1
|
Khanam A, Hridoy HM, Alam MS, Sultana A, Hasan I. An immunoinformatics approach for a potential NY-ESO-1 and WT1 based multi-epitope vaccine designing against triple-negative breast cancer. Heliyon 2024; 10:e36935. [PMID: 39286192 PMCID: PMC11402771 DOI: 10.1016/j.heliyon.2024.e36935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
Breast cancer emerges as one of the most prevalent malignancies in women, its incidence showing a concerning upward trend. Among the diverse array of breast cancer subtypes, triple-negative breast cancer (TNBC) assumes notable significance, due to lack of estrogen, progesterone, and HER-2 receptors. More focus has to be placed on creating effective therapy due to the high prevalence and rising incidence of TNBC. Currently, conventional passive treatments have several drawbacks that have not yet been resolved. On the other hand, as innovative immunotherapy approaches, cancer vaccines have offered promising prospects in combatting advanced stages of TNBC. Therefore, the main objective of this study was to utilize WT1 and NY-ESO-1 antigenic proteins in designing a multiepitope vaccine against TNBC. Initially, to generate robust immune responses, we identified antigenic epitopes of both proteins and assessed their immunogenicity. In order to reduce junctional immunogenicity, promiscuous epitopes were joined using the suitable adjuvant (50S ribosomal L7/L12 protein) and incorporated appropriate linkers (GPGPG, AAY, and EAAAK). The best predicted 3D model was refined and validated to achieve an excellent 3D model. Molecular docking analysis and dynamic simulation were conducted to demonstrate the structural stability and integrity of the vaccine/TLR-4 complex. Finally, the vaccine was cloned into the vector pET28 (+). Thus, analysis of the constructed vaccine through immunoinformatics indicates its capability to elicit robust humoral and cellular immune responses in the targeted organism. As such, it holds promise as a therapeutic weapon against TNBC and may open doors for further research in the field.
Collapse
Affiliation(s)
- Alima Khanam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hossain Mohammad Hridoy
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Shahin Alam
- Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Adiba Sultana
- Department of Statistics, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
- Department of Microbiology, University of Rajshahi, Rajshah, 6205, Bangladesh
| |
Collapse
|
2
|
Buján S, Pontillo C, Miret N, Leguizamón MA, Chiappini F, Cocca C, Randi A. Triple negative breast cancer cells exposed to aryl hydrocarbon receptor ligands hexachlorobenzene and chlorpyrifos activate endothelial cells. Chem Biol Interact 2024; 398:111096. [PMID: 38844257 DOI: 10.1016/j.cbi.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/17/2024]
Abstract
Breast cancer is currently one of the most prevalent cancers worldwide. The mechanisms by which pesticides can increase breast cancer risk are multiple and complex. We have previously observed that two aryl hydrocarbon receptor (AhR) agonists ‒pesticides hexachlorobenzene (HCB) and chlorpyrifos (CPF)‒ act on tumor progression, stimulating cell migration and invasion in vitro and tumor growth in animal models. Elevated levels of hypoxia inducible factor-1α (HIF-1α) are found in malignant breast tumors, and HIF-1α is known to induce proangiogenic factors such as vascular endothelial growth factor (VEGF), nitric oxide synthase-2 (NOS-2) and cyclooxygenase-2 (COX-2), which are fundamental in breast cancer progression. In this work, we studied HCB (0.005, 0.05, 0.5 and 5 μM) and CPF (0.05, 0.5, 5 and 50 μM) action on the expression of these proangiogenic factors in triple negative breast cancer cells MDA-MB-231, as well as the effect of their conditioned medium (CM) on endothelial cells. Exposure to pesticides increased HIF-1α and VEGF protein expression in an AhR-dependent manner. In addition, HCB and CPF boosted NOS-2 and COX-2 content and VEGF secretion in MDA-MB-231 cells. The treatment of endothelial cells with CM from tumor cells exposed to pesticides increased cell proliferation, migration, and tubule formation, enhancing both tubule length and branching points. Of note, these effects were VEGF-dependent, as they were blocked in the presence of a VEGF receptor-2 (VEGFR-2) inhibitor. In sum, our results highlight the harmful impact of HCB and CPF in modulating the interaction between breast cancer and endothelial cells and promoting angiogenesis.
Collapse
Affiliation(s)
- Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Carolina Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Noelia Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - María Agustina Leguizamón
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Florencia Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina
| | - Claudia Cocca
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Andrea Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Li JJ, Yu T, Zeng P, Tian J, Liu P, Qiao S, Wen S, Hu Y, Liu Q, Lu W, Zhang H, Huang P. Wild-type IDH2 is a therapeutic target for triple-negative breast cancer. Nat Commun 2024; 15:3445. [PMID: 38658533 PMCID: PMC11043430 DOI: 10.1038/s41467-024-47536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in isocitrate dehydrogenases (IDH) are oncogenic events due to the generation of oncogenic metabolite 2-hydroxyglutarate. However, the role of wild-type IDH in cancer development remains elusive. Here we show that wild-type IDH2 is highly expressed in triple negative breast cancer (TNBC) cells and promotes their proliferation in vitro and tumor growth in vivo. Genetic silencing or pharmacological inhibition of wt-IDH2 causes a significant increase in α-ketoglutarate (α-KG), indicating a suppression of reductive tricarboxylic acid (TCA) cycle. The aberrant accumulation of α-KG due to IDH2 abrogation inhibits mitochondrial ATP synthesis and promotes HIF-1α degradation, leading to suppression of glycolysis. Such metabolic double-hit results in ATP depletion and suppression of tumor growth, and renders TNBC cells more sensitive to doxorubicin treatment. Our study reveals a metabolic property of TNBC cells with active utilization of glutamine via reductive TCA metabolism, and suggests that wild-type IDH2 plays an important role in this metabolic process and could be a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Jiang-Jiang Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Tiantian Yu
- Metabolic Innovation Center, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Peiting Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Jingyu Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Shuang Qiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Yumin Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Qiao Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Wenhua Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Hui Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China
- Metabolic Innovation Center, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, 510060, China.
- Metabolic Innovation Center, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, 510080, China.
| |
Collapse
|
4
|
Li X, Xu H, Du Z, Cao Q, Liu X. Advances in the study of tertiary lymphoid structures in the immunotherapy of breast cancer. Front Oncol 2024; 14:1382701. [PMID: 38628669 PMCID: PMC11018917 DOI: 10.3389/fonc.2024.1382701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Breast cancer, as one of the most common malignancies in women, exhibits complex and heterogeneous pathological characteristics across different subtypes. Triple-negative breast cancer (TNBC) and HER2-positive breast cancer are two common and highly invasive subtypes within breast cancer. The stability of the breast microbiota is closely intertwined with the immune environment, and immunotherapy is a common approach for treating breast cancer.Tertiary lymphoid structures (TLSs), recently discovered immune cell aggregates surrounding breast cancer, resemble secondary lymphoid organs (SLOs) and are associated with the prognosis and survival of some breast cancer patients, offering new avenues for immunotherapy. Machine learning, as a form of artificial intelligence, has increasingly been used for detecting biomarkers and constructing tumor prognosis models. This article systematically reviews the latest research progress on TLSs in breast cancer and the application of machine learning in the detection of TLSs and the study of breast cancer prognosis. The insights provided contribute valuable perspectives for further exploring the biological differences among different subtypes of breast cancer and formulating personalized treatment strategies.
Collapse
Affiliation(s)
- Xin Li
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Han Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ziwei Du
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qiang Cao
- Department of Earth Sciences, Kunming University of Science and Technology, Kunming, China
| | - Xiaofei Liu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
5
|
Akash S, Aovi FI, Azad MAK, Kumer A, Chakma U, Islam MR, Mukerjee N, Rahman MM, Bayıl I, Rashid S, Sharma R. A drug design strategy based on molecular docking and molecular dynamics simulations applied to development of inhibitor against triple-negative breast cancer by Scutellarein derivatives. PLoS One 2023; 18:e0283271. [PMID: 37824496 PMCID: PMC10569544 DOI: 10.1371/journal.pone.0283271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/07/2023] [Indexed: 10/14/2023] Open
Abstract
Triple-negative breast cancer (TNBC), accounting for 10-15% of all breast malignancies, is more prevalent in women under 40, particularly in those of African descent or carrying the BRCA1 mutation. TNBC is characterized by the absence of estrogen and progesterone receptors (ER, PR) and low or elevated HER2 expression. It represents a particularly aggressive form of breast cancer with limited therapeutic options and a poorer prognosis. In our study, we utilized the protein of TNBC collected from the Protein Data Bank (PDB) with the most stable configuration. We selected Scutellarein, a bioactive molecule renowned for its anti-cancer properties, and used its derivatives to design potential anti-cancer drugs employing computational tools. We applied and modified structural activity relationship methods to these derivatives and evaluated the probability of active (Pa) and inactive (Pi) outcomes using pass prediction scores. Furthermore, we employed in-silico approaches such as the assessment of absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and quantum calculations through density functional theory (DFT). Within the DFT calculations, we analyzed Frontier Molecular Orbitals, specifically the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). We then conducted molecular docking and dynamics against TNBC to ascertain binding affinity and stability. Our findings indicated that Scutellarein derivatives, specifically DM03 with a binding energy of -10.7 kcal/mol and DM04 with -11.0 kcal/mol, exhibited the maximum binding tendency against Human CK2 alpha kinase (PDB ID 7L1X). Molecular dynamic simulations were performed for 100 ns, and stability was assessed using root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) parameters, suggesting significant stability for our chosen compounds. Furthermore, these molecules met the pharmacokinetics requirements for potential therapeutic candidates, displaying non-carcinogenicity, minimal aquatic and non-aquatic toxicity, and greater aqueous solubility. Collectively, our computational data suggest that Scutellarein derivatives may serve as potential therapeutic agents for TNBC. However, further experimental investigations are needed to validate these findings.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Farjana Islam Aovi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. A. K. Azad
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, European University of Bangladesh, Dhaka, Bangladesh
| | - Unesco Chakma
- School of Electronic Science and Engineering, Southeast University, Nanjing, China
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Nobendu Mukerjee
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Microbiology, West Bengal State University, West Bengal, Kolkata, India
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Khanna P, Mehta R, Mehta GA, Bhatt V, Guo JY, Gatza ML. SOX4-SMARCA4 complex promotes glycolysis-dependent TNBC cell growth through transcriptional regulation of Hexokinase 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.557071. [PMID: 37745600 PMCID: PMC10515838 DOI: 10.1101/2023.09.10.557071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Tumor cells rely on increased glycolytic capacity to promote cell growth and progression. While glycolysis is known to be upregulated in the majority of triple negative (TNBC) or basal-like subtype breast cancers, the mechanism remains unclear. Here, we used integrative genomic analyses to identify a subset of basal-like tumors characterized by increased expression of the oncogenic transcription factor SOX4 and its co-factor the SWI/SNF ATPase SMARCA4. These tumors are defined by unique gene expression programs that correspond with increased tumor proliferation and activation of key metabolic pathways, including glycolysis. Mechanistically, we demonstrate that the SOX4-SMARCA4 complex mediates glycolysis through direct transcriptional regulation of Hexokinase 2 (HK2) and that aberrant HK2 expression and altered glycolytic capacity are required to mediate SOX4-SMARCA4-dependent cell growth. Collectively, we have defined the SOX4-SMARCA4-HK2 signaling axis in basal-like breast tumors and established that this axis promotes metabolic reprogramming which is required to maintain tumor cell growth.
