1
|
Alpeza F, Loo CKY, Zhuang Q, Hartman M, Goh SSN, Li J. A Scoping Review of Primary Breast Cancer Risk Reduction Strategies in East and Southeast Asia. Cancers (Basel) 2025; 17:168. [PMID: 39857949 PMCID: PMC11763974 DOI: 10.3390/cancers17020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Breast cancer (BC) screening enables early detection and timely treatment of cancer. Improving the effectiveness of BC screening can be accomplished by personalizing screening schedules according to each woman's specific risk level. However, when informing women about their risk classification, especially those at high risk, it is important to give clear recommendations on how to lower their risk. BC risk reduction comprises lifestyle modifications, preventive surgery, and chemoprevention, with the latter two being particularly applicable to high-risk individuals. Public health guidance on risk-reducing interventions is heterogeneous and context-dependent. We conducted a scoping review on BC surgical interventions and chemoprevention in East and Southeast Asia in publications between 2010 and 2024. We searched two databases and identified 23 publications relevant for inclusion. The highest number of publications came from South Korea (n = 9). More publications discussed surgical interventions compared to pharmacological interventions. The studies were largely observational and utilized data from medical records. Most studies defined high-risk individuals as BRCA carriers, many of whom previously had cancer. The field would benefit from randomized studies of BC prevention strategies focusing on Asian populations. Future research could explore women's sentiments towards chemoprevention compared to prophylactic surgery and could extend the definition of high-risk individuals beyond BRCA carriers.
Collapse
Affiliation(s)
- Filipa Alpeza
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (F.A.); (C.K.Y.L.)
| | - Christine Kim Yan Loo
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (F.A.); (C.K.Y.L.)
| | - Qingyuan Zhuang
- Division of Supportive and Palliative Care, National Cancer Centre Singapore, Singapore 168583, Singapore;
- Data Computational Science Core, National Cancer Centre Singapore, Singapore 168583, Singapore
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; (M.H.); (S.S.N.G.)
- Department of Surgery, National University Hospital and National University Health System, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Serene Si Ning Goh
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; (M.H.); (S.S.N.G.)
- Department of Surgery, National University Hospital and National University Health System, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 117597, Singapore
| | - Jingmei Li
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore; (F.A.); (C.K.Y.L.)
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 117597, Singapore
- National Cancer Centre Singapore, SingHealth, Singapore 168583, Singapore
| |
Collapse
|
2
|
Elshami FI, Shereef HA, El-Mehasseb IM, Shaban SY, van Eldik R. Hydroxychloroquine-Loaded Chitosan Nanoparticles Induce Anticancer Activity in A549 Lung Cancer Cells: Design, BSA Binding, Molecular Docking, Mechanistic, and Biological Evaluation. Int J Mol Sci 2023; 24:14103. [PMID: 37762406 PMCID: PMC10531786 DOI: 10.3390/ijms241814103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The current study describes the encapsulation of hydroxychloroquine, widely used in traditional medicine due to its diverse pharmacological and medicinal uses, in chitosan nanoparticles (CNPs). This work aims to combine the HCQ drug with CS NPs to generate a novel nanocomposite with improved characteristics and bioavailability. HCQ@CS NPs are roughly shaped like roadways and have a smooth surface with an average size of 159.3 ± 7.1 nm, a PDI of 0.224 ± 0.101, and a zeta potential of +46.6 ± 0.8 mV. To aid in the development of pharmaceutical systems for use in cancer therapy, the binding mechanism and affinity of the interaction between HCQ and HCQ@CS NPs and BSA were examined using stopped-flow and other spectroscopic approaches, supplemented by molecular docking analysis. HCQ and HCQ@CS NPs binding with BSA is driven by a ground-state complex formation that may be accompanied by a non-radiative energy transfer process, and binding constants indicate that HCQ@CS NPs-BSA was more stable than HCQ-BSA. The stopped-flow analysis demonstrated that, in addition to increasing BSA affinity, the nanoformulation HCQ@CS NPS changes the binding process and may open new routes for interaction. Docking experiments verified the development of the HCQ-BSA complex, with HCQ binding to site I on the BSA structure, primarily with the amino acids, Thr 578, Gln 579, Gln 525, Tyr 400, and Asn 404. Furthermore, the nanoformulation HCQ@CS NPS not only increased cytotoxicity against the A549 lung cancer cell line (IC50 = 28.57 ± 1.72 μg/mL) compared to HCQ (102.21 ± 0.67 μg/mL), but also exhibited higher antibacterial activity against both Gram-positive and Gram-negative bacteria when compared to HCQ and chloramphenicol, which is in agreement with the binding constants. The nanoformulation developed in this study may offer a viable therapy option for A549 lung cancer.
Collapse
Affiliation(s)
- Fawzia I. Elshami
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.I.E.); (I.M.E.-M.)
| | - Hadeer A. Shereef
- Clinical Pathology Department, University Hospital, Menoufia University, Shebin El-Kom 32512, Egypt;
| | - Ibrahim M. El-Mehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.I.E.); (I.M.E.-M.)
| | - Shaban Y. Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; (F.I.E.); (I.M.E.-M.)
