1
|
Schraml P, Aimi F, Zoche M, Aguilera‐Garcia D, Arnold F, Moch H, Hottiger MO. Altered cytoplasmic and nuclear ADP-ribosylation levels analyzed with an improved ADP-ribose binder are a prognostic factor in renal cell carcinoma. J Pathol Clin Res 2023; 9:273-284. [PMID: 36999983 PMCID: PMC10240151 DOI: 10.1002/cjp2.320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023]
Abstract
ADP-ribosylation (ADPR) of proteins is catalyzed by ADP-ribosyltransferases, which are targeted by inhibitors (i.e. poly(ADP-ribose) polymerase inhibitors [PARPi]). Although renal cell carcinoma (RCC) cells are sensitive in vitro to PARPi, studies on the association between ADPR levels and somatic loss of function mutations in DNA damage repair genes are currently missing. Here we observed, in two clear cell RCC (ccRCC) patient cohorts (n = 257 and n = 241) stained with an engineered ADP-ribose binding macrodomain (eAf1521), that decreased cytoplasmic ADPR (cyADPR) levels significantly correlated with late tumor stage, high-ISUP (the International Society of Urological Pathology) grade, presence of necrosis, dense lymphocyte infiltration, and worse patient survival (p < 0.01 each). cyADPR proved to be an independent prognostic factor (p = 0.001). Comparably, absence of nuclear ADPR staining in ccRCC correlated with absence of PARP1 staining (p < 0.01) and worse patient outcome (p < 0.05). In papillary RCC the absence of cyADPR was also significantly associated with tumor progression and worse patient outcome (p < 0.05 each). To interrogate whether the ADPR status could be associated with genetic alterations in DNA repair, chromatin remodeling, and histone modulation, we performed DNA sequence analysis and identified a significant association of increased ARID1A mutations in ccRCCcyADPR+++/PARP1+ compared with ccRCCcyADPR-/PARP1- (31% versus 4%; p < 0.05). Collectively, our data suggest the prognostic value of nuclear and cytoplasmic ADPR levels in RCC that might be further influenced by genetic alterations.
Collapse
Affiliation(s)
- Peter Schraml
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Fabio Aimi
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
- Department of Molecular Mechanism of Disease (DMMD)University of Zurich (UZH)ZurichSwitzerland
| | - Martin Zoche
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Domingo Aguilera‐Garcia
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Fabian Arnold
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Holger Moch
- Department of Pathology and Molecular PathologyUniversity Hospital Zurich (USZ)ZurichSwitzerland
| | - Michael O Hottiger
- Department of Molecular Mechanism of Disease (DMMD)University of Zurich (UZH)ZurichSwitzerland
| |
Collapse
|
2
|
Aimi F, Moch H, Schraml P, Hottiger MO. Cytoplasmic ADP-ribosylation levels correlate with markers of patient outcome in distinct human cancers. Mod Pathol 2021; 34:1468-1477. [PMID: 33742140 PMCID: PMC8295037 DOI: 10.1038/s41379-021-00788-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/14/2022]
Abstract
ADP-ribosylation (ADPR) is a posttranslational modification whose importance in oncology keeps increasing due to frequent use of PARP inhibitors (PARPi) to treat different tumor types. Due to the lack of suitable tools to analyze cellular ADPR levels, ADPR's significance for cancer progression and patient outcome is unclear. In this study, we assessed ADPR levels by immunohistochemistry using a newly developed anti-ADP-ribose (ADPr) antibody, which is able to detect both mono- and poly-ADPR. Tissue microarrays containing brain (n = 103), breast (n = 1108), colon (n = 236), lung (n = 138), ovarian (n = 142), and prostate (n = 328) cancers were used to correlate ADPR staining intensities to clinico-pathological data, including patient overall survival (OS), tumor grade, tumor stage (pT), lymph node status (pN), and the presence of distant metastasis (pM). While nuclear ADPR was detected only in a minority of the samples, cytoplasmic ADPR (cyADPR) staining was observed in most tumor types. Strong cyADPR intensities were significantly associated with better overall survival in invasive ductal breast cancer (p < 0.0001), invasive lobular breast cancer (p < 0.005), and high grade serous ovarian cancer patients (p < 0.01). Furthermore, stronger cytoplasmic ADPR levels significantly correlated with early tumor stage in colorectal and in invasive ductal breast adenocarcinoma (p < 0.0001 and p < 0.01, respectively) and with the absence of regional lymph node metastasis in colorectal adenocarcinoma (p < 0.05). No correlation to cyADPR was found for prostate and lung cancer or brain tumors. In conclusion, our new anti-ADP-ribose antibody revealed heterogeneous ADPR staining patterns with predominant cytoplasmic ADPR staining in most tumor types. Different cyADPR staining patterns could help to better understand variable response rates to PARP inhibitors in the future.