Collapse
Affiliation(s)
- Pooja Khanna
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Rushabh Mehta
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Gaurav A. Mehta
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Vrushank Bhatt
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Jessie Y. Guo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08901
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, New Jersey 08854
| | - Michael L. Gatza
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
7
|
Luo Z, Wu S, Zhou J, Xu W, Xu Q, Lu L, Xie C, Liu Y, Lu W. All-stage targeted therapy for the brain metastasis from triple-negative breast cancer. Acta Pharm Sin B 2023; 13:359-371. [PMID: 36815053 PMCID: PMC9939358 DOI: 10.1016/j.apsb.2022.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/27/2022] Open
Abstract
Brain metastasis is a common and serious complication of breast cancer, which is commonly associated with poor survival and prognosis. In particular, the treatment of brain metastasis from triple-negative breast cancer (BM-TNBC) has to face the distinct therapeutic challenges from tumor heterogeneity, circulating tumor cells (CTCs), blood-brain barrier (BBB) and blood-tumor barrier (BTB), which is in unmet clinical needs. Herein, combining with the advantages of synthetic and natural targeting moieties, we develop a "Y-shaped" peptide pVAP-decorated platelet-hybrid liposome drug delivery system to address the all-stage targeted drug delivery for the whole progression of BM-TNBC. Inherited from the activated platelet, the hybrid liposomes still retain the native affinity toward CTCs. Further, the peptide-mediated targeting to breast cancer cells and transport across BBB/BTB are demonstrated in vitro and in vivo. The resultant delivery platform significantly improves the drug accumulation both in orthotopic breast tumors and brain metastatic lesions, and eventually exhibits an outperformance in the inhibition of BM-TNBC compared with the free drug. Overall, this work provides a promising prospect for the comprehensive treatment of BM-TNBC, which could be generalized to other cell types or used in imaging platforms in the future.
Collapse
Affiliation(s)
- Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai 201203, China,Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China,Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China,State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China,Corresponding author.
| |
Collapse
|
8
|
De Francesco EM, Cirillo F, Vella V, Belfiore A, Maggiolini M, Lappano R. Triple-negative breast cancer drug resistance, durable efficacy, and cure: How advanced biological insights and emerging drug modalities could transform progress. Expert Opin Ther Targets 2022; 26:513-535. [PMID: 35761781 DOI: 10.1080/14728222.2022.2094762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) and often associated with poor survival outcomes. The backbone of current treatments for TNBC relies on chemotherapy; however, resistance to cytotoxic agents is a commonly encountered hurdle to overcome. AREAS COVERED : Current understanding on the mechanisms involved in TNBC chemoresistance is evaluated and novel potential actionable targets and recently explored modalities for carrying and delivering chemotherapeutics are highlighted. EXPERT OPINION : A comprehensive identification of both genomic and functional TNBC signatures is required for a more definite categorization of the patients in order to prevent insensitivity to chemotherapy and therefore realize the full potential of precision-medicine approaches. In this scenario, cell-line-derived xenografts (CDX), patient-derived xenografts (PDX), patient-derived orthotopic xenografts (PDOX) and patient-derived organoids (PDO) are indispensable experimental models for evaluating the efficacy of drug candidates and predicting the therapeutic response. The combination of increasingly sensitive "omics" technologies, computational algorithms and innovative drug modalities may accelerate the successful translation of novel candidate TNBC targets from basic research to clinical settings, thus contributing to reach optimal clinical output, with lower side effects and reduced resistance.
Collapse
Affiliation(s)
- Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Veronica Vella
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
9
|
Luo Z, Lu L, Xu W, Meng N, Wu S, Zhou J, Xu Q, Xie C, Liu Y, Lu W. In vivo self-assembled drug nanocrystals for metastatic breast cancer all-stage targeted therapy. J Control Release 2022; 346:32-42. [PMID: 35378211 DOI: 10.1016/j.jconrel.2022.03.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/22/2022]
Abstract
Chemotherapy is still the mainstay treatment for metastatic triple-negative breast cancers (TNBC) currently in clinical practice. The unmet needs of chemotherapy for metastatic TNBC are mainly from the insufficient drug delivery and unavailable targeting strategy that thwart the whole progression of metastatic TNBC. The in vivo ligands-mediated active targeting efficiency is usually affected by protein corona. While, the protein corona-bridged natural targeting, in turn, provides a new way for specific drug delivery. Herein, we develop a novel metastatic progression-oriented in vivo self-assembled Cabazitaxel nanocrystals (CNC) delivery system (PC/CNC) through the CNC automatically absorbing functional plasma proteins (transferrin, apolipoprotein A-IV and apolipoprotein E) in vivo, aiming to achieve the simultaneously targeted delivery to primary tumors, circulating tumor cells and metastatic lesions. With the unique advantages of superhigh drug-loading and protein corona empowered active targeting properties to tumor cells, HUVECs, active-platelets and blood-brain barrier/blood-tumor barrier, the PC/CNC exhibits a significantly improved therapeutic effect in metastatic TNBC therapy compared with free drug and CNC-loaded liposomes.
Collapse
Affiliation(s)
- Zimiao Luo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China
| | - Weixia Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Nana Meng
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Sunyi Wu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Jianfen Zhou
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Qianzhu Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China
| | - Cao Xie
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education and PLA), State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China; Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine of Fudan University, Shanghai 200041, China; Minhang Branch, Zhongshan Hospital and Institute of Fudan-Minghang Academic Health System, Minghang Hospital, Fudan University, Shanghai 201199, China; Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular non-coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China.
| |
Collapse
|
10
|
Barchiesi G, Roberto M, Verrico M, Vici P, Tomao S, Tomao F. Emerging Role of PARP Inhibitors in Metastatic Triple Negative Breast Cancer. Current Scenario and Future Perspectives. Front Oncol 2021; 11:769280. [PMID: 34900718 PMCID: PMC8655309 DOI: 10.3389/fonc.2021.769280] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022] Open
Abstract
Triple negative tumors represent 15% of breast cancer and are characterized by the lack of estrogen receptors, progesterone receptor, and HER2 amplification or overexpression. Approximately 25% of patients diagnosed with triple negative breast cancer carry a germline BRCA1 or BRCA2 mutation. They have an aggressive biology, and chemotherapy has been the mainstay of treatment for a long time. Despite intensive therapies, prognosis is still poor, and many patients will eventually relapse or die due to cancer. Therefore, novel targeted agents that can increase the treatment options for this disease are urgently needed. Recently, a new class of molecules has emerged as a standard of care for patients with triple negative breast cancer and germline BRCA1 or BRCA2 mutation: poly (ADP-ribose) (PARP) inhibitors. In the first part of the review, we summarize and discuss evidence supporting the use of PARP inhibitors. Currently, two PARP inhibitors have been approved for triple negative metastatic breast cancer-olaparib and talazoparib-based on two phase III trials, which showed a progression-free survival benefit when compared to chemotherapy. Safety profile was manageable with supportive therapies and dose reductions/interruptions. In addition, other PARP inhibitors are currently under investigation, such as talazoparib, rucaparib, and veliparib. Subsequently, we will discuss the potential role of PARP inhibitors in the future. Clinical research areas are investigating PARP inhibitors in combination with other agents and are including patients without germline BRCA mutations: ongoing phase II/III studies are combining PARP inhibitors with immunotherapy, while phases I and II trials are combining PARP inhibitors with other targeted agents such as ATM and PIK3CA inhibitors. Moreover, several clinical trials are enrolling patients with somatic BRCA mutation or patients carrying mutations in genes, other than BRCA1/2, involved in the homologous recombination repair pathway (e.g., CHECK2, PALB2, RAD51, etc.).