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
3
|
Mvondo MA, Wego Kamgaing MT, Wansi Ngnokam SL. Anti-hyperplastic effects of the Dacryodes edulis (Burseraceae) leaves aqueous extract on tamoxifen-induced endometrium hyperplasia on Wistar rat. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2023; 20:566-576. [PMID: 34761649 DOI: 10.1515/jcim-2021-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/06/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Combining tamoxifen, the most common breast cancer hormonal therapy, with natural antitumor substances may prevent its hyperplastic effects on the uterine endometrium. Dacryodes edulis (DE) is traditionally recommended for the treatment of cancerous diseases. To investigate its antiproliferative properties, the present study was designed to assess the ability of the combined administration of tamoxifen with the aqueous extract of DE leaves to inhibit the trophic effect of this hormone therapy on rat uterine endometrium without compromising its non-proliferative effect on breast tissue. METHODS Ovariectomized (OVX) female Wistar rats were simultaneously treated with tamoxifen (10 mg/kg) intraperitoneally and DE leaves (at doses of 25, 50 and 100 mg/kgBW) by gavage. Control groups received either distilled water or tamoxifen alone. Treatments lasted 37 days. The 38th day, animals were sacrificed under anesthesia (diazepam: 10 mg/kgBW and ketamine: 50 mg/kgBW). The relative uterine weight was determined and the histological analysis of the uterus and mammary gland was performed. The oxidative status of the uterus was assessed and the levels of cholesterol and estradiol were evaluated in serum and uterus. RESULTS Tamoxifen increased uterine weight and induced endometrial hyperplasia. This effect was associated with increased uterine levels of cholesterol (164.22%; p < 0.001), estradiol (927.5%; p < 0.001) and malondiadehyde (86%; p < 0.05), but unchanged antioxidant enzymes activities. The administration of DE leaves unchanged tamoxifen-increased uterine weight but reduced uterine epithelium hypertrophy (56.4%; p < 0.01). DE also increased uterine levels of malondiadehyde and antioxidant enzymes. The levels of estradiol and cholesterol in the uterus decreased while no changes were observed in the mammary gland of animals treated with tamoxifen alone or in co-administration with DE. CONCLUSIONS D. edulis has antiproliferative properties and could complement endocrine therapy of estrogen-dependent breast cancer.
Collapse
Affiliation(s)
- Marie Alfrede Mvondo
- Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | | | | |
Collapse
|
4
|
Tossetta G, Marzioni D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur J Pharmacol 2023; 941:175503. [PMID: 36641100 DOI: 10.1016/j.ejphar.2023.175503] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/22/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cervical and endometrial cancers are among the most dangerous gynaecological malignancies, with high fatality and recurrence rates due to frequent diagnosis at an advanced stage and chemoresistance onset. The NRF2/KEAP1 signalling pathway plays an important role in protecting cells against oxidative damage due to increased reactive oxygen species (ROS) levels. NRF2, activated by ROS, induces the expression of antioxidant enzymes such as heme oxygenase, catalase, glutathione peroxidase and superoxide dismutase which neutralize ROS, protecting cells against oxidative stress damage. However, activation of NRF2/KEAP1 signalling in cancer cells results in chemoresistance, inactivating drug-mediated oxidative stress and protecting cancer cells from drug-induced cell death. We review the literature on the role of the NRF2/KEAP1 pathway in cervical and endometrial cancers, with a focus on the expression of its components and downstream genes. We also examine the role of the NRF2/KEAP1 pathway in chemotherapy resistance and how this pathway can be modulated by natural and synthetic modulators.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, 60126, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126, Ancona, Italy
| |
Collapse
|
5
|
Zubair M, Azeem M, Mumtaz R, Younas M, Adrees M, Zubair E, Khalid A, Hafeez F, Rizwan M, Ali S. Green synthesis and characterization of silver nanoparticles from Acacia nilotica and their anticancer, antidiabetic and antioxidant efficacy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119249. [PMID: 35390420 DOI: 10.1016/j.envpol.2022.119249] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Both cancer and diabetes mellitus are serious health issues, accounting more than 11 million deaths worldwide annually. Targeted use of plant-mediated nanoparticles (NPs) in treatment of ailments has outstanding results due to their salient properties. The current study was designed to investigate the safe production of silver nanoparticles (AgNPs) from Acacia nilotica. Different concentrations of AgNO3 were tested to optimize the protocol for the synthesis of AgNPs from the bark extract. It was demonstrated that 0.1 M and 3 mM were found to be the optimum concentrations for the synthesis of AgNPs. Standard characterization techniques such as UV-vis spectrophotometry, SEM, SEM-EDX micrograph, spot analysis, elemental mapping and XRD were used for the conformation of biosynthesis of AgNPs. Absorption spectrum of plant-mediated AgNPs under UV-vis spectrophotometer showed a strong peak at 380 nm and 420 nm for AgNPs synthesized at 0.1 M and 3 mM concentration of salt. The SEM results showed that AgNPs were present in variable shapes within average particle size ranging from (20-50 nm). Anticancer, antidiabetic and antioxidant potential of green AgNPs was investigated and they showed promising results as compared to the positive and negative controls. Hence, AgNPs were found potent therapeutic agent against the human liver cancer cell lines (HepG2), strong inhibitor for α-glucosidase enzyme activity and scavenging agent against free radicals that cause oxidative stress. Further studies are however needed to confirm the molecular mechanism and biochemical reactions responsible for the anticancer and antidiabetic activities of the particles.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Muhammad Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Rabia Mumtaz
