmune disease susceptibility is among those that are regulated by Ets1. Identification of the target genes of Ets1 in B cells will help provide a clearer picture of how Ets1 regulates B cell responses and how its loss promotes autoantibody secretion.
Collapse
Affiliation(s)
- Prontip Saelee
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Alyssa Kearly
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
27
|
Dadak M, Jacobs R, Skuljec J, Jirmo AC, Yildiz Ö, Donnerstag F, Baerlecken NT, Schmidt RE, Lanfermann H, Skripuletz T, Schwenkenbecher P, Kleinschnitz C, Tumani H, Stangel M, Pul R. Gain-of-function STAT1 mutations are associated with intracranial aneurysms. Clin Immunol 2017; 178:79-85. [PMID: 28161409 DOI: 10.1016/j.clim.2017.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 12/04/2016] [Accepted: 01/30/2017] [Indexed: 11/17/2022]
Abstract
Chronic mucocutaneous candidiasis, characterized by persistent or recurrent fungal infections, represents the clinical hallmark in gain-of-function (GOF) signal transducer and activator of transcription 1 (STAT1) mutation carriers. Several cases of intracranial aneurysms have been reported in patients with GOF STAT1 mutation but the paucity of reported cases likely suggested this association still as serendipity. In order to endorse this association, we link the development of intracranial aneurysms with STAT1 GOF mutation by presenting the two different cases of a patient and her mother, and demonstrate upregulated phosphorylated STAT4 and IL-12 receptor β1 upon stimulation in patient's blood cells. We also detected increased transforming growth factor (TGF)-β type 2 receptor expression, particularly in CD14+ cells, and a slightly higher phosphorylation rate of SMAD3. In addition, the mother of the patient developed disseminated bacille Calmette-Guérin disease after vaccination, speculating that GOF STAT1 mutations may confer a predisposition to weakly virulent mycobacteria.
Collapse
Affiliation(s)
- Mete Dadak
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Jelena Skuljec
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany
| | - Adan Chari Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Germany
| | - Özlem Yildiz
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Frank Donnerstag
- Department of Neuroradiology, Hannover Medical School, Hannover, Germany
| | | | - Reinhold Ernst Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | - Martin Stangel
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Refik Pul
- Department of Neurology, University Clinic Essen, Essen, Germany.
| |
Collapse
|
28
|
Zhao L, Ji G, Le X, Luo Z, Wang C, Feng M, Xu L, Zhang Y, Lau WB, Lau B, Yang Y, Lei L, Yang H, Xuan Y, Chen Y, Deng X, Yi T, Yao S, Zhao X, Wei Y, Zhou S. An integrated analysis identifies STAT4 as a key regulator of ovarian cancer metastasis. Oncogene 2017; 36:3384-3396. [PMID: 28114283 DOI: 10.1038/onc.2016.487] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/26/2016] [Accepted: 11/21/2016] [Indexed: 02/05/2023]
Abstract
Epithelial ovarian cancer (EOC) is one of the most common gynecological cancers, with diagnosis often at a late stage. Metastasis is a major cause of death in patients with EOC, but the underlying molecular mechanisms remain obscure. Here, we utilized an integrated approach to find potential key transcription factors involved in ovarian cancer metastasis and identified STAT4 as a critical player in ovarian cancer metastasis. We found that activated STAT4 was overexpressed in epithelial cells of ovarian cancer and STAT4 overexpression was associated with poor outcome of ovarian cancer patients, which promoted metastasis of ovarian cancer in both in vivo and in vitro. Although STAT4 mediated EOC metastasis via inducing epithelial-to-mesenchymal transition (EMT) of ovarian cancer cells in vivo, STAT4 failed to induce EMT directly in vitro, suggesting that STAT4 might mediate EMT process via cancer-stroma interactions. Further functional analysis revealed that STAT4 overexpression induced normal omental fibroblasts and adipose- and bone marrow-derived mesenchymal stem cells to obtain cancer-associated fibroblasts (CAF)-like features via induction of tumor-derived Wnt7a. Reciprocally, increased production of CAF-induced CXCL12, IL6 and VEGFA within tumor microenvironment could enable peritoneal metastasis of ovarian cancer via induction of EMT program. In summary, our study established a model that STAT4 promotes ovarian cancer metastasis via tumor-derived Wnt7a-induced activation of CAFs.