Collapse
Affiliation(s)
- Fabio Aimi
- University of Zurich (UZH), Department of Molecular Mechanisms of Disease (DMMD), Zurich, Switzerland
- University of Zurich and University Hospital Zurich (USZ), Department of Pathology and Molecular Pathology, Zürich, Switzerland
| | - Holger Moch
- University of Zurich and University Hospital Zurich (USZ), Department of Pathology and Molecular Pathology, Zürich, Switzerland
| | - Peter Schraml
- University of Zurich and University Hospital Zurich (USZ), Department of Pathology and Molecular Pathology, Zürich, Switzerland
| | - Michael O Hottiger
- University of Zurich (UZH), Department of Molecular Mechanisms of Disease (DMMD), Zurich, Switzerland.
| |
Collapse
|
3
|
Yang CS, Jividen K, Kamata T, Dworak N, Oostdyk L, Remlein B, Pourfarjam Y, Kim IK, Du KP, Abbas T, Sherman NE, Wotton D, Paschal BM. Androgen signaling uses a writer and a reader of ADP-ribosylation to regulate protein complex assembly. Nat Commun 2021; 12:2705. [PMID: 33976187 PMCID: PMC8113490 DOI: 10.1038/s41467-021-23055-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Androgen signaling through the androgen receptor (AR) directs gene expression in both normal and prostate cancer cells. Androgen regulates multiple aspects of the AR life cycle, including its localization and post-translational modification, but understanding how modifications are read and integrated with AR activity has been difficult. Here, we show that ADP-ribosylation regulates AR through a nuclear pathway mediated by Parp7. We show that Parp7 mono-ADP-ribosylates agonist-bound AR, and that ADP-ribosyl-cysteines within the N-terminal domain mediate recruitment of the E3 ligase Dtx3L/Parp9. Molecular recognition of ADP-ribosyl-cysteine is provided by tandem macrodomains in Parp9, and Dtx3L/Parp9 modulates expression of a subset of AR-regulated genes. Parp7, ADP-ribosylation of AR, and AR-Dtx3L/Parp9 complex assembly are inhibited by Olaparib, a compound used clinically to inhibit poly-ADP-ribosyltransferases Parp1/2. Our study reveals the components of an androgen signaling axis that uses a writer and reader of ADP-ribosylation to regulate protein-protein interactions and AR activity.