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Madiha Younas
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Muhammad Adrees
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Errum Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Abdullah Khalid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000, Faisalabad, Pakistan
| | - Farhan Hafeez
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Tobe Camp, Abbottabad Campus, KPK, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000, Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000, Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
6
|
Mohamed AF, Nasr M, Amer ME, Abuamara TMM, Abd-Elhay WM, Kaabo HF, Matar EER, El Moselhy LE, Gomah TA, Deban MAEF, Shebl RI. Anticancer and antibacterial potentials induced post short-term exposure to electromagnetic field and silver nanoparticles and related pathological and genetic alterations: in vitro study. Infect Agent Cancer 2022; 17:4. [PMID: 35120563 PMCID: PMC8817517 DOI: 10.1186/s13027-022-00416-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance to antibiotics and anticancer therapy is a serious global health threat particularly in immunosuppressed cancer patients. Current study aimed to estimate the antibacterial and anticancer potentials of short-term exposure to extremely low frequency electromagnetic field (ELF-EMF) and silver nanoparticles (AgNPs) either in sole or combined form. METHODS Antibacterial activity was evaluated via determination of the bacterial viable count reduction percentage following exposure, whereas their ability to induce apoptosis in breast cancer (MCF-7) cell line was detected using annexin V-fluorescein isothiocyanate and cell cycle analysis. Also, oxidative stress potential and molecular profile were investigated. RESULTS ELF-EMF and AgNPs significantly (p < 0.01) reduced K. pneumonia viable count of compared to that of S. aureus in a time dependent manner till reaching 100% inhibition when ELF-EMF was applied in combination to 10 µM/ml AgNPs for 2 h. Apoptosis induction was obvious following exposure to either ELF-EMF or AgNPs, however their apoptotic potential was intensified when applied in combination recording significantly (p < 0.001) induced apoptosis as indicated by elevated level of MCF-7 cells in the Pre G1 phase compared to control. S phase arrest and accumulation of cells in G2/M phase was observed following exposure to AgNPs and EMF, respectively. Up-regulation in the expression level of p53, iNOS and NF-kB genes as well as down-regulation of Bcl-2 and miRNA-125b genes were detected post treatment. CONCLUSIONS The antibacterial and anticancer potentials of these agents might be related to their ability to induce oxidative stress, suggesting their potentials as novel candidates for controlling infections and triggering cancer cells towards self-destruction.
Collapse
Affiliation(s)
- Aly Fahmy Mohamed
- International Center for Training and Advanced Researches (ICTAR-Egypt), Cairo, Egypt
| | - Mohamed Nasr
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed E Amer
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Tamer M M Abuamara
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Wagih M Abd-Elhay
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hassan Fathy Kaabo
- Histology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Emad Eldin R Matar
- Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Laila E El Moselhy
- Histology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | | | | | - Rania Ibrahim Shebl
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University (ACU), 4th Industrial Zone, Banks Complex, 6th October City, Cairo, Egypt.
| |
Collapse
|
7
|
Rahim NA, Mail MH, Muhamad M, Sapuan S, SMN Mydin RB, Seeni A. Investigation of antiproliferative mechanisms of Alstonia angustiloba-silver nanoparticles in skin squamous cell carcinoma (A431 cell line). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Soltani L, Darbemamieh M. Anti-proliferative, apoptotic potential of synthesized selenium nanoparticles against breast cancer cell line (MCF7). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:926-941. [PMID: 34396908 DOI: 10.1080/15257770.2021.1964526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nano-biotechnology has grown rapidly and become an integral part of modern disease diagnosis and treatment. The aim of this survey was to evaluate the anticancer activity of synthesized selenium nanoparticles (Se-NPs) against breast cancer cells (MCF-7). The prepared Se-NPs were examined by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDX). Antioxidant activity of Se-NPs property was studied by radical scavenging (DPPH) assay. The in-vitro cytotoxicity of Se-NPs was evaluated by MTT assay. In addition; the biological assessment (antioxidant and cytotoxicity) of synthesized Se-NPs was examined via molecular docking simulations. Synthesis of Se-NPs was characterized by several studies such as UV-absorbance, showing peak values in the range of 268 nm. Nanoparticle sizes of the nanoparticles are confirmed by dynamic light scattering analysis, indicating that average size is about 203 nm. The quantity of selenium in Se-NPs is 90.15% by weight, as confirmed by EDX. Synthesized Se-NPs have anti-proliferative effects on MCF-7 cell lines. Cytotoxicity and apoptotic potential assays exhibited a dose-dependent effect against MCF-7 cells using an MTT assay. Like anti-cancer activity, anti-oxidant activity of Se-NPs was dose-dependent. Findings showed that the Se-NPs complexes have the highest inhibitory effect against cytotoxic and antioxidant receptors. Results of this study demonstrated that Se-NPs had strong potential to scavenge free radicals and are cytotoxic against the MCF-7 cancer cell line.