Collapse
Affiliation(s)
- Giacomo Barchiesi
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Michela Roberto
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Monica Verrico
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Patrizia Vici
- UOSD Sperimentazioni Di Fase IV, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Silverio Tomao
- Dipartimento di Scienze Radiologiche, Oncologiche ed Anatomo Patologiche, Università di Roma Sapienza, Rome, Italy
| | - Federica Tomao
- Gynecologic Oncology Program, European Institute of Oncology, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
- Maternal and Child Department, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Ribatti D, Annese T, Tamma R. Controversial role of mast cells in breast cancer tumor progression and angiogenesis. Clin Breast Cancer 2021; 21:486-491. [PMID: 34580034 DOI: 10.1016/j.clbc.2021.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer is a neoplastic disease and is a cause of cancer-related mortality for women. Among cellular and molecular regulators of the microenvironment, mast cells and vascular endothelial growth factor (VEGF), are correlated with tumor progression and prognosis in breast cancer. Clinical and experimental studies on breast cancer have revealed a marked correlation between increased angiogenesis, metastasization, and poorer prognosis. After a brief introduction on angiogenesis evidence and angiogenic factors role in different breast cancer subtypes, in this article, we have discerned the relationship between mast cell infiltration, angiogenesis, and tumor progression in human breast cancer with particular reference to the dual role of mast cells, in terms of both pro- or anti-tumoral activity and poor or good biomarker.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy.
| | - Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
12
|
Luo X, Wang H. LINC00514 upregulates CCDC71L to promote cell proliferation, migration and invasion in triple-negative breast cancer by sponging miR-6504-5p and miR-3139. Cancer Cell Int 2021; 21:180. [PMID: 33757509 PMCID: PMC7986463 DOI: 10.1186/s12935-021-01875-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have recently identified as essential gene modulators in numerous cancers. Previous studies have confirmed the oncogenic role of long intergenic nonprotein-coding RNA 00514 (LINC00514) in some cancers. Nevertheless, its biological function and mechanism remain unclear in triple-negative breast cancer (TNBC). METHODS Herein, we detected LINC00514 expression level in TNBC tissues and cells using RT-qPCR. The function of LINC00514 in TNBC cellular activities was assessed by colony formation, EdU, wound healing, transwell assays and flow cytometry analysis. RESULTS The binding between miR-6504-5p/miR-3139 and LINC00514/CCDC71L was validated by luciferase reporter assay. The results indicated that LINC00514 expression was upregulated in TNBC tissues and cells. Furthermore, it was manifested that silenced LINC00514 restrained cell proliferative, migratory and invasive abilities and promoted cell apoptosis. In mechanism, LINC00514 was revealed to sequester miR-6504-5p and miR-3139 in TNBC cells. Furthermore, the low level of miR-6504-5p and miR-3139 was identified in TNBC tissues and cells. Overexpression of miR-6504-5p or miR-3139 inhibited cell growth and migration in TNBC. CCDC71L was recognized as a common downstream gene of miR-6504-5p and miR-3139. Rescue assay verified that overexpressed CCDC71L countervailed the anti-tumor influence of LINC00514 knockdown on TNBC cell proliferation, migration, invasion and apoptosis. CONCLUSIONS LINC00514 promote cell proliferation, migration and invasion in triple-negative breast cancer by targeting the miR-6504-5p/miR-3139/CCDC71L axis in TNBC.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China
| | - Hui Wang
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
| |
Collapse
|
13
|
Do HTT, Cho J. Involvement of the ERK/HIF-1α/EMT Pathway in XCL1-Induced Migration of MDA-MB-231 and SK-BR-3 Breast Cancer Cells. Int J Mol Sci 2020; 22:ijms22010089. [PMID: 33374849 PMCID: PMC7796296 DOI: 10.3390/ijms22010089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.
Collapse
|
14
|
Lei S, Fan P, Wang M, Zhang C, Jiang Y, Huang S, Fang M, He Z, Wu A. Elevated estrogen receptor β expression in triple negative breast cancer cells is associated with sensitivity to doxorubicin by inhibiting the PI3K/AKT/mTOR signaling pathway. Exp Ther Med 2020; 20:1630-1636. [PMID: 32742395 PMCID: PMC7388322 DOI: 10.3892/etm.2020.8809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
Based on its pathological characteristics, breast cancer is a highly heterogeneous disease. Triple negative breast cancer (TNBC) is an aggressive subtype, and due to a lack of effective therapeutic targets, patients with TNBC do not significantly benefit from endocrine or anti-HER2 therapy. Conventional chemotherapy has been regarded as the only systemic therapy option for TNBC, but its therapeutic efficacy remains limited. Estrogen receptor β (ERβ) has been identified as a tumor suppressor in TNBC. Therefore, the aim of the present study was to identify the role of ERβ in regulating the response to chemotherapy, and to investigate its underlying mechanism in TNBC. MDA-MB-231 and BT549 cells were treated with doxorubicin (DOX), liquiritigenin [Liq, (Chengdu Biopurify Phytochemicals, Ltd.); a specific ERβ agonist], or a combination of DOX and Liq in vitro. The effects of various treatments on cell viability and proliferation were measured using the Cell Counting Kit-8 and colony-formation assays, respectively. MDA-MB-231 and ERβ knockdown (ERβ-KD) MDA-MB-231 cells were selected for the establishment of ERα-/ERβ+ and ERα-/ERβ- cell models, respectively. The two cell models were treated with DOX, Liq or a combination of DOX and Liq. The effects of the treatment on the PI3K/AKT/mTOR signaling pathway were evaluated by assessing the protein expression levels of AKT and mTOR using western blot analysis. Low Liq concentrations increased the sensitivity of MDA-MB-231 and BT549 cells to DOX. Moreover, the synergistic effect of Liq and DOX treatment was associated with the inhibition of the PI3K/AKT/mTOR signaling pathway in MDA-MB-231 cells, and the effect was ERβ-dependent. The results suggested that elevated ERβ expression was associated with sensitivity to doxorubicin by inhibiting the PI3K/AKT/mTOR signaling pathway; therefore, the combined use of conventional chemotherapeutic drugs with ERβ agonists may serve as an effective therapy for TNBC.
Collapse
Affiliation(s)
- Shanshan Lei
- Department of General Surgery, Zhujiang Hospital (The Second School of Clinical Medicine), Southern Medical University, Guangzhou, Guangdong 510282, P.R. China.,Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Peizhi Fan
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Mengchuan Wang
- Department of General Surgery, Zhujiang Hospital (The Second School of Clinical Medicine), Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Chaojie Zhang
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Shulin Huang
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Meng Fang
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Zili He
- Laboratory of Hepatobiliary Molecular Oncology, Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410005, P.R. China
| | - Aiguo Wu
- Department of General Surgery, Zhujiang Hospital (The Second School of Clinical Medicine), Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
15
|
Mir-30b-5p Promotes Proliferation, Migration, and Invasion of Breast Cancer Cells via Targeting ASPP2. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7907269. [PMID: 32420372 PMCID: PMC7210518 DOI: 10.1155/2020/7907269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtypes of breast cancer, which has few effective targeted therapies. Various sources of evidence confirm that microRNAs (miRNAs) contribute to the progression and metastasis of human breast cancer. However, the molecular mechanisms underlying the changes in miRNAs expression and the regulation of miRNAs functions have not been well clarified. In this study, we found that the expression of miR-30b-5p was upregulated in breast cancer tissues and breast cancer cell lines, compared to paracancer tissues and normal breast cell lines. Moreover, induced overexpression of miR-30b-5p promoted the MDA-MB-231 and HCC 1937 cell growth, migration, and invasion and reduced the cellular apoptosis. Further studies confirmed that miR-30b-5p could directly target ASPP2 and then activate the AKT signaling pathway. Our results suggested that miR-30b-5p could act as a tumor promoter in TNBC. The newly identified miR-30b-5p/ASPP2/AKT axis represents a novel therapeutic strategy for treating TNBC.
Collapse
|
16
|
Malekian S, Rahmati M, Sari S, Kazemimanesh M, Kheirbakhsh R, Muhammadnejad A, Amanpour S. Expression of Diverse Angiogenesis Factor in Different Stages of the 4T1 Tumor as a Mouse Model of Triple-Negative Breast Cancer. Adv Pharm Bull 2020; 10:323-328. [PMID: 32373503 PMCID: PMC7191227 DOI: 10.34172/apb.2020.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Triple-negative breast cancer (TNBC) is specified by high vascularity and repetitious metastasis. Although several studies have indicated that angiogenesis has an important role in invasive breast cancer, a suitable model of TNBC that can show the exact onset of angiogenesis factors still needs to be developed. The purpose of this study is to determine the expression level of angiogenesis factors in different clinical stages of the 4T1 tumor as TNBC mouse model. Methods: Twenty mice were injected by the 4T1 cell line, and four mice selected as healthy controls. Following by tumor induction, the mice were randomly put into four groups, each contains four mice. Once the tumor volume reached to the early stage (<100 mm3), intermediate stage (100-300 mm3), advanced stage (300-500 mm3), and end stage (>500 mm3), they were removed by surgery. Then, the expression levels of Hif1α, VEGFR1, and VEGFR2 genes, as well as tumor markers of VEGF, bFGF and CD31, were evaluated by qPCR and immunohistochemistry (IHC) respectively. The statistical analysis was done by SPSS version 16. Results: TNBC tumors were confirmed and multi-foci metastasis in the lung were seen. The mRNA and protein expression levels of the angiogenesis factors increased in the early stage and as the tumor grew, their expression level enhanced dramatically. Conclusion: The 4T1 syngeneic mouse tumor may serve as an appropriate TNBC model for further investigation of the angiogenesis and therapies. Moreover, angiogenesis factors are induced before the advanced stage, and anti-angiogenesis therapy is necessary to be considered at the first line of treatment in TBNC.
Collapse
Affiliation(s)
- Saba Malekian
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Soyar Sari
- Department of Molecular and Cellular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Raheleh Kheirbakhsh
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Amanpour
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Rokudai S. High-Throughput RNA Interference Screen Targeting Synthetic-Lethal Gain-of-Function of Oncogenic Mutant TP53 in Triple-Negative Breast Cancer. Methods Mol Biol 2020; 2108:297-303. [PMID: 31939190 DOI: 10.1007/978-1-0716-0247-8_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
TNBC is an aggressive and metastatic subtype of breast cancer in which TP53 mutation occurs frequently and is associated with particularly poor outcome. Mutations in TP53 can disrupt the intrinsic function of the tumor suppressor as well as acquire oncogenic gain-of-function (GOF) activities. However, little is known about its oncogenic GOF mediators and functions. Targeted therapy for TNBC patients is thus one of the most urgent needs in breast cancer therapeutics, and identifying genes that have synthetic lethal interactions with mutant TP53 may be a promising approach. In this chapter, we present procedures on sequential analysis of RNA-seq followed by high-throughput RNA interference screening (HTS-RNAi screening). This approach has been utilized to identify genes with synthetic lethality of mutant TP53, providing a promising strategy for the treatment of mutant TP53 in TNBC and determining its impact on tumorigenesis.