Collapse
Affiliation(s)
- Chun-Song Yang
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Teddy Kamata
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Natalia Dworak
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
| | - Luke Oostdyk
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Bartlomiej Remlein
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, USA
| | - Kang-Ping Du
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Nicholas E Sherman
- W. M. Keck Biomedical Mass Spectrometry Laboratory, University of Virginia, Charlottesville, VA, USA
| | - David Wotton
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Bryce M Paschal
- Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Gehrig PM, Nowak K, Panse C, Leutert M, Grossmann J, Schlapbach R, Hottiger MO. Gas-Phase Fragmentation of ADP-Ribosylated Peptides: Arginine-Specific Side-Chain Losses and Their Implication in Database Searches. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:157-168. [PMID: 33140951 DOI: 10.1021/jasms.0c00040] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
ADP-ribosylation is a reversible post-translational modification of proteins that has been linked to many biological processes. The identification of ADP-ribosylated proteins and particularly of their acceptor amino acids remains a major challenge. The attachment sites of the modification are difficult to localize by mass spectrometry (MS) because of the labile nature of the linkage and the complex fragmentation pattern of the ADP-ribose in MS/MS experiments. In this study we performed a comprehensive analysis of higher-energy collisional dissociation (HCD) spectra acquired from ADP-ribosylated peptides which were modified on arginine, serine, glutamic acid, aspartic acid, tyrosine, or lysine residues. In addition to the fragmentation of the peptide backbone, various cleavages of the ADP-ribosylated amino acid side chains were investigated. We focused on gas-phase fragmentations that were specific either to ADP-ribosylated arginine or to ADP-ribosylated serine and other O-linked ADP-ribosylations. The O-glycosidic linkage between ADP-ribose and serine, glutamic acid, or aspartic acid was the major cleavage site, making localization of these modification sites difficult. In contrast, the bond between ADP-ribose and arginine was relatively stable. The main cleavage site was the inner bond of the guanidine group, which resulted in the formation of ADP-ribosylated carbodiimide and of ornithine in place of modified arginine. Taking peptide fragment ions resulting from this specific cleavage into account, a considerably larger number of peptides containing ADP-ribosylated arginine were identified in database searches. Furthermore, the presence of diagnostic ions and of losses of fragments from peptide ions allowed us, in most cases, to distinguish between ADP-ribosylated arginine and serine residues.
Collapse
Affiliation(s)
- Peter M Gehrig
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Kathrin Nowak
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
- Molecular Life Science PhD Program of the Life Science Zurich Graduate School, University of Zurich, 8057 Zurich, Switzerland
| | - Christian Panse
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Amphipole 1015, Lausanne, Switzerland
| | - Mario Leutert
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Amphipole 1015, Lausanne, Switzerland
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
The Effects of Genetic and Epigenetic Alterations of BARD1 on the Development of Non-Breast and Non-Gynecological Cancers. Genes (Basel) 2020; 11:genes11070829. [PMID: 32708251 PMCID: PMC7396976 DOI: 10.3390/genes11070829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer 1 (BRCA1) gene is a well-characterized tumor suppressor gene, mutations of which are primarily found in women with breast and ovarian cancers. BRCA1-associated RING domain 1 (BARD1) gene has also been identified as an important tumor suppressor gene in breast, ovarian, and uterine cancers. Underscoring the functional significance of the BRCA1 and BARD1 interactions, prevalent mutations in the BRCA1 gene are found in its RING domain, through which it binds the RING domain of BARD1. BARD1-BRCA1 heterodimer plays a crucial role in a variety of DNA damage response (DDR) pathways, including DNA damage checkpoint and homologous recombination (HR). However, many mutations in both BARD1 and BRCA1 also exist in other domains that significantly affect their biological functions. Intriguingly, recent genome-wide studies have identified various single nucleotide polymorphisms (SNPs), genetic alterations, and epigenetic modifications in or near the BARD1 gene that manifested profound effects on tumorigenesis in a variety of non-breast and non-gynecological cancers. In this review, we will briefly discuss the molecular functions of BARD1, including its BRCA1-dependent as well as BRCA1-independent functions. We will then focus on evaluating the common BARD1 related SNPs as well as genetic and epigenetic changes that occur in the non-BRCA1-dominant cancers, including neuroblastoma, lung, and gastrointestinal cancers. Furthermore, the pro- and anti-tumorigenic functions of different SNPs and BARD1 variants will also be discussed.