Collapse
Affiliation(s)
- Leila Soltani
- Department of Animal Sciences, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Maryam Darbemamieh
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
9
|
Erkisa M, Ari F, Büyükköroğlu G, Şenel B, Yilmaz VT, Ulukaya E. Preparation and Characterization of Palladium Derivate-Loaded Micelle Formulation in Vitro as an Innovative Therapy Option against Non-Small Cell Lung Cancer Cells. Chem Biodivers 2021; 18:e2100402. [PMID: 34370383 DOI: 10.1002/cbdv.202100402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023]
Abstract
Nanoparticles have been used in cancer treatments to target tumor and reduce side effects. In this study, we aimed to increase the effectiveness of palladium(II) complex [PdCl(terpy)](sac) ⋅ 2H2 O, which previously showed anticancer potential, by preparing the nanoparticle formulation. An inhalable micellar dispersion containing a palladium(II) complex (PdNP) was prepared and its physicochemical characteristics were evaluated using in vitro tests. Morphology, size and surface charges of particle and loading/encapsulation efficiency of PdNP were analyzed by scanning electron microscopy, zeta sizer and inductively coupled plasma mass spectrometry while aerosol properties of PdNP were measured by the next generation impactor. A549 and H1299 non-small lung cancer cell types were used for cytotoxicity using SRB and ATP assays. Fluorescent staining and M30 antigen assay were carried out for cell death evaluation. Apoptosis was confirmed by flow cytometry analyses. SEM, particle size, and zeta potential results showed the particles have inhalable properties. The amount of the palladium(II) complex loaded into the particles was quantified which indicated high encapsulation efficiencies (97 %). The micellar dispersion expected to reach the alveolar region and the brachial region was determined 35 % and 47 %, respectively. PdNP showed an anti-growth effect by increasing reactive oxygen species that is followed by the induction of mitochondria-dependent apoptosis that is evidenced by pyknotic nuclei and M30 antigen level increments and disruption of polarization of membrane in mitochondria (Δψm). The results show that PdNP might be a promising inhalable novel complex to be used in non-small cell lung cancer, which warrants animal studies in further.
Collapse
Affiliation(s)
- Merve Erkisa
- Bursa Uludag University, Science and Art Faculty, Department of Biology, 16059, Bursa, Turkey.,Istinye University, Molecular Cancer Research Center (ISUMKAM), 34010, Istanbul, Turkey
| | - Ferda Ari
- Bursa Uludag University, Science and Art Faculty, Department of Biology, 16059, Bursa, Turkey
| | - Gülay Büyükköroğlu
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 26470, Eskisehir, Turkey
| | - Behiye Şenel
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 26470, Eskisehir, Turkey
| | - Veysel Turan Yilmaz
- Bursa Uludag University, Science and Art Faculty, Department of Chemistry, 16059, Bursa, Turkey
| | - Engin Ulukaya
- Istinye University, School of Medicine, Department of Clinical Biochemistry, 34010, Istanbul, Turkey
| |
Collapse
|
10
|
CSNK1G2 differently sensitizes tamoxifen-induced decrease in PI3K/AKT/mTOR/S6K and ERK signaling according to the estrogen receptor existence in breast cancer cells. PLoS One 2021; 16:e0246264. [PMID: 33861751 PMCID: PMC8051802 DOI: 10.1371/journal.pone.0246264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/17/2021] [Indexed: 11/19/2022] Open
Abstract
Tamoxifen (TAM) is a selective estrogen receptor modulator used for breast cancer patients. Prolonged use of tamoxifen is not recommended for some patients. In this study, we aimed to identify molecular targets sensitive to TAM using a genome-wide gene deletion library screening of fission yeast heterozygous mutants. From the screening, casein kinase 1 gamma 2 (CSNK1G2), a serine-/threonine protein kinase, was the most sensitive target to TAM with a significant cytotoxicity in estrogen receptor-positive (ER+) breast cancer cells but with only a slight toxicity in the case of ER- cells. In addition, tumor sphere formation and expression of breast stem cell marker genes such as CD44/CD2 were greatly inhibited by CSNK1G2 knockdown in ER+ breast cancer cells. Consistently, CSNK1G2 altered ERα activity via phosphorylation, specifically at serine (Ser)167, as well as the regulation of estrogen-responsive element (ERE) of estrogen-responsive genes such as CTSD and GREB1. However, ERα silencing almost completely blocked CSNK1G2-induced TAM sensitivity. In ER+ breast cancer cells, combined treatment with TAM and CSNK1G2 knockdown further enhanced the TAM-mediated decrease in phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (S6K) signaling but not extracellular signal-regulated kinase (ERK) signaling. Inversely, in ER- cells treated with TAM, only ERK and PI3K signaling was altered by CSNK1G2 knockdown. The CK1 inhibitor, D4476, partly mimicked the CSNK1G2 knockdown effect in ER+ breast cancer cells, but with a broader repression ranging from PI3K/AKT/mTOR/S6K to ERK signaling. Collectively, these results suggest that CSNK1G2 plays a key role in sensitizing TAM toxicity in ER+ and ER- breast cancer cells via differently regulating PI3K/AKT/mTOR/S6K and ERK signaling.