Collapse
Affiliation(s)
- Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
18
|
Shi Y, Jin J, Wang X, Ji W, Guan X. DAXX, as a Tumor Suppressor, Impacts DNA Damage Repair and Sensitizes BRCA-Proficient TNBC Cells to PARP Inhibitors. Neoplasia 2019; 21:533-544. [PMID: 31029033 PMCID: PMC6484230 DOI: 10.1016/j.neo.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Treatment options are limited for patients with triple negative breast cancer (TNBC). Understanding genes that participate in cancer progression and DNA damage response (DDR) may improve therapeutic strategies for TNBC. DAXX, a death domain-associated protein, has been reported to be critically involved in cancer progression and drug sensitivity in multiple cancer types. However, its role in breast cancer, especially for TNBC, remains unclear. Here, we demonstrated a tumor suppressor function of DAXX in TNBC proliferation, colony formation, and migration. In Mouse Xenograft Models, DAXX remarkably inhibited tumorigenicity of TNBC cells. Mechanistically, DAXX could directly bind to the promoter region of RAD51 and impede DNA damage repair, which impacted the protection mechanism of tumor cells that much depended on remaining DDR pathways for cell growth. Furthermore, DAXX-mediated inefficient DNA damage repair could sensitize BRCA-proficient TNBC cells to PARP inhibitors. Additionally, we identified that dual RAD51 and PARP inhibition with RI-1 and ABT888 significantly reduced TNBC growth both in vitro and in vivo, which provided the first evidence of combining RAD51 and PARP inhibition in BRCA-proficient TNBC. In conclusion, our data support DAXX as a modulator of DNA damage repair and suppressor of TNBC progression to sensitize tumors to the PARP inhibitor by repressing RAD51 functions. These provide an effective strategy for a better application of PARP inhibition in the treatment of TNBC.
Collapse
Affiliation(s)
- Yaqin Shi
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Juan Jin
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Xin Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| | - Wenfei Ji
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China.
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing 210002, China; Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
19
|
Wang X, Chen T, Zhang Y, Zhang N, Li C, Li Y, Liu Y, Zhang H, Zhao W, Chen B, Wang L, Yang Q. Long noncoding RNA Linc00339 promotes triple‐negative breast cancer progression through miR‐377‐3p/HOXC6 signaling pathway. J Cell Physiol 2019; 234:13303-13317. [PMID: 30618083 DOI: 10.1002/jcp.28007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaolong Wang
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Tong Chen
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Yan Zhang
- Department of Breast and Thyroid Surgery Jinan Central Hospital Affiliated to Shandong University Jinan Shandong China
| | - Ning Zhang
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Chen Li
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Yaming Li
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Ying Liu
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Hanwen Zhang
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Wenjing Zhao
- Department of Pathology Tissue Bank Qilu Hospital, Shandong University Jinan Shandong China
| | - Bing Chen
- Department of Pathology Tissue Bank Qilu Hospital, Shandong University Jinan Shandong China
| | - Lijuan Wang
- Department of Pathology Tissue Bank Qilu Hospital, Shandong University Jinan Shandong China
| | - Qifeng Yang
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
- Department of Pathology Tissue Bank Qilu Hospital, Shandong University Jinan Shandong China
| |
Collapse
|
20
|
Tang C, Du Y, Liang Q, Cheng Z, Tian J. A selenium-containing selective histone deacetylase 6 inhibitor for targeted in vivo breast tumor imaging and therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00383e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have developed a HDAC6-selective inhibitor, SelSA, which can be utilized as a target for the detection and treatment of ERα(+) breast cancer and TNBC. The biodistribution study showed that SelSA can specifically target the breast tumor and display potent antitumor effects in vivo. This result will help to better improve the treatment efficacy against breast cancer.
Collapse
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education
- School of Life Science and Technology
- Xidian University
- Xi’an
- China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging
- The State Key Laboratory of Management and Control for Complex Systems
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging
- The State Key Laboratory of Management and Control for Complex Systems
- Institute of Automation
- Chinese Academy of Sciences
- Beijing 100190
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS)
- Department of Radiology, and Bio-X Program
- Canary Center at Stanford for Cancer Early Detection
- Stanford University
- Stanford
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education
- School of Life Science and Technology
- Xidian University
- Xi’an
- China
| |
Collapse
|
21
|
Kontomanolis EN, Fasoulakis Z, Papamanolis V, Koliantzaki S, Dimopoulos G, Kambas NJ. The Impact of microRNAs in Breast Cancer Angiogenesis and Progression. Microrna 2019; 8:101-109. [PMID: 30332982 DOI: 10.2174/2211536607666181017122921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/22/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE The study aims to review the recent data considering the expression profile and the role of microRNAs in breast tumorigenesis, and their impact on -the vital for breast cancer progression- angiogenesis. METHODS PubMed was searched for studies focused on data that associate microRNA with breast cancer, using the terms ''breast", "mammary gland", "neoplasia'', "angiogenesis" and ''microRNA'' between 1997-2018. RESULTS Aberrant expression of several circulating and tissue miRNAs is observed in human breast neoplasms with the deregulation of several miRNAs having a major participation in breast cancer progression. Angiogenesis seems to be directly affected by either overexpression or down regulation of many miRNAs, defining the overall prognostic rates. Many miRNAs differentially expressed in breast cancer that reveal a key role in suppression - progression and metastasis of breast cancer along with the contribution of the EGF, TNF-a and EGF cytokines. Conclusion Angiogenesis has proven to be vital for tumor development and metastasis while microRNAs are proposed to have multiple biological roles, including participation in immunosuppressive, immunomodulatory and recent studies reveal their implication in angiogenesis and its possible use as prognostic factors in cancer Even though larger studies are needed in order to reach safe conclusions, important steps are made that reveal the connection of serum microRNA expression to the angiogenic course of breast cancer, while miRNAs could be potential prognostic factors for the different breast cancer types.
Collapse
Affiliation(s)
- Emmanuel N. Kontomanolis
- Department of Obstetrics & Gynecology, Democritus University in Alexandroupolis, Dragana, Greece
| | - Zacharias Fasoulakis
- Department of Obstetrics & Gynecology, Democritus University in Alexandroupolis, Dragana, Greece
| | | | - Sofia Koliantzaki
- Department of Obstetrics & Gynecology, General Hospital of Korinthos, Corinth, Greece
| | - Georgios Dimopoulos
- Department of Obstetrics & Gynecology, General Hospital of Korinthos, Corinth, Greece
| | - Nikolaos J. Kambas
- Department of Obstetrics & Gynecology, General Hospital of Korinthos, Corinth, Greece
| |
Collapse
|
22
|
Reese JM, Bruinsma ES, Nelson AW, Chernukhin I, Carroll JS, Li Y, Subramaniam M, Suman VJ, Negron V, Monroe DG, Ingle JN, Goetz MP, Hawse JR. ERβ-mediated induction of cystatins results in suppression of TGFβ signaling and inhibition of triple-negative breast cancer metastasis. Proc Natl Acad Sci U S A 2018; 115:E9580-E9589. [PMID: 30257941 PMCID: PMC6187171 DOI: 10.1073/pnas.1807751115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for a disproportionately high number of deaths due to a lack of targeted therapies and an increased likelihood of distant recurrence. Estrogen receptor beta (ERβ), a well-characterized tumor suppressor, is expressed in 30% of TNBCs, and its expression is associated with improved patient outcomes. We demonstrate that therapeutic activation of ERβ elicits potent anticancer effects in TNBC through the induction of a family of secreted proteins known as the cystatins, which function to inhibit canonical TGFβ signaling and suppress metastatic phenotypes both in vitro and in vivo. These data reveal the involvement of cystatins in suppressing breast cancer progression and highlight the value of ERβ-targeted therapies for the treatment of TNBC patients.
Collapse
Affiliation(s)
- Jordan M Reese
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Adam W Nelson
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 1TN Cambridge, United Kingdom
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 1TN Cambridge, United Kingdom
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 1TN Cambridge, United Kingdom
| | - Ying Li
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905
| | | | - Vera J Suman
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905
| | - Vivian Negron
- Department of Pathology, Mayo Clinic, Rochester, MN 55905
| | - David G Monroe
- Robert and Arlene Kogod Center on Aging and Endocrine Research Unit, Mayo Clinic, Rochester, MN 55905
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN 55905
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
- Department of Oncology, Mayo Clinic, Rochester, MN 55905
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905;
| |
Collapse
|
23
|
Mutant TP53 modulates metastasis of triple negative breast cancer through adenosine A2b receptor signaling. Oncotarget 2018; 9:34554-34566. [PMID: 30349649 PMCID: PMC6195371 DOI: 10.18632/oncotarget.26177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022] Open
Abstract
Purpose The identification of genes with synthetic lethality in the context of mutant TP53 is a promising strategy for the treatment of basal-like triple negative breast cancer (TNBC). This study investigated regulators of mutant TP53 (R248Q) in basal-like TNBC and their impact on tumorigenesis. Experimental Design TNBC cells were analyzed by RNA-seq, and synthetic-lethal shRNA knock-down screening, to identify genes related to the expression of mutant TP53. A tissue microarray of 232 breast cancer samples, that included 66 TNBC cases, was used to assess clinicopathological correlates of tumor protein expression. Functional assays were performed in vitro and in vivo to assess the role of ADORA2B in TNBC. Results Transcriptome profiling identified ADORA2B as up-regulated in basal-like TNBC cell lines with R248Q-mutated TP53, with shRNA-screening suggesting the potential for a synthetic-lethal interaction between these genes. In clinical samples, ADORA2B was highly expressed in 39.4% (26/66) of TNBC patients. ADORA2B-expression was significantly correlated with ER (P < 0.01), PgR (P = 0.027), EGFR (P < 0.01), and tumor size (P = 0.037), and was an independent prognostic factor for outcome (P = 0.036). In line with this, ADORA2B-transduced TNBC cells showed increased tumorigenesis, and ADORA2B knockdown, along with mutant p53 knockdown, decreased metastasis both in vitro and in vivo. Notably, the cytotoxic cyclic peptide SA-I suppressed ADORA2B expression and tumorigenesis in TNBC cell lines. Conclusions ADORA2B expression increases the oncogenic potential of basal-like TNBC and is an independent factor for poor outcome. These data suggest that ADORA2B could serve as a prognostic biomarker and a potential therapeutic target for basal-like TNBC.