Collapse
Affiliation(s)
- L Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - G Ji
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - X Le
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Z Luo
- College of Biological Sciences, Sichuan University, Chengdu, China
| | - C Wang
- College of Biological Sciences, Sichuan University, Chengdu, China
| | - M Feng
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, China
| | - L Xu
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Y Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - W B Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - B Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medical Center, Affiliate of Stanford University, Santa Clara, CA, USA
| | - Y Yang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - L Lei
- West China School of Medicine, Sichuan University, Chengdu, China
| | - H Yang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Y Xuan
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y Chen
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - X Deng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - T Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - S Yao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - X Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Y Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - S Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second Hospital and State Key Laboratory of Biotherapy/Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Multiple genes, especially immune-regulating genes, contribute to disease susceptibility in systemic sclerosis. Curr Opin Rheumatol 2016; 28:595-605. [DOI: 10.1097/bor.0000000000000334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Murdaca G, Contatore M, Gulli R, Mandich P, Puppo F. Genetic factors and systemic sclerosis. Autoimmun Rev 2016; 15:427-32. [DOI: 10.1016/j.autrev.2016.01.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/22/2016] [Indexed: 12/12/2022]
|
31
|
Fu D, Song X, Hu H, Sun M, Li Z, Tian Z. Downregulation of RUNX3 moderates the frequency of Th17 and Th22 cells in patients with psoriasis. Mol Med Rep 2016; 13:4606-12. [PMID: 27082311 PMCID: PMC4878538 DOI: 10.3892/mmr.2016.5108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/22/2016] [Indexed: 12/17/2022] Open
Abstract
Psoriasis is a common chronic inflammatory and T cell-meditated skin disease. Runt-related transcription factor 3 (RUNX3), one of the runt-domain family of transcription factors, has been reported to be a susceptibility gene for psoriasis. The present study was designed to delineate the role and underlying mechanism of RUNX3 involved in the differentiation of T helper (Th) 17 and Th22 cells in psoriasis. The results of the present study demonstrated that the expression of RUNX3 increased significantly in CD4-positive (CD4+) T cells from patients with psoriasis, compared with healthy controls. In addition, increased levels of interleukin (IL)-6, IL-20 and IL-22, and increased frequencies of Th17 and Th22 cells were found in the patients with psoriasis patients, compared with the healthy controls. It was also found that the overexpression of RUNX3 increased the levels of Th17- and Th22-associated cytokines in the CD4+ T cells from the healthy controls. However, the inhibition of RUNX3 reduced the levels of the associated cytokines and decreased the frequency of Th17 and Th22 cells in the CD4+ T cells from the patients with psoriasis. Taken together, the present study suggested that RUNX3 regulated the differentiation of Th17 and Th22 cells in psoriasis, providing a promising therapeutic strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Dandan Fu
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Xiangfeng Song
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Hua Hu
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Min Sun
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Zhanguo Li
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan 453100, P.R. China
| |
Collapse
|
32
|
Kochi Y. Genetics of autoimmune diseases: perspectives from genome-wide association studies. Int Immunol 2016; 28:155-61. [PMID: 26857735 DOI: 10.1093/intimm/dxw002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWASs) for autoimmune diseases (ADs) have identified many risk loci and have provided insights into the etiology of each disease. Some of these loci, such asPTPN22,IL23RandSTAT4, are shared among different ADs, and the combination of risk loci may determine an individual's susceptibility for a disease. The majority of GWAS loci are expression quantitative trait loci (eQTLs), where disease-causing variants regulate expression of neighboring (or sometimes distant) genes. Because the eQTL effects are often cell type-specific, the incorporation of epigenetic data from disease-related cell types and tissues is expected to refine the identification of causal variants. The cumulative eQTL effects in multiple genes may influence the activity or fate of immune cells, which in turn may affect the function of the immune system in individuals. In this paper, I review the etiology of ADs by focusing on important immune cells (Th1 cells, Th17 cells and regulatory T cells), important pathways (antigen-receptor signaling and type I interferon signaling) and relevant genes identified in GWASs.