Collapse
|
11
|
Tingskov SJ, Jensen MS, Pedersen CET, de Araujo IBBA, Mutsaers HAM, Nørregaard R. Tamoxifen attenuates renal fibrosis in human kidney slices and rats subjected to unilateral ureteral obstruction. Biomed Pharmacother 2021; 133:111003. [PMID: 33227702 DOI: 10.1016/j.biopha.2020.111003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibrosis plays an important role in the development and progression of chronic kidney disease (CKD). Clinical studies have shown that CKD progresses differently in males and females, which may be related to circulating levels of sex hormones. In this study, we investigated the effect of tamoxifen (TAM), a selective estrogen receptor modulator (SERM), on renal fibrosis in male and female rats subjected to unilateral ureteral obstruction (UUO) and human precision-cut kidney slices (PCKS). EXPERIMENTAL APPROACH Female, ovariectomized female (OVX), and male rats were subjected to 7 days of UUO and treated with TAM by oral gavage. Moreover, we studied individual responses to TAM treatment in PCKS prepared from female and male patients. In all models, the expression of fibrosis markers was examined by western blot, qPCR, and immunohistochemistry. KEY RESULTS TAM decreased the expression of fibronectin, α-smooth muscle actin, and collagen-1 and -3 in female, OVX, and male rats. In addition, TAM mitigated TGF-β-induced fibrosis in human PCKS, irrespective of sex, yet interindividual differences in treatment response were observed. CONCLUSION AND IMPLICATIONS TAM ameliorates renal fibrosis in males and females, although we did observe sex differences in drug response. These findings warrant further research into the clinical applicability of TAM, or other SERMs, for the personalized treatment of renal disease.
Collapse
|
12
|
Ammazzalorso A, Gallorini M, Fantacuzzi M, Gambacorta N, De Filippis B, Giampietro L, Maccallini C, Nicolotti O, Cataldi A, Amoroso R. Design, synthesis and biological evaluation of imidazole and triazole-based carbamates as novel aromatase inhibitors. Eur J Med Chem 2020; 211:113115. [PMID: 33360796 DOI: 10.1016/j.ejmech.2020.113115] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
In the search for novel aromatase inhibitors, a series of triazole and imidazole-based carbamate derivatives were designed and synthesized. Final compounds were thus evaluated against human aromatase by in vitro kinetic experiments in a fluorimetric assay in comparison with letrozole. The effect of most active derivatives 13a and 15c was then evaluated in vitro on the human breast cancer cell line MCF7 by MTT assay, cytotoxicity assay (LDH release) and cell cycle analysis, revealing a dose-dependent inhibition profile of cell viability and low micromolar IC50 values. In addition, docking simulations were also carried out to elucidate at a molecular level of detail the binding modes adopted to target human aromatase.
Collapse
Affiliation(s)
- Alessandra Ammazzalorso
- Unit of Medicinal Chemistry, Department of Pharmacy, "G. D'Annunzio" University, Chieti, Italy.
| | - Marialucia Gallorini
- Unit of Anatomy, Department of Pharmacy, "G. D'Annunzio" University, Chieti, Italy
| | - Marialuigia Fantacuzzi
- Unit of Medicinal Chemistry, Department of Pharmacy, "G. D'Annunzio" University, Chieti, Italy
| | - Nicola Gambacorta
- Unit of Medicinal Chemistry, Department of Farmacia-Scienze Del Farmaco, "A. Moro" University, Bari, Italy
| | - Barbara De Filippis
- Unit of Medicinal Chemistry, Department of Pharmacy, "G. D'Annunzio" University, Chieti, Italy
| | - Letizia Giampietro
- Unit of Medicinal Chemistry, Department of Pharmacy, "G. D'Annunzio" University, Chieti, Italy
| | - Cristina Maccallini
- Unit of Medicinal Chemistry, Department of Pharmacy, "G. D'Annunzio" University, Chieti, Italy
| | - Orazio Nicolotti
- Unit of Medicinal Chemistry, Department of Farmacia-Scienze Del Farmaco, "A. Moro" University, Bari, Italy
| | - Amelia Cataldi
- Unit of Anatomy, Department of Pharmacy, "G. D'Annunzio" University, Chieti, Italy
| | - Rosa Amoroso
- Unit of Medicinal Chemistry, Department of Pharmacy, "G. D'Annunzio" University, Chieti, Italy
| |
Collapse
|
13
|
Palliyaguru DL, Yang L, Chartoumpekis DV, Wendell SG, Fazzari M, Skoko JJ, Liao Y, Oesterreich S, Michalopoulos GK, Kensler TW. Sulforaphane Diminishes the Formation of Mammary Tumors in Rats Exposed to 17β-Estradiol. Nutrients 2020; 12:E2282. [PMID: 32751496 PMCID: PMC7468750 DOI: 10.3390/nu12082282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/21/2022] Open
Abstract
Elevated levels of estrogen are a risk factor for breast cancer. In addition to inducing DNA damage, estrogens can enhance cell proliferation as well as modulate fatty acid metabolism that collectively contributes to mammary tumorigenesis. Sulforaphane (SFN) is an isothiocyanate derived from broccoli that is currently under evaluation in multiple clinical trials for prevention of several diseases, including cancer. Previous studies showed that SFN suppressed DNA damage and lipogenesis pathways. Therefore, we hypothesized that administering SFN to animals that are co-exposed to 17β-estradiol (E2) would prevent mammary tumor formation. In our study, 4-6 week old female August Copenhagen Irish rats were implanted with slow-release E2 pellets (3 mg x 3 times) and gavaged 3x/week with either vehicle or 100 μmol/kg SFN for 56 weeks. SFN-treated rats were protected significantly against mammary tumor formation compared to vehicle controls. Mammary glands of SFN-treated rats showed decreased DNA damage while serum free fatty acids and triglyceride species were 1.5 to 2-fold lower in SFN-treated rats. Further characterization also showed that SFN diminished expression of enzymes involved in mammary gland lipogenesis. This study indicated that SFN protects against breast cancer development through multiple potential mechanisms in a clinically relevant hormonal carcinogenesis model.