Collapse
|
24
|
Liu P, Li W, Hu Y, Jiang Y. Absence of AIF1L contributes to cell migration and a poor prognosis of breast cancer. Onco Targets Ther 2018; 11:5485-5498. [PMID: 30233209 PMCID: PMC6134948 DOI: 10.2147/ott.s165874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Breast cancer is the most common fatal cancer in women worldwide. Previous studies have demonstrated that allograft inflammatory factor 1 like (AIF1L) plays a key role in mammary tumorigenesis, although the mechanism involved remains unclear. Purpose The purpose of this study was to assess the clinicopathological and prognostic significance of AIF1L expression levels and biological function in breast cancer. Patients and methods We used immunohistochemistry to detect the expression of AIF1L in breast cancer. We also analyzed the expression of AIF1L in breast cancer using the Cancer Genome Atlas (TCGA) cohort and the Cancer Cell Line Encyclopedia (CCLE). Furthermore, both in vitro assays were used to determine the effect of AIF1L on malignant behavior in breast cancer cells. Results We detected AIF1L expression in tissue microarrays through immunohistochemistry and found that protein expression was significantly lower in BC tissues (28.6%, 82/287) compared to tumor-adjacent tissues (58.3%, 28/48) (P=0.007). Kaplan-Meier survival analysis revealed that disease-specific survival in BC patients with low AIF1L protein expression was significantly poorer compared to normal controls (P=0.040). In the TCGA cohort, the AIF1L gene was downregulated and hypermethylated in tumor samples compared to normal controls. Bioinformatics analysis using CCLE predicted potential biological functions of AIF1L related to tight junctions, cell junctions and focal adhesion. Ectopic expression of AIF1L suppressed MDA-MB-231 migration and invasion. Further evidence confirmed that AIF1L overexpression suppressed cell spreading, altered cell shape and decreased protrusion formation, which was correlated with decreased focal adhesion kinase (FAK) and RhoA expression. Conclusion These findings suggest that AIF1L is a potential prognostic biomarker that plays a vital role in regulating the cytoskeleton in breast cancer.
Collapse
Affiliation(s)
- Peipei Liu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang, People's Republic of China,
| | - Wenhui Li
- Gastrointestinal Onco-Pathology Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yuanyuan Hu
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang, People's Republic of China,
| | - Youhong Jiang
- Molecular Oncology Laboratory of Cancer Research Institute, The First Hospital of China Medical University, Shenyang, People's Republic of China,
| |
Collapse
|
25
|
Li L, Liu S, Liu L, Ma Z, Feng M, Ye C, Zhou W, Wang Y, Liu L, Wang F, Yu L, Zhou F, Xiang Y, Huang S, Fu Q, Zhang Q, Gao D, Yu Z. Impact of phosphorylated insulin-like growth factor-1 receptor on the outcome of breast cancer patients and the prognostic value of its alteration during neoadjuvant chemotherapy. Exp Ther Med 2018; 16:2949-2959. [PMID: 30233667 PMCID: PMC6143873 DOI: 10.3892/etm.2018.6584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/20/2018] [Indexed: 12/19/2022] Open
Abstract
The expression of insulin-like growth factor-1 receptor (IGF-1R), which is involved in the genesis and progression of breast cancer, is thought to be associated with the overall survival (OS) of patients. However, the predictive and prognostic significance of the IGF-1R expression in breast cancer remains controversial. The present study aimed to identify the factors associated with the levels of phosphorylated (p)-IGF-1R in breast cancer, their impact on the outcomes of breast cancer patients, and the prognostic value of alterations of p-IGF-1R during neoadjuvant chemotherapy (NAC). The present study included 348 female breast cancer patients whose paraffin-embedded tumor tissue sections had been collected by biopsy and/or resection, among which the pre-NAC and post-NAC sections were available from 40 patients. Human epidermal growth factor receptor 2 (HER2) positivity and molecular subtype were significantly associated with the presence of p-IGF-1R in the tumor tissue (P<0.05). Patients with p-IGF-1R present in the tumor tissue had a shorter OS (P=0.003). The p-IGF-1R levels in the tumor after NAC differed significantly from those prior to NAC (P=0.005); however, this alteration in p-IGF-1R levels was not associated with a shorter OS. In parallel with HER2, p-IGF-1R appears to be a promising indicator for predicting clinical outcomes and may be an attractive target for improving the efficacy of antitumor therapy, particularly for patients with HER2-negative, estrogen receptor-positive and luminal B tumors.
Collapse
Affiliation(s)
- Liang Li
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuchen Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Man Feng
- Department of Pathology, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong 250031, P.R. China
| | - Chunmiao Ye
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wenzhong Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongjiu Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lu Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China.,Department of General Surgery, School of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fei Wang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Fei Zhou
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yujuan Xiang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shuya Huang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qinye Fu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qiang Zhang
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dezong Gao
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
26
|
Tang C, Du Y, Liang Q, Cheng Z, Tian J. Development of a Novel Ferrocenyl Histone Deacetylase Inhibitor for Triple-Negative Breast Cancer Therapy. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00354] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chu Tang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, People’s Republic of China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, and Bio-X Program, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, California 94305-5344, United States
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, People’s Republic of China
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
| |
Collapse
|
27
|
Parvizpour S, Razmara J, Pourseif MM, Omidi Y. In silico design of a triple-negative breast cancer vaccine by targeting cancer testis antigens. ACTA ACUST UNITED AC 2018; 9:45-56. [PMID: 30788259 PMCID: PMC6378095 DOI: 10.15171/bi.2019.06] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 12/14/2022]
Abstract
Introduction: Triple-negative breast cancer (TNBC) is an important subtype of breast cancer, which occurs in the absence of estrogen, progesterone and HER-2 receptors. According to the recent studies, TNBC may be a cancer testis antigen (CTA)-positive tumor, indicating that the CTA-based cancer vaccine can be a treatment option for the patients bearing such tumors. Of these antigens (Ags), the MAGE-A family and NY-ESO-1 as the most immunogenic CTAs are the potentially relevant targets for the development of an immunotherapeutic way of the breast cancer treatment. Methods: In the present study, immunoinformatics approach was used to design a multi-epitope peptide vaccine to combat the TNBC. The vaccine peptide was constructed by the fusion of three crucial components, including the CD8+ cytotoxic T lymphocytes (CTLs) epitopes, helper epitopes and adjuvant. The epitopes were predicted from the MAGE-A and NY-ESO-1 Ags. In addition, the granulocyte-macrophage-colony-stimulating factor (GM-CSF) was used as an adjuvant to promote the CD4+ T cells towards the T-helper for more strong induction of CTL responses. The components were conjugated by proper linkers. Results: The vaccine peptide was examined for different physiochemical characteristics to confirm the safety and immunogenic behavior. Furthermore, the 3D-structure of the vaccine peptide was predicted based on the homology modeling approach using the MODELLER v9.17 program. The vaccine structure was also subjected to the molecular dynamics simulation study for structure refinement. The results verified the immunogenicity and safety profile of the constructed vaccine as well as its capability for stimulating both the cellular and humoral immune responses. Conclusion: Based on our in-silico analyses, the proposed vaccine may be considered for the immunotherapy of TNBC.
Collapse
Affiliation(s)
- Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Razmara
- Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Antiproliferative Phenothiazine Hybrids as Novel Apoptosis Inducers against MCF-7 Breast Cancer. Molecules 2018; 23:molecules23061288. [PMID: 29843370 PMCID: PMC6100384 DOI: 10.3390/molecules23061288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/30/2022] Open
Abstract
We designed a series of novel phenothiazine-1,2,3-triazole hybrids by the molecular hybridization strategy and evaluated their antiproliferative activity against three cancer cell lines (MDA-MB-231, MDA-MB-468 and MCF-7). For the structure-activity relationships, the importance of 1,2,3-triazole and substituents on phenyl ring was explored. Among these phenothiazine-1,2,3-triazole hybrids, compound 9f showed the most potent inhibitory effect against MCF-7 cells, with an IC50 value of 0.8 μM. Importantly, compound 9f could induce apoptosis against MCF-7 cells by regulating apoptosis-related proteins (Bcl-2, Bax, Bad, Parp, and DR5). These potent phenothiazine-1,2,3-triazole hybrids as novel apoptosis inducers might be used as antitumor agents in the future.
Collapse
|
29
|
van Beek EJAH, Hernandez JM, Goldman DA, Davis JL, McLaughlin K, Ripley RT, Kim TS, Tang LH, Hechtman JF, Zheng J, Capanu M, Schultz N, Hyman DM, Ladanyi M, Berger MF, Solit DB, Janjigian YY, Strong VE. Rates of TP53 Mutation are Significantly Elevated in African American Patients with Gastric Cancer. Ann Surg Oncol 2018; 25:2027-2033. [PMID: 29725898 DOI: 10.1245/s10434-018-6502-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gastric adenocarcinoma is a heterogenous disease that results from complex interactions between environmental and genetic factors, which may contribute to the disparate outcomes observed between different patient populations. This study aimed to determine whether genomic differences exist in a diverse population of patients by evaluating tumor mutational profiles stratified by race. METHODS All patients with gastric adenocarcinoma between 2012 and 2016 who underwent targeted next-generation sequencing of cancer genes by the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets platform were identified. Patient race was categorized as Asian, African American, Hispanic, or Caucasian. Fisher's exact test was used to examine differences in mutation rates between racial designations for the most common mutations identified. The p values in this study were adjusted using the false discovery rate method. RESULTS The study investigated 595 mutations in 119 patients. The DNA alterations identified included missense mutations (66%), frame-shift deletions (13%), and nonsense mutations (9%). Silent mutations were excluded. The most frequently mutated genes were ARID1A, CDH1, ERBB3, KRAS, PIK3CA, and TP53. Of these, TP53 was the most frequently mutated gene, affecting 50% of patients. The proportion of patients with TP53 mutations differed significantly between races (p = 0.012). The findings showed TP53 mutations for 89% (16/18) of the African American patients, 56% (10/18) of the Asian patients, 43% (9/21) of the Hispanic patients, and 40% (25/62) of the Caucasian patients. CONCLUSIONS Significantly higher rates of TP53 mutations were identified among the African American patients with gastric adenocarcinoma. This is the first study to evaluate tumor genomic differences in a diverse population of patients with gastric adenocarcinoma.