Collapse
Affiliation(s)
- Yuta Kochi
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo 113-8655, Japan
| |
Collapse
|
33
|
Contribution of the STAT4 rs7574865 gene polymorphism to the susceptibility to autoimmune thyroiditis in healthy Turk population and psoriatic subgroups. Cent Eur J Immunol 2016; 40:437-41. [PMID: 26862307 PMCID: PMC4737749 DOI: 10.5114/ceji.2015.57146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023] Open
Abstract
Introduction STAT4 is an important transcription factor that activates gene transcription as a response to cytokines. Recently, the influence of STAT4 gene on autoimmune disease has been widely studied in many different immune-related diseases. Autoimmune, metabolic and cardiovascular disorders are more common in psoriatic patients. STAT4 may be a unique gene that switches on in autoimmune-related thyroid disease in psoriatic patients. The aim of the study: To explore the association of a STAT4 rs7574865 polymorphism to autoimmune thyroid diseases in the general Turkish population and psoriatic subgroups. Material and methods A total of 132 psoriatic patients and 118 non-psoriatic volunteers were genotyped for STAT4 rs7574865 using real time PCR. Twenty-four of the psoriatic patients and 15 of the non-psoriatic volunteers have autoimmune-related thyroid diseases. Results The prevalence of the T allele [OR = 4.37; 95% CI: 1.05-19; p = 0.03] of the STAT4 rs7574865 was higher in individuals with autoimmune-related thyroid diseases among the all non-psoriatic volunteers. The volunteers with autoimmune-related thyroid diseases has an increased allele positivity and carriers having at least one of the risk allele was significantly higher than in counterparts with a GG wild genotype [ORGT/TT vs. GG: 1.73; 95% CI: 0.09-32; p = 0.03]. Yet, there was no evidence of an association between rs7574865 and autoimmune-related thyroid disease in psoriatic patients. Conclusions The STAT4 rs7574865 polymorphism increases autoimmune-related thyroid disease susceptibility among the general population but not in psoriatic patients.
Collapse
|
34
|
Bossini-Castillo L, López-Isac E, Martín J. Immunogenetics of systemic sclerosis: Defining heritability, functional variants and shared-autoimmunity pathways. J Autoimmun 2015. [PMID: 26212856 DOI: 10.1016/j.jaut.2015.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Systemic sclerosis (SSc) is a clinically heterogeneous connective tissue disorder of complex etiology. The development of large-scale genetic studies, such as genome-wide association studies (GWASs) or the Immunochip platform, has achieved remarkable progress in the knowledge of the genetic background of SSc. Herein, we provide an updated picture SSc genetic factors, offering an insight into their role in pathogenic mechanisms that characterize the disease. We review the most recent findings in the HLA region and the well-established non-HLA loci. Up to 18 non-HLA risk factors fulfilled the selected criteria and they were classified according to their role in the innate or adaptive immune response, in apoptosis, autophagy or fibrosis. Additionally, SSc heritability has remained as a controversial question since twin studies provided low SSc heritability estimates. However, we have recalculated the lower bond of narrow sense SSc heritability using GWAS data. Remarkably, our results suggest a greater influence of genetics on SSc than previously reported. Furthermore, we also offer a functional classification of SSc-associated SNPs and their proxies, based on annotated data, to provide clues for the identification of causal variants in these loci. Finally, we explore the genetic overlap between SSc and other autoimmune diseases (ADs). The vast majority of SSc risk loci are shared with at least one additional AD, being the overlap between SSc and systemic lupus erythematous the largest. Nevertheless, we found that an important portion of SSc risk factors are also common to rheumatoid arthritis or primary biliary cirrhosis. Considering all these evidences, we are confident that future research will be successful in understanding the relevant altered pathways in SSc and in identifying new biomarkers and therapeutic targets for the disease.