Collapse
|
6
|
Tao L, Wang X, Zhou Q. Long noncoding RNA SNHG16 promotes the tumorigenicity of cervical cancer cells by recruiting transcriptional factor SPI1 to upregulate PARP9. Cell Biol Int 2019; 44:773-784. [PMID: 31774223 DOI: 10.1002/cbin.11272] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) small nucleolar RNA host gene 16 (SNHG16) has been linked to multiple cancers including breast, ovarian, bladder, and colorectal cancer. However, the role of SNHG16 in cervical cancer is unclear. Here, quantitative analysis of SNHG16 and PARP9 expression levels in cervical cancer tissues and cell lines indicated that both SNHG16 and PARP9 were highly expressed compared with controls. Using the dual-luciferase reporter gene assay, RNA immunoprecipitation, chromatin immunoprecipitation, we were able to determine that SNHG16 recruited SPI1 protein to promote transcription of PARP9 to upregulate its transcription in cervical cancer cells. After ectopic expression and knockdown experiments were conducted, it was observed that silencing SNHG16 inhibited PARP9 expression, proliferation, and invasion of cervical cancer cells, which was rescued by co-transfection of SNHG16 silencing and PARP9 overexpression. Moreover, in vivo experimental results showed that silencing SNHG16 reduced the expression of PARP9 and suppressed tumor growth. These data indicate that SNHG16 recruits SPI1 to upregulate PARP9, which promotes the tumorigenicity of cervical cancer cells. The regulation of their expression might provide a new direction for treating cervical cancer.
Collapse
Affiliation(s)
- Ling Tao
- Four Department of Gynecology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, P.R. China
| | - Xiyan Wang
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, P.R. China
| | - Qi Zhou
- Four Department of Gynecology, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, 830011, P.R. China
| |
Collapse
|
7
|
MacroH2A1 Regulation of Poly(ADP-Ribose) Synthesis and Stability Prevents Necrosis and Promotes DNA Repair. Mol Cell Biol 2019; 40:MCB.00230-19. [PMID: 31636161 PMCID: PMC6908255 DOI: 10.1128/mcb.00230-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Through its ability to bind the ends of poly(ADP-ribose) (PAR) chains, the function of the histone variant macroH2A1.1, including its ability to regulate transcription, is coupled to PAR polymerases (PARPs). PARP1 also has a major role in DNA damage response (DDR) signaling, and our results show that macroH2A1 alters the kinetics of PAR accumulation following acute DNA damage by both suppressing PARP activity and simultaneously protecting PAR chains from degradation. Through its ability to bind the ends of poly(ADP-ribose) (PAR) chains, the function of the histone variant macroH2A1.1, including its ability to regulate transcription, is coupled to PAR polymerases (PARPs). PARP1 also has a major role in DNA damage response (DDR) signaling, and our results show that macroH2A1 alters the kinetics of PAR accumulation following acute DNA damage by both suppressing PARP activity and simultaneously protecting PAR chains from degradation. In this way, we demonstrate that macroH2A1 prevents cellular NAD+ depletion, subsequently preventing necrotic cell death that would otherwise occur due to PARP overactivation. We also show that macroH2A1-dependent PAR stabilization promotes efficient repair of oxidative DNA damage. While the role of PAR in recruiting and regulating macrodomain-containing proteins has been established, our results demonstrate that, conversely, macrodomain-containing proteins, and specifically those containing macroH2A1, can regulate PARP1 function through a novel mechanism that promotes both survival and efficient repair during DNA damage response.
Collapse
|
8
|
Regulating Immunity via ADP-Ribosylation: Therapeutic Implications and Beyond. Trends Immunol 2019; 40:159-173. [PMID: 30658897 DOI: 10.1016/j.it.2018.12.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 01/12/2023]
Abstract
Innate immune cells express pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and endogenous danger-associated molecular patterns (DAMPs). Upon binding, PAMPs/DAMPs can initiate an immune response by activating lymphocytes, amplifying and modulating signaling cascades, and inducing appropriate effector responses. Protein ADP-ribosylation can regulate cell death, the release of DAMPs, as well as inflammatory cytokine expression. Inhibitors of ADP-ribosylation (i.e. PARP inhibitors) have been developed as therapeutic agents (in cancer), and are also able to dampen inflammation. We summarize here our most recent understanding of how ADP-ribosylation can regulate the different phases of an immune response. Moreover, we examine the potential clinical translation of pharmacological ADP-ribosylation inhibitors as putative treatment strategies for various inflammation-associated diseases (e.g. sepsis, chronic inflammatory diseases, and reperfusion injury).