Collapse
Affiliation(s)
- Elke J A H van Beek
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jonathan M Hernandez
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Debra A Goldman
- Department of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jeremy L Davis
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kaitlin McLaughlin
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - R Taylor Ripley
- National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Teresa S Kim
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Laura H Tang
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jaclyn F Hechtman
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Jian Zheng
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Marinela Capanu
- Department of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Department of Epidemiology & Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Vivian E Strong
- Department of Surgery, Gastric and Mixed Tumor Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
30
|
Wu J, Shuang Z, Zhao J, Tang H, Liu P, Zhang L, Xie X, Xiao X. Linc00152 promotes tumorigenesis by regulating DNMTs in triple-negative breast cancer. Biomed Pharmacother 2017; 97:1275-1281. [PMID: 29156515 DOI: 10.1016/j.biopha.2017.11.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022] Open
Abstract
Long noncoding RNA (lncRNA) is a significant factor that regulates various aspects of genome activity, including tumor development and progression. Linc00152, a member of lncRNA, is unregulated in various types of cancer. However, its role in breast cancer, especially in triple-negative breast cancer (TNBC), is unclear. In this study, we found that linc00152 was highly expressed in all basal-like cell lines and in the majority of TNBC tissues. Linc00152 suppression by shRNA significantly inhibited invasion and colony growth. Such suppression also triggered apoptosis in vitro and inhibited tumor growth in vivo. We also revealed that linc00152 partially enhanced breast cancer tumorigenesis by inactivation of the BRCA1/PTEN through DNA methyltransferases. This study provides new insight regarding linc00152 as a promising biomarker and therapeutic target for human TNBC treatment.
Collapse
Affiliation(s)
- Jiali Wu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Zeyu Shuang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Jianfu Zhao
- Department of Emergency, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Peng Liu
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Lijuan Zhang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| | - Xiangsheng Xiao
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Gao Y, Ma Q, Ma YB, Ding L, Xu XL, Wei DF, Wei L, Zhang JW. Betulinic acid induces apoptosis and ultrastructural changes in MDA-MB-231 breast cancer cells. Ultrastruct Pathol 2017; 42:49-54. [PMID: 29192840 DOI: 10.1080/01913123.2017.1383548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study is to investigate the effects of betulinic acid (BA) on triple-negative breast cancer MDA-MB-231 cells and observe the ultrastructural changes. The concentration of BA required to induce apoptosis in MDA-MB-231 cells has been previously reported. In this study, a cell counting kit-8 proliferation assay was used to measure cell viability and the apoptosis rate. Western blotting was performed to observe the protein expression levels of Bcl-2. Cell morphology and changes in cell density were observed by microscopy. Electron microscopy revealed pyknotic nuclei as well as vacuoles. Collectively, our results showed the morphological mechanisms by which BA impairs the ultrastructure of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Yang Gao
- a Department of Breast and Thyroid Surgery , Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| | - Qing Ma
- a Department of Breast and Thyroid Surgery , Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| | - Yan-Bin Ma
- b Department of Pathology and Pathophysiology , Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - Liang Ding
- a Department of Breast and Thyroid Surgery , Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| | - Xiao-Long Xu
- b Department of Pathology and Pathophysiology , Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - De-Fei Wei
- a Department of Breast and Thyroid Surgery , Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| | - Lei Wei
- b Department of Pathology and Pathophysiology , Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University , Wuhan , Hubei , China
| | - Jing-Wei Zhang
- a Department of Breast and Thyroid Surgery , Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University , Wuhan , Hubei , China
| |
Collapse
|
32
|
Liu L, Liu W, Wang L, Zhu T, Zhong J, Xie N. Hypoxia-inducible factor 1 mediates intermittent hypoxia-induced migration of human breast cancer MDA-MB-231 cells. Oncol Lett 2017; 14:7715-7722. [PMID: 29250173 PMCID: PMC5727604 DOI: 10.3892/ol.2017.7223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/07/2017] [Indexed: 02/05/2023] Open
Abstract
Metastasis is the major cause of triple-negative breast cancer (TNBC)-associated mortality. Hypoxia promotes cancer cell migration and remote metastasis, which occur with hypoxia inducible factor 1α (HIF-1α) stabilization and vimentin upregulation. However, the evolutionary dynamics that link the changes in HIF-1α and vimentin levels under hypoxic conditions are not well understood. In the present study, the effects of intermittent hypoxia (IH), continuous hypoxia (CH) and normoxia on the migration and proliferation of human TNBC MDA-MB-231 cells were investigated. The results demonstrated that IH significantly increased the migration of MDA-MB-231 cells, and this effect was dependent on the number of cycles of hypoxia-reoxygenation. Unexpectedly, IH significantly inhibited cell proliferation, while CH only caused such an effect if hypoxia extended for ≥3 days. IH and CH induced HIF-1α protein accumulation and vimentin upregulation, with a greater effect observed in IH. Knockdown of HIF-1α with siRNA abolished IH-induced cell migration and vimentin upregulation. In summary, multiple cycles of hypoxia and reoxygenation have a more pronounced effect on the promotion of TNBC invasiveness than CH; HIF-1α activation and downstream vimentin upregulation may account for this phenotypic change.
Collapse
Affiliation(s)
- Litao Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Institute of Translation Medicine, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
| | - Lili Wang
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Graduate School, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Ting Zhu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Graduate School, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Jianhua Zhong
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Graduate School, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Ni Xie
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Institute of Translation Medicine, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China
- Correspondence to: Dr Ni Xie, Institute of Translation Medicine, Shenzhen Second People's Hospital, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518035, P.R. China, E-mail:
| |
Collapse
|
33
|
Inoue Y, Shimazawa M, Nakamura S, Takata S, Hashimoto Y, Izawa H, Masuda T, Tsuruma K, Sakaue T, Nakayama H, Higashiyama S, Hara H. Both Autocrine Signaling and Paracrine Signaling of HB-EGF Enhance Ocular Neovascularization. Arterioscler Thromb Vasc Biol 2017; 38:174-185. [PMID: 29191924 DOI: 10.1161/atvbaha.117.310337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/17/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The incidence of blindness is increasing because of the increase in abnormal ocular neovascularization. Anti-VEGF (vascular endothelial growth factor) therapies have led to good results, although they are not a cure for the blindness. The purpose of this study was to determine what role HB-EGF (heparin-binding epidermal growth factor-like growth factor) plays in ocular angiogenesis. APPROACH AND RESULTS We examined the role played by HB-EGF in ocular neovascularization in 2 animal models of neovascularization: laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy. We also studied human retinal microvascular endothelial cells in culture. Our results showed that the neovascularization was decreased in both the CNV and oxygen-induced retinopathy models in HB-EGF conditional knockout mice compared with that in wild-type mice. Moreover, the expressions of HB-EGF and VEGF were increased after laser-induced CNV and oxygen-induced retinopathy, and their expression sites were located around the neovascular areas. Exposure of human retinal microvascular endothelial cells to HB-EGF and VEGF increased their proliferation and migration, and CRM-197 (cross-reactive material-197), an HB-EGF inhibitor, decreased the HB-EGF-induced and VEGF-induced cell proliferation and migration. VEGF increased the expression of HB-EGF mRNA. VEGF-dependent activation of EGFR (epidermal growth factor receptor)/ERK1/2 (extracellular signal-regulated kinase 1/2) signaling and cell proliferation of endothelial cells required stimulation of the ADAM17 (a disintegrin and metalloprotease) and ADAM12. CRM-197 decreased the grades of the fluorescein angiograms and size of the CNV areas in marmoset monkeys. CONCLUSIONS These findings suggest that HB-EGF plays an important role in the development of CNV. Therefore, further investigations of HB-EGF are needed as a potential therapeutic target in the treatment of exudative age-related macular degeneration.
Collapse
Affiliation(s)
- Yuki Inoue
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Masamitsu Shimazawa
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Shinsuke Nakamura
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Shinsuke Takata
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Yuhei Hashimoto
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Hiroshi Izawa
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Tomomi Masuda
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Kazuhiro Tsuruma
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Tomohisa Sakaue
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Hironao Nakayama
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Shigeki Higashiyama
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.)
| | - Hideaki Hara
- From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Japan (Y.I., M.S., S.N., S.T., Y.H., H.I., T.M., K.T., H.H.); Proteo-Science Center, Division of Cell Growth and Tumor Regulation, Ehime University Shitsukawa, Toon, Japan (T.S., H.N., S.H.); and Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Japan (T.S., S.H.).
| |
Collapse
|
34
|
Inhibition of PI3K/Akt/mTOR overcomes cisplatin resistance in the triple negative breast cancer cell line HCC38. BMC Cancer 2017; 17:711. [PMID: 29100507 PMCID: PMC5670521 DOI: 10.1186/s12885-017-3695-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/19/2017] [Indexed: 12/29/2022] Open
Abstract
Background Widely established targeted therapies directed at triple negative breast cancer (TNBC) are missing. Classical chemotherapy remains the systemic treatment option. Cisplatin has been tested in TNBC but bears the disadvantage of resistance development. The purpose of this study was to identify resistance mechanisms in cisplatin-resistant TNBC cell lines and select targeted therapies based on these findings. Methods The TNBC cell lines HCC38 and MDA-MB231 were subjected to intermittent cisplatin treatment resulting in the 3.5-fold cisplatin-resistant subclone HCC38CisR and the 2.1-fold more resistant MDA-MB231CisR. Activation of pro-survival pathways was explored by immunostaining of phospho-receptor tyrosine kinases. Targeted therapies (NVP-AEW541, lapatinib and NVP-BEZ235) against activated pathways were investigated regarding cancer cell growth and cisplatin sensitivity. Results In HCC38CisR and MDA-MB231CisR, phosphorylation of epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF1R) was observed. In HCC38CisR, treatment with NVP-AEW541 increased potency of lapatinib almost seven-fold, but both compounds could not restore cisplatin sensitivity. However, the dual phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 acted synergistically with cisplatin in HCC38CisR and fully restored cisplatin sensitivity. Similarly, NVP-BEZ235 increased cisplatin potency in MDA-MB231CisR. Furthermore, NVP-AEW541 in combination with lapatinib restored cisplatin sensitivity in MDA-MB231CisR. Conclusion Simultaneous inhibition of EGFR and IGF1R in cisplatin-resistant TNBC cell lines was synergistic regarding inhibition of proliferation and induction of apoptosis. Co-treatment with NVP-BEZ235 or with a combination of NVP-AEW541 and lapatinib restored cisplatin sensitivity and may constitute a targeted treatment option for cisplatin-resistant TNBC. Electronic supplementary material The online version of this article (10.1186/s12885-017-3695-5) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Reese JM, Bruinsma ES, Monroe DG, Negron V, Suman VJ, Ingle JN, Goetz MP, Hawse JR. ERβ inhibits cyclin dependent kinases 1 and 7 in triple negative breast cancer. Oncotarget 2017; 8:96506-96521. [PMID: 29228549 PMCID: PMC5722501 DOI: 10.18632/oncotarget.21787] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/16/2017] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC), which comprises approximately 15% of all primary breast cancer diagnoses, lacks estrogen receptor alpha, progesterone receptor and human epidermal growth factor receptor 2 expression. However, we, and others, have demonstrated that approximately 30% of TNBCs express estrogen receptor beta (ERβ), a nuclear hormone receptor and potential drug target. Treatment of ERβ expressing MDA-MB-231 cells with estrogen or the ERβ selective agonist, LY500307, was shown to result in suppression of cell proliferation. This inhibitory effect was due to blockade of cell cycle progression. In vivo, estrogen treatment significantly repressed the growth of ERβ expressing MDA-MB-231 cell line xenografts. Gene expression studies and ingenuity pathway analysis identified a network of ERβ down-regulated genes involved in cell cycle progression including CDK1, cyclin B and cyclin H. siRNA mediated knockdown or drug inhibition of CDK1 and CDK7 in TNBC cells resulted in substantial decreases in proliferation regardless of ERβ expression. These data suggest that the tumor suppressive effects of ERβ in TNBC result from inhibition of cell cycle progression, effects that are in part mediated by suppression of CDK1/7. Furthermore, these data indicate that blockade of CDK1/7 activity in TNBC may be of therapeutic benefit, an area of study that has yet to be explored.
Collapse
Affiliation(s)
- Jordan M Reese
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth S Bruinsma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - David G Monroe
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Vivian Negron
- Department of Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vera J Suman
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - James N Ingle
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Rangel N, Villegas VE, Rondón-Lagos M. Profiling of gene expression regulated by 17β-estradiol and tamoxifen in estrogen receptor-positive and estrogen receptor-negative human breast cancer cell lines. BREAST CANCER-TARGETS AND THERAPY 2017; 9:537-550. [PMID: 29033607 PMCID: PMC5614746 DOI: 10.2147/bctt.s146247] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One area of great importance in breast cancer (BC) research is the study of gene expression regulated by both estrogenic and antiestrogenic agents. Although many studies have been performed in this area, most of them have only addressed the effects of 17β-estradiol (E2) and tamoxifen (TAM) on MCF7 cells. This study aimed to determine the effect of low doses of E2 and TAM on the expression levels of 84 key genes, which are commonly involved in breast carcinogenesis, in four BC cell lines differentially expressing estrogen receptor (ER) α and HER2 (MCF7, T47D, BT474, and SKBR3). The results allowed us to determine the expression patterns modulated by E2 and TAM in ERα+ and ERα− cell lines, as well as to identify differences in expression patterns. Although the MCF7 cell line is the most frequently used model to determine gene expression profiles in response to E2 and TAM, the changes in gene expression patterns identified in ERα+ and ERα− cell lines could reflect distinctive properties of these cells. Our results could provide important markers to be validated in BC patient samples, and subsequently used for predicting the outcome in ERα+ and ERα− tumors after TAM or hormonal therapy. Considering that BC is a molecularly heterogeneous disease, it is important to understand how well, and which cell lines, best model that diversity.
Collapse
Affiliation(s)
- Nelson Rangel
- Department of Medical Sciences, University of Turin, Turin, Italy.,Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia
| | - Victoria E Villegas
- Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
37
|
Jia H, Truica CI, Wang B, Wang Y, Ren X, Harvey HA, Song J, Yang JM. Immunotherapy for triple-negative breast cancer: Existing challenges and exciting prospects. Drug Resist Updat 2017; 32:1-15. [PMID: 29145974 DOI: 10.1016/j.drup.2017.07.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Patients with breast tumors that do not express the estrogen receptor, the progesterone receptor, nor Her-2/neu are hence termed "triple negatives", and generally have a poor prognosis, with high rates of systemic recurrence and refractoriness to conventional therapy regardless of the choice of adjuvant treatment. Thus, more effective therapeutic options are sorely needed for triple-negative breast cancer (TNBC), which occurs in approximately 20% of diagnosed breast cancers. In recent years, exploiting intrinsic mechanisms of the host immune system to eradicate cancer cells has achieved impressive success, and the advances in immunotherapy have yielded potential new therapeutic strategies for the treatment of this devastating subtype of breast cancer. It is anticipated that the responses initiated by immunotherapeutic interventions will explicitly target and annihilate tumor cells, while at the same time spare normal cells. Various immunotherapeutic approaches have been already developed and tested, which include the blockade of immune checkpoints using neutralizing or blocking antibodies, induction of cytotoxic T lymphocytes (CTLs), adoptive cell transfer-based therapy, and modulation of the tumor microenvironment to enhance the activity of CTLs. One of the most important areas of breast cancer research today is understanding the immune features and profiles of TNBC and devising novel immune-modulatory strategies to tackling TNBC, a subtype of breast cancer notorious for its poor prognosis and its imperviousness to conventional treatments. On the optimal side, one can anticipate that novel, effective, and personalized immunotherapy for TNBC will soon achieve more success and impact clinical treatment of this disease which afflicts approximately 20% of patients with breast cancer. In the present review, we highlight the current progress and encouraging developments in cancer immunotherapy, with a goal to discuss the challenges and to provide future perspectives on how to exploit a variety of new immunotherapeutic approaches including checkpoint inhibitors and neoadjuvant immunotherapy for the treatment of patients with TNBC.
Collapse
Affiliation(s)
- Hongyan Jia
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 03001, China.
| | - Cristina I Truica
- Department of Medicine, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Bin Wang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 03001, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, 03001, China
| | - Xingcong Ren
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Harold A Harvey
- Department of Medicine, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jianxun Song
- Department of Microbiology and Immunology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jin-Ming Yang
- Department of Pharmacology, The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
38
|
Lü L, Mao X, Shi P, He B, Xu K, Zhang S, Wang J. MicroRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2017; 96:e7085. [PMID: 28562579 PMCID: PMC5459744 DOI: 10.1097/md.0000000000007085] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous group of tumors characterized by their aggressive nature and poor associated survival. MicroRNAs (miRs) have been found to play an important role in the occurrence and development of human cancers, but their role in the prognosis of TNBC patients remains unclear. We performed a meta-analysis to explore the prognostic value of miRs in TNBC. METHODS We systematically searched the PubMed, Embase, and Web of Science databases to identify eligible studies. A meta-analysis was performed to estimate the pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) for the associations between levels of miR expression (predictive factors) and overall survival (OS) and disease-free survival (DFS) (outcomes) in patients with TNBC. RESULTS After performing the literature search and review, 21 relevant studies including 2510 subjects were identified. Six miRs (miR-155, miR-21, miR-27a/b, miR-374a/b, miR-210, and miR-454) were assessed in the meta-analysis. Decreased expression of miR-155 was associated with reduced OS (adjusted HR = 0.58, 95% CI: 0.34-0.99; crude HR = 0.67, 95% CI: 0.58-0.79). High miR-21 expression was also predictive of reduced OS (crude HR = 2.50, 95% CI: 1.56-4.01). We found that elevated levels of miR-27a/b, miR-210, and miR-454 expression were associated with shorter OS, while the levels of miR-454 and miR-374a/b expression were associated with DFS. CONCLUSIONS Specific miRs could serve as potential prognostic biomarkers in TNBC. Due to the limited research available, the clinical application of these findings has yet to be verified.
Collapse
Affiliation(s)
- Lingshuang Lü
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
| | - Xuhua Mao
- Department of Clinical Laboratory, Yixing People's Hospital, Wuxi
| | - Peiyi Shi
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
| | - Biyu He
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University
| | - Kun Xu
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University
| | - Simin Zhang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
- Department of Social Medicine and Health Education, School of Public Health, Nanjing Medical University
| | - Jianming Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing
- The Innovation Center for Social Risk Governance in Health, Nanjing, China
| |
Collapse
|
39
|
De Gregoriis G, Ramos JA, Fernandes PV, Vignal GM, Brianese RC, Carraro DM, Monteiro AN, Struchiner CJ, Suarez-Kurtz G, Vianna-Jorge R, de Carvalho MA. DNA repair genes PAXIP1 and TP53BP1 expression is associated with breast cancer prognosis. Cancer Biol Ther 2017; 18:439-449. [PMID: 28475402 DOI: 10.1080/15384047.2017.1323590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite remarkable advances in diagnosis, prognosis and treatment, advanced or recurrent breast tumors have limited therapeutic approaches. Many treatment strategies try to explore the limitations of DNA damage response (DDR) in tumor cells to selectively eliminate them. BRCT (BRCA1 C-terminal) domains are present in a superfamily of proteins involved in cell cycle checkpoints and the DDR. Tandem BRCT domains (tBRCT) represent a distinct class of these domains. We investigated the expression profile of 7 tBRCT genes (BARD1, BRCA1, LIG4, ECT2, MDC1, PAXIP1/PTIP and TP53BP1) in breast cancer specimens and observed a high correlation between PAXIP1 and TP53BP1 gene expression in tumor samples. Tumors with worse prognosis (tumor grade 3 and triple negative) showed reduced expression of tBRCT genes, notably, PAXIP1 and TP53BP1. Survival analyses data indicated that tumor status of both genes may impact prognosis. PAXIP1 and 53BP1 protein levels followed gene expression results, i.e., are intrinsically correlated, and also reduced in more advanced tumors. Evaluation of both genes in triple negative breast tumor samples which were characterized for their BRCA1 status showed that PAXIP1 is overexpressed in BRCA1 mutant tumors. Taken together our findings indicate that PAXIP1 status correlates with breast cancer staging, in a manner similar to what has been characterized for TP53BP1.
Collapse
Affiliation(s)
- Giuliana De Gregoriis
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil
| | | | | | - Giselle Maria Vignal
- c Divisão de Patologia , Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil
| | | | - Dirce Maria Carraro
- d International Research Center, A. C. Camargo Cancer Center , São Paulo , SP , Brazil
| | - Alvaro N Monteiro
- e Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | | | - Guilherme Suarez-Kurtz
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil
| | - Rosane Vianna-Jorge
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil.,g Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | - Marcelo Alex de Carvalho
- a Programa de Pesquisa Clínica , Coordenação de Pesquisa, Instituto Nacional de Câncer , Rio de Janeiro , RJ , Brazil.,b Instituto Federal do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
40
|
Cimpean AM, Tamma R, Ruggieri S, Nico B, Toma A, Ribatti D. Mast cells in breast cancer angiogenesis. Crit Rev Oncol Hematol 2017; 115:23-26. [PMID: 28602166 DOI: 10.1016/j.critrevonc.2017.04.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/26/2017] [Accepted: 04/26/2017] [Indexed: 02/06/2023] Open
Abstract
Mast cells, accumulate in the stroma surrounding certain tumors and take part to the inflammatory reaction occurring at the periphery of the tumor. Mast cell-secreted angiogenic cytokines facilitate tumor vascularization not only by a direct effect but also by stimulating other inflammatory cells of the tumor microenvironment to release other angiogenic mediators. An increased number of mast cells have been demonstrated in angiogenesis associated with solid tumors, including breast cancer. Mast cells might act as a new target for the adjuvant treatment of breast cancer through the selective inhibition of angiogenesis, tissue remodeling and tumor promoting molecules, allowing the secretion of cytotoxic cytokines and preventing mast cell mediated immune-suppression.
Collapse
Affiliation(s)
- Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy,; National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Simona Ruggieri
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Beatrice Nico
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Alina Toma
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy,; National Cancer Institute "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
41
|
Novel insight into triple-negative breast cancers, the emerging role of angiogenesis, and antiangiogenic therapy. Expert Rev Mol Med 2016; 18:e18. [DOI: 10.1017/erm.2016.17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous group of tumours characterised by lack of expression of oestrogen-, progesterone- and human epidermal growth factor receptors. TNBC, which represents approximately 15% of all mammary tumours, has a poor prognosis because of an aggressive behaviour and the lack of specific treatment. Accordingly, TNBC has become a major focus of research into breast cancer and is now classified into several molecular subtypes, each with a different prognosis. Pathological angiogenesis occurs at a late stage in the proliferation of TNBC and is associated with invasion and metastasis; there is an association with metabolic syndrome. Semaphorins are a versatile family of proteins with multiple roles in angiogenesis, tumour growth and metastasis and may represent a clinically useful focus for therapeutic targeting in this type of breast cancer. Another important field of investigation into the control of pathological angiogenesis is related to the expression of noncoding RNA (ncRNA) – these molecules can be considered as a therapeutic target or as a biomarker. Several molecular agents for intervening in the activity of different signalling pathways are being explored in TNBC, but none has so far proved effective in clinical trials and the disease continues to pose a defining challenge for clinical management as well as innovative cancer research.
Collapse
|
42
|
Potential role of targeted therapies in the treatment of triple-negative breast cancer. Anticancer Drugs 2016; 27:147-55. [PMID: 26682525 DOI: 10.1097/cad.0000000000000328] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Breast cancer is the most common cancer type that affects women and is the major cause of morbidity and mortality. Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype and accounts for 10-20% of all breast cancer cases. TNBC is commonly characterized by the absence of estrogen, progesterone, and the Her2/neu receptor and is usually diagnosed by immunohistochemistry. Mutations in the BRCA1 gene, as well as overexpression of oncogenic kinases, such as human epidermal growth factor receptor 2, vascular endothelial growth factor-A, insulin-like growth factor-1 (IGF-1)/IGF-1 receptor, and transforming growth factor-β1, have been found to be correlated with a higher risk of metastasis and poor overall survival in TNBC patients. The current review briefly discusses the various treatment options including chemotherapeutics and targeted therapies that are available currently for the therapy of TNBC patients and highlights their comparative benefits and disadvantages for clinical application.
Collapse
|
43
|
Hot Spot Mutation in TP53 (R248Q) Causes Oncogenic Gain-of-Function Phenotypes in a Breast Cancer Cell Line Derived from an African American patient. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 13:ijerph13010022. [PMID: 26703669 PMCID: PMC4730413 DOI: 10.3390/ijerph13010022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/02/2015] [Indexed: 11/16/2022]
Abstract
African American (AA) breast cancer patients often have triple negative breast cancer (TNBC) that contains mutations in the TP53 gene. The point mutations at amino acid residues R273 and R248 both result in oncogenic gain-of-function (GOF) phenotypes. Expression of mutant p53 (mtp53) R273H associates with increased cell elasticity, survival under serum deprivation conditions, and increased Poly (ADP ribose) polymerase 1 (PARP1) on the chromatin in the AA-derived TNBC breast cancer cell line MDA-MB-468. We hypothesized that GOF mtp53 R248Q expression could stimulate a similar phenotype in the AA-derived TNBC cell line HCC70. To test this hypothesis we depleted the R248Q protein in the HCC70 cell line using shRNA-mediated knockdown. Using impedance-based real-time analysis we correlated the expression of mtp53 R248Q with increased cell deformability. We also documented that depletion of mtp53 R248Q increased PARP1 in the cytoplasm and decreased PARP1 on the chromatin. We conclude that in the AA-derived TNBC HCC70 cells mtp53 R248Q expression results in a causative tumor associated phenotype. This study supports using the biological markers of high expression of mtp53 R273H or R248Q as additional diagnostics for TNBC resistant subtypes often found in the AA community. Each mtp53 protein must be considered separately and this work adds R248Q to the increasing list of p53 mutations that can be used for diagnostics and drug targeting. Here we report that when R248Q mtp53 proteins are expressed in TNBC, then targeting the gain-of-function pathways may improve treatment efficacy.
Collapse
|
44
|
Ling T, Tran M, González MA, Gautam LN, Connelly M, Wood RK, Fatima I, Miranda-Carboni G, Rivas F. (+)-Dehydroabietylamine derivatives target triple-negative breast cancer. Eur J Med Chem 2015; 102:9-13. [DOI: 10.1016/j.ejmech.2015.07.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
|
45
|
Bemanian V, Sauer T, Touma J, Lindstedt BA, Chen Y, Ødegård HP, Vetvik KM, Bukholm IR, Geisler J. The epidermal growth factor receptor (EGFR / HER-1) gatekeeper mutation T790M is present in European patients with early breast cancer. PLoS One 2015; 10:e0134398. [PMID: 26267891 PMCID: PMC4534377 DOI: 10.1371/journal.pone.0134398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/08/2015] [Indexed: 02/03/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of the major oncogenes identified in a variety of human malignancies including breast cancer (BC). EGFR-mutations have been studied in lung cancer for some years and are established as important markers in guiding therapy with tyrosine kinase inhibitors (TKIs). In contrast, EGFR-mutations have been reported to be rare if not absent in human BC, although recent evidence has suggested a significant worldwide variation in somatic EGFR-mutations. Therefore, we investigated the presence of EGFR-mutations in 131 norwegian patients diagnosed with early breast cancer using real-time PCR methods. In the present study we identified three patients with an EGFR-T790M-mutation. The PCR-findings were confirmed by direct Sanger sequencing. Two patients had triple-negative BC (TNBC) while the third was classified as luminal-A subtype. The difference in incidence of T790M mutations comparing the TNBC subgroup with the other BC subgroups was statistical significant (P = 0.023). No other EGFR mutations were identified in the entire cohort. Interestingly, none of the patients had received any previous cancer treatment. To our best knowledge, the EGFR-T790M-TKI-resistance mutation has not been previously detected in breast cancer patients. Our findings contrast with the observations made in lung cancer patients where the EGFR-T790M-mutation is classified as a typical „second mutation”causing resistance to TKI-therapy during ongoing anticancer therapy. In conclusion, we have demonstrated for the first time that the EGFR-T790M-mutation occurs in primary human breast cancer patients. In the present study the EGFR-T790M mutation was not accompanied by any simultaneous EGFR-activating mutation.
Collapse
Affiliation(s)
- Vahid Bemanian
- Department of Gene Technology, Akershus University Hospital, Lørenskog, Norway
- University of Oslo, Institute of Clinical Medicine, Campus at Akershus University Hospital, Lørenskog, Norway
| | - Torill Sauer
- University of Oslo, Institute of Clinical Medicine, Campus at Akershus University Hospital, Lørenskog, Norway
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | - Joel Touma
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Bjørn Arne Lindstedt
- Department of Gene Technology, Akershus University Hospital, Lørenskog, Norway
- University of Oslo, Institute of Clinical Medicine, Campus at Akershus University Hospital, Lørenskog, Norway
| | - Ying Chen
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
| | | | - Katja Marjaana Vetvik
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Ida Rashida Bukholm
- University of Oslo, Institute of Clinical Medicine, Campus at Akershus University Hospital, Lørenskog, Norway
- Department of Breast- and Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
| | - Jürgen Geisler
- University of Oslo, Institute of Clinical Medicine, Campus at Akershus University Hospital, Lørenskog, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- * E-mail:
| |
Collapse
|