Collapse
Affiliation(s)
- Lara Bossini-Castillo
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de La Salud (PTS), Granada, Spain.
| | - Elena López-Isac
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de La Salud (PTS), Granada, Spain
| | - Javier Martín
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Parque Tecnológico de La Salud (PTS), Granada, Spain.
| |
Collapse
|
35
|
Genetics of systemic sclerosis. Semin Immunopathol 2015; 37:443-51. [DOI: 10.1007/s00281-015-0499-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 12/19/2022]
|
36
|
Al Gadban MM, Alwan MM, Smith KJ, Hammad SM. Accelerated vascular disease in systemic lupus erythematosus: role of macrophage. Clin Immunol 2015; 157:133-44. [PMID: 25638414 PMCID: PMC4410070 DOI: 10.1016/j.clim.2015.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory condition that is considered a major cause of death worldwide. Striking phenomena of atherosclerosis associated with systemic lupus erythematosus (SLE) is its high incidence in young patients. Macrophages are heterogeneous cells that differentiate from hematopoietic progenitors and reside in different tissues to preserve tissue integrity. Macrophages scavenge modified lipids and play a major role in the development of atherosclerosis. When activated, macrophages secret inflammatory cytokines. This activation triggers apoptosis of cells in the vicinity of macrophages. As such, macrophages play a significant role in tissue remodeling including atherosclerotic plaque formation and rupture. In spite of studies carried on identifying the role of macrophages in atherosclerosis, this role has not been studied thoroughly in SLE-associated atherosclerosis. In this review, we address factors released by macrophages as well as extrinsic factors that may control macrophage behavior and their effect on accelerated development of atherosclerosis in SLE.
Collapse
Affiliation(s)
- Mohammed M Al Gadban
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed M Alwan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Kent J Smith
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Samar M Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
37
|
Wyska E, Świerczek A, Pociecha K, Przejczowska-Pomierny K. Physiologically based modeling of lisofylline pharmacokinetics following intravenous administration in mice. Eur J Drug Metab Pharmacokinet 2015; 41:403-12. [PMID: 25663650 PMCID: PMC4954844 DOI: 10.1007/s13318-015-0260-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/28/2015] [Indexed: 01/05/2023]
Abstract
Lisofylline (LSF), is the R-(−) enantiomer of the metabolite M1 of pentoxifylline, and is currently under development for the treatment of type 1 diabetes. The aim of the study was to develop a physiologically based pharmacokinetic (PBPK) model of LSF in mice and to perform simulations in order to predict LSF concentrations in human serum and tissues following intravenous and oral administration. The concentrations of LSF in serum, brain, liver, kidneys, lungs, muscle, and gut were determined at different time points over 60 min by a chiral HPLC method with UV detection following a single intravenous dose of LSF to male CD-1 mice. A PBPK model was developed to describe serum pharmacokinetics and tissue distribution of LSF using ADAPT II software. All pharmacokinetic profiles were fitted simultaneously to obtain model parameters. The developed model characterized well LSF disposition in mice. The estimated intrinsic hepatic clearance was 5.427 ml/min and hepatic clearance calculated using the well-stirred model was 1.22 ml/min. The renal clearance of LSF was equal to zero. On scaling the model to humans, a good agreement was found between the predicted by the model and presented in literature serum LSF concentration–time profiles following an intravenous dose of 3 mg/kg. The predicted LSF concentrations in human tissues following oral administration were considerably lower despite the twofold higher dose used and may not be sufficient to exert a pharmacological effect. In conclusion, the mouse is a good model to study LSF pharmacokinetics following intravenous administration. The developed PBPK model may be useful to design future preclinical and clinical studies of this compound.
Collapse
Affiliation(s)
- Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Cracow, Poland.
| | - Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Cracow, Poland
| | - Krzysztof Pociecha
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Cracow, Poland
| | - Katarzyna Przejczowska-Pomierny
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688, Cracow, Poland
| |
Collapse
|