Collapse
Affiliation(s)
- Dushani L. Palliyaguru
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.Y.); (D.V.C.); (S.G.W.); (M.F.); (J.J.S.); (Y.L.); (S.O.); (T.W.K.)
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Li Yang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.Y.); (D.V.C.); (S.G.W.); (M.F.); (J.J.S.); (Y.L.); (S.O.); (T.W.K.)
- Department of Toxic Substances Control, California Environmental Protection Agency, Cypress, CA 90630, USA
| | - Dionysios V. Chartoumpekis
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.Y.); (D.V.C.); (S.G.W.); (M.F.); (J.J.S.); (Y.L.); (S.O.); (T.W.K.)
- Department of Internal Medicine, Division of Endocrinology, University of Patras, 26504 Patras, Greece
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.Y.); (D.V.C.); (S.G.W.); (M.F.); (J.J.S.); (Y.L.); (S.O.); (T.W.K.)
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.Y.); (D.V.C.); (S.G.W.); (M.F.); (J.J.S.); (Y.L.); (S.O.); (T.W.K.)
| | - John J. Skoko
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.Y.); (D.V.C.); (S.G.W.); (M.F.); (J.J.S.); (Y.L.); (S.O.); (T.W.K.)
| | - Yong Liao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.Y.); (D.V.C.); (S.G.W.); (M.F.); (J.J.S.); (Y.L.); (S.O.); (T.W.K.)
| | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.Y.); (D.V.C.); (S.G.W.); (M.F.); (J.J.S.); (Y.L.); (S.O.); (T.W.K.)
- Magee Women’s Research Institute, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | | | - Thomas W. Kensler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; (L.Y.); (D.V.C.); (S.G.W.); (M.F.); (J.J.S.); (Y.L.); (S.O.); (T.W.K.)
- Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
14
|
The ethanol extract of avocado [Persea americana Mill. (Lauraceae)] seeds reduced the hyperplastic effect of tamoxifen on uterine endometrium without changing its effect on the mammary gland. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00443-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Hamida RS, Abdelmeguid NE, Ali MA, Bin-Meferij MM, Khalil MI. Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria Desertifilum sp. extract: Their Antibacterial and Cytotoxicity Effects. Int J Nanomedicine 2020; 15:49-63. [PMID: 32021164 PMCID: PMC6956868 DOI: 10.2147/ijn.s238575] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/21/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The emergence of multi drug-resistant (MDR) bacterial infections and cancer has necessitated the development and discovery of alternative eco-safe antibacterial and anticancer agents. Biogenic fabrication of metallic nanoparticles is an emerging discipline for production of nanoproducts that exert potent anticancer and antibacterial activity, and do not suffer from the limitations inherent in physiochemical synthesis methods. METHODOLOGY In this study, we isolated, purified, and characterized a novel cyanobacteria extract (Desertifilum IPPAS B-1220) to utilize in biofabrication of silver nanoparticles (D-SNPs). D-SNPs were produced by adding Desertifilum extract to silver nitrate solution under controlled conditions. Biofabrication of D-SNPs was confirmed using a UV-Vis spectrophotometer. The resultant D-SNPs were characterized using XRD, FTIR, SEM, and TEM. The toxicity of D-SNPs against five pathogenic bacteria and three cancer cell lines (MCF-7, HepG2, and Caco-2) was evaluated. RESULTS Formation of D-SNPs was indicated by a color change from pale yellow to dark brown. The peak of the surface plasmon resonance of the D-SNPs was at 421 nm. The XRD detected the crystallinity of D-SNPs. FTIR showed that polysaccharides and proteins may have contributed to the biofabrication of D-SNPs. Under SEM and TEM, the D-SNPs were spherical with diameter ranges from 4.5 to 26 nm. The D-SNPs significantly suppressed the growth of five pathogenic bacteria, and exerted cytotoxic effects against MCF-7, HepG2, and Caco-2 cancer cells with IC50 values of 58, 32, and 90 µg/mL, respectively. CONCLUSION These findings showed for the first time the potentiality of novel cyanobacteria strain Desertifilum IPPAS B-1220 to fabricate small SNPs that acted as potent anticancer and antibacterial material against different cancer cell lines and pathogenic bacterial strains. These findings encourage the researchers to focus on cyanobacteria in general and especially Desertifilum sp. IPPAS B-1220 for synthesizing different NPs that opening the window for new applications.