Collapse
|
9
|
Buzzo CDL, Medina T, Branco LM, Lage SL, Ferreira LCDS, Amarante-Mendes GP, Hottiger MO, De Carvalho DD, Bortoluci KR. Epigenetic regulation of nitric oxide synthase 2, inducible (Nos2) by NLRC4 inflammasomes involves PARP1 cleavage. Sci Rep 2017; 7:41686. [PMID: 28150715 PMCID: PMC5288713 DOI: 10.1038/srep41686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide synthase 2, inducible (Nos2) expression is necessary for the microbicidal activity of macrophages. However, NOS2 over-activation causes multiple inflammatory disorders, suggesting a tight gene regulation is necessary. Using cytosolic flagellin as a model for inflammasome-dependent NOS2 activation, we discovered a surprising new role for NLRC4/caspase-1 axis in regulating chromatin accessibility of the Nos2 promoter. We found that activation of two independent mechanisms is necessary for NOS2 expression by cytosolic flagellin: caspase-1 and NF-κB activation. NF-κB activation was necessary, but not sufficient, for NOS2 expression. Conversely, caspase-1 was necessary for NOS2 expression, but dispensable for NF-κB activation, indicating that this protease acts downstream NF-κB activation. We demonstrated that epigenetic regulation of Nos2 by caspase-1 involves cleavage of the chromatin regulator PARP1 (also known as ARTD1) and chromatin accessibility of the NF-κB binding sites located at the Nos2 promoter. Remarkably, caspase-1-mediated Nos2 transcription and NO production contribute to the resistance of macrophages to Salmonella typhimurium infection. Our results uncover the molecular mechanism behind the constricted regulation of Nos2 expression and open new therapeutic opportunities based on epigenetic activities of caspase-1 against infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Carina de Lima Buzzo
- Centro de Terapia Celular e Molecular (CTC-Mol) e Departamento de Ciências Biológicas - Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago Medina
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada
| | - Laura M Branco
- Centro de Terapia Celular e Molecular (CTC-Mol) e Departamento de Ciências Biológicas - Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo and Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), Brazil
| | - Silvia L Lage
- Centro de Terapia Celular e Molecular (CTC-Mol) e Departamento de Ciências Biológicas - Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo and Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), Brazil
| | | | - Gustavo P Amarante-Mendes
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo and Instituto de Investigação em Imunologia, Instituto Nacional de Ciência e Tecnologia (INCT-iii), Brazil
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2M9, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 2M9, Canada
| | - Karina R Bortoluci
- Centro de Terapia Celular e Molecular (CTC-Mol) e Departamento de Ciências Biológicas - Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Vida A, Márton J, Mikó E, Bai P. Metabolic roles of poly(ADP-ribose) polymerases. Semin Cell Dev Biol 2016; 63:135-143. [PMID: 28013023 DOI: 10.1016/j.semcdb.2016.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging.
Collapse
Affiliation(s)
- András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary
| | - Judit Márton
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine University of Debrecen, 4032, Hungary.