Collapse
Affiliation(s)
- Reham Samir Hamida
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nabila Elsayed Abdelmeguid
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Abdelaal Ali
- Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mahmoud Ibrahim Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
16
|
Hamouda RA, Hussein MH, Abo-Elmagd RA, Bawazir SS. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 2019; 9:13071. [PMID: 31506473 PMCID: PMC6736842 DOI: 10.1038/s41598-019-49444-y] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Using aqueous cyanobacterial extracts in the synthesis of silver nanoparticle is looked as green, ecofriendly, low priced biotechnology that gives advancement over both chemical and physical methods. In the current study, an aqueous extract of Oscillatoria limnetica fresh biomass was used for the green synthesis of Ag-NPs, since O. limnetica extract plays a dual part in both reducing and stabilizing Oscillatoria-silver nanoparticles (O-AgNPs). The UV-Visible absorption spectrum, Fourier transforms infrared (FT-IR), transmission electron microscopy (TEM) and scanning electron microscope (SEM) were achieved for confirming and characterizing the biosynthesized O-AgNPs. TEM images detected the quasi-spherical Ag-NPs shape with diverse size ranged within 3.30-17.97 nm. FT-IR analysis demonstrated the presence of free amino groups in addition to sulfur containing amino acid derivatives acting as stabilizing agents as well as the presence of either sulfur or phosphorus functional groups which possibly attaches silver. In this study, synthesized Ag-NPs exhibited strong antibacterial activity against multidrug-resistant bacteria (Escherichia coli and Bacillus cereus) as well as cytotoxic effects against both human breast (MCF-7) cell line giving IC50 (6.147 µg/ml) and human colon cancer (HCT-116) cell line giving IC50 (5.369 µg/ml). Hemolytic activity of Ag-NPs was investigated and confirmed as being non- toxic to human RBCs in low concentrations.
Collapse
Affiliation(s)
- Ragaa A Hamouda
- Department of biology, Faculty of sciences and Arts Khulais, University of Jeddah, Jeddah, Saudi Arabia.
- Department of Microbial Biotechnology, Genetic Engineering & Research Institute, Sadat University, Sadat city, Egypt.
| | - Mervat H Hussein
- Botany department, Faculty of science, Mansoura University, Mansoura, Egypt
| | - Rasha A Abo-Elmagd
- Botany department, Faculty of science, Mansoura University, Mansoura, Egypt
| | - Salwa S Bawazir
- Department of biology, Faculty of sciences and Arts Khulais, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Ziliotto S, Gee JMW, Ellis IO, Green AR, Finlay P, Gobbato A, Taylor KM. Activated zinc transporter ZIP7 as an indicator of anti-hormone resistance in breast cancer. Metallomics 2019; 11:1579-1592. [PMID: 31483418 PMCID: PMC6796783 DOI: 10.1039/c9mt00136k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
ZIP7, a member of the ZIP family of zinc importers, resides on the endoplasmic reticulum membrane and transports zinc from intracellular stores to the cytoplasm after activation by CK2 phosphorylation on two serine residues (S275 and S276). ZIP7 is known to be required for the growth of anti-hormone resistant breast cancer models, especially those with acquired tamoxifen resistance developed from MCF-7. Using our new pS275S276ZIP7 antibody which only recognises activated ZIP7 (pZIP7), we have demonstrated that the hyperactivation of ZIP7 is prevalent in tamoxifen-resistant breast cancer cells. This evidence suggests that pZIP7 might have potential as a biomarker of acquired resistance to such anti-hormones in breast cancer, a current unmet clinical need. In this regard, we have also developed a new immunohistochemical assay for pZIP7 which allowed pZIP7 to be tested on a small clinical series of breast cancer tissues confirming its prevalence in such tumours and relationship to a variety of clinicopathological parameters and biomarkers previously associated with endocrine resistant phenotypes, notably increased activated MAPK signalling, expression of ErbB2, CD71 and the proto-oncogene c-Fos, as well as with increased tumour grade.
Collapse
Affiliation(s)
- Silvia Ziliotto
- Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Julia M W Gee
- Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham, Nottingham City Hospital, Nottingham, UK
| | - Pauline Finlay
- Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Anna Gobbato
- Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| | - Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK.
| |
Collapse
|
18
|
Gajardo G, López-Muñoz R, Plaza A, Uberti B, Sarmiento J, Morán G, Henríquez C. Tamoxifen in horses: pharmacokinetics and safety study. Ir Vet J 2019; 72:5. [PMID: 31249663 PMCID: PMC6587269 DOI: 10.1186/s13620-019-0143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/28/2019] [Indexed: 01/11/2023] Open
Abstract
Background Tamoxifen (TAM), a selective modulator of estrogen receptors (SERMs) has been recently explored as a therapeutic option for the oral treatment of airway inflammation in the horse. The objective of this work was to establish pharmacokinetic parameters of TAM and its main metabolites in equines, as well as to determine its clinical safety in short-term treatments. Results We determined TAM and its three main metabolites (4-OH tamoxifen, endoxifen, and N-desmethyl tamoxifen) in plasma after single administration of 0.25 mg/kg in healthy adult horses (n = 12). A maximum concentration of TAM was achieved 3 h after the oral administration (4.65 pg/mL ± 1.69); 4-OH tamoxifen was the metabolite that reached the highest concentration (78 pg/mL ± 70), followed by N-desmethyl tamoxifen (0.43 pg / mL ± 0.48), and finally endoxifen (0.17 pg/mL ± 0.17). All metabolites showed peak concentration 2 h after oral administration of the drug. Oral TAM bioavailability was 13,15% ± 4,18, with a steady state volume of distribution of 7831 ± 2922 (L/kg). Elimination half-life was 15.40 ± 5.80 h, and clearance was 5876 ± 699 (mL/kg/min). Clinical safety of TAM was determined over a 7-day course of treatment (0.25 mg/kg, orally q 24 h, n = 20). No adverse effects were observed through clinical examination, blood hematology, serum biochemistry, ophthalmological and reproductive examinations. Endometrial edema observed in some mares was attributed to normal cyclic activity. Conclusions Tamoxifen has moderate oral bioavailability and a large volume of distribution, with three main metabolites in horses. Additionally, oral TAM administration over a 7-day treatment period demonstrated to be clinically safe, without adverse effects on clinical, hematological or serum biochemical parameters. These data could contribute to the continued research into this drug’s potential for the treatment of different inflammatory conditions in equine species. Electronic supplementary material The online version of this article (10.1186/s13620-019-0143-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gonzalo Gajardo
- 1Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo López-Muñoz
- 2Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Anita Plaza
- 3Instituto de Medicina, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Benjamin Uberti
- 4Instituto de Ciencias Clínicas, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - José Sarmiento
- 5Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Gabriel Morán
- 2Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Henríquez
- 2Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
19
|
Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R. Illuminating the Anticancerous Efficacy of a New Fungal Chassis for Silver Nanoparticle Synthesis. Front Chem 2019; 7:65. [PMID: 30800654 PMCID: PMC6375905 DOI: 10.3389/fchem.2019.00065] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/23/2019] [Indexed: 01/16/2023] Open
Abstract
Biogenic silver nanoparticles (Ag NPs) have supple platforms designed for biomedical and therapeutic intervention. Utilization of Ag NPs are preferred in the field of biomedicines and material science research because of their antioxidant, antimicrobial, and anticancerous activity along with their eco-friendly, biocompatible, and cost-effective nature. Here we present a novel fungus Piriformospora indica as an excellent source for obtaining facile and reliable Ag NPs with a high degree of consistent morphology. We demonstrated their cytotoxic property, coupled with their intrinsic characteristic that make these biogenic nanoparticles suitable for the anticancerous activity. In vitro cytotoxicity of biologically synthesized Ag NPs (BSNPs) and chemically synthesized Ag NPs (SNPs) was screened on various cancer cell lines, such as Human breast adenocarcinoma (MCF-7), Human cervical carcinoma (HeLa), Human liver hepatocellular carcinoma (HepG2) cell lines and embryonic kidney cell line (HEK-293) as normal cell lines. The antiproliferative outcome revealed that the BSNPs exhibited significant cytotoxic activity against MCF-7 followed by HeLa and HepG2 cell lines as compared to SNPs. The blend of cytotoxic properties, together with green and cost-effective characteristics make up these biogenic nanoparticles for their potential applications in cancer nanomedicine and fabrication coating of ambulatory and non-ambulatory medical devices.
Collapse
Affiliation(s)
- Nafe Aziz
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd Faraz
- Department of Physics, Indian Institute of Technology Delhi, Haus Khas, New Delhi, India
| | - Mohd Asif Sherwani
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Ram Prasad
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China.,Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
20
|
Pham TH, Lecomte S, Efstathiou T, Ferriere F, Pakdel F. An Update on the Effects of Glyceollins on Human Health: Possible Anticancer Effects and Underlying Mechanisms. Nutrients 2019; 11:E79. [PMID: 30609801 PMCID: PMC6357109 DOI: 10.3390/nu11010079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/11/2022] Open
Abstract
Biologically active plant-based compounds, commonly referred to as phytochemicals, can influence the expression and function of various receptors and transcription factors or signaling pathways that play vital roles in cellular functions and are then involved in human health and diseases. Thus, phytochemicals may have a great potential to prevent and treat chronic diseases. Glyceollins, a group of phytoalexins that are isolated from soybeans, have attracted attention because they exert numerous effects on human functions and diseases, notably anticancer effects. In this review, we have presented an update on the effects of glyceollins in relation to their potential beneficial roles in human health. Despite a growing number of studies suggesting that this new family of phytochemicals can be involved in critical cellular pathways, such as estrogen receptor, protein kinase, and lipid kinase signaling pathways, future investigations will be needed to better understand their molecular mechanisms and their specific significance in biomedical applications.
Collapse
Affiliation(s)
- Thu Ha Pham
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| | - Sylvain Lecomte
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| | - Theo Efstathiou
- Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 rue Jules Maillard de la Gournerie, 35012 Rennes Cedex, France.
| | - Francois Ferriere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| | - Farzad Pakdel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)-UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
21
|
Azizi M, Ghourchian H, Yazdian F, Alizadehzeinabad H. Albumin coated cadmium nanoparticles as chemotherapeutic agent against MDA-MB 231 human breast cancer cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:787-797. [PMID: 29426245 DOI: 10.1080/21691401.2018.1436064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With the aim of dedicating toxicity of cadmium nanoparticles (CdNPs) against invasive breast cancer, with minimum damage to surrounding healthy cells, CdNPs were coated with albumin nanocarrier by nanoprecipitation method and named CdNPs@BSA. The characterization was done by TEM image, DLS and UV-Vis, fluorescence, circular dichroism spectroscopy. The cytotoxic efficacy of the CdNPs@BSA against human breast cancer cells (MDA-MB 231 cells) was examined by MTT assay. Apoptosis, as the mechanism of cell death, was verified by inverted microscopy, fluorescent microscopy, gel electrophoresis and flow cytometry. The role of ROS generation in apoptosis was also studied. It was found that the resulted CdNPs@BSA (diameter of 