| |
Collapse
|
11
|
Rom S, Zuluaga-Ramirez V, Reichenbach NL, Dykstra H, Gajghate S, Pacher P, Persidsky Y. PARP inhibition in leukocytes diminishes inflammation via effects on integrins/cytoskeleton and protects the blood-brain barrier. J Neuroinflammation 2016; 13:254. [PMID: 27677851 PMCID: PMC5039899 DOI: 10.1186/s12974-016-0729-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/21/2016] [Indexed: 12/24/2022] Open
Abstract
Background Blood-brain barrier (BBB) dysfunction/disruption followed by leukocyte infiltration into the brain causes neuroinflammation and contributes to morbidity in multiple sclerosis, encephalitis, traumatic brain injury, and stroke. The identification of pathways that decreases the inflammatory potential of leukocytes would prevent such injury. Poly(ADP-ribose) polymerase 1 (PARP) controls various genes via its interaction with myriad transcription factors. Selective PARP inhibitors have appeared lately as potent anti-inflammatory tools. Their effects are outside the recognized PARP functions in DNA repair and transcriptional regulation. In this study, we explored the idea that selective inhibition of PARP in leukocytes would diminish their engagement of the brain endothelium. Methods Cerebral vascular changes and leukocyte-endothelium interactions were surveyed by intravital videomicroscopy utilizing a novel in vivo model of localized aseptic meningitis when TNFα was introduced intracerebrally in wild-type (PARP+/+) and PARP-deficient (PARP−/−) mice. The effects of selective PARP inhibition on primary human monocytes ability to adhere to or migrate across the BBB were also tested in vitro, employing primary human brain microvascular endothelial cells (BMVEC) as an in vitro model of the BBB. Results PARP suppression in monocytes diminished their adhesion to and migration across BBB in vitro models and prevented barrier injury. In monocytes, PARP inactivation decreased conformational activation of integrins that plays a key role in their tissue infiltration. Such changes were mediated by suppression of activation of small Rho GTPases and cytoskeletal rearrangements in monocytes. In vitro observations were confirmed in vivo showing diminished leukocyte-endothelial interaction after selective PARP suppression in leukocytes accompanied by BBB protection. PARP knockout animals demonstrated a substantial diminution of inflammatory responses in brain microvasculature and a decrease in BBB permeability. Conclusions These results suggest PARP inhibition in leukocytes as a novel approach to BBB protection in the setting of endothelial dysfunction caused by inflammation-induced leukocyte engagement. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0729-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Holly Dykstra
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, 20852, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
12
|
Jackson RA, Chen ES. Synthetic lethal approaches for assessing combinatorial efficacy of chemotherapeutic drugs. Pharmacol Ther 2016; 162:69-85. [DOI: 10.1016/j.pharmthera.2016.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Abdel-Magid AF. Potential Use of Inhibitors of Tankyrases and PARP-1 as Treatment for Cancer and Other Diseases. ACS Med Chem Lett 2016; 7:209-10. [PMID: 26985304 DOI: 10.1021/acsmedchemlett.6b00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Indexed: 11/29/2022] Open
|
14
|
Teloni F, Altmeyer M. Readers of poly(ADP-ribose): designed to be fit for purpose. Nucleic Acids Res 2015; 44:993-1006. [PMID: 26673700 PMCID: PMC4756826 DOI: 10.1093/nar/gkv1383] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/26/2015] [Indexed: 01/14/2023] Open
Abstract
Post-translational modifications (PTMs) regulate many aspects of protein function and are indispensable for the spatio-temporal regulation of cellular processes. The proteome-wide identification of PTM targets has made significant progress in recent years, as has the characterization of their writers, readers, modifiers and erasers. One of the most elusive PTMs is poly(ADP-ribosyl)ation (PARylation), a nucleic acid-like PTM involved in chromatin dynamics, genome stability maintenance, transcription, cell metabolism and development. In this article, we provide an overview on our current understanding of the writers of this modification and their targets, as well as the enzymes that degrade and thereby modify and erase poly(ADP-ribose) (PAR). Since many cellular functions of PARylation are exerted through dynamic interactions of PAR-binding proteins with PAR, we discuss the readers of this modification and provide a synthesis of recent findings, which suggest that multiple structurally highly diverse reader modules, ranging from completely folded PAR-binding domains to intrinsically disordered sequence stretches, evolved as PAR effectors to carry out specific cellular functions.
Collapse
Affiliation(s)
- Federico Teloni
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matthias Altmeyer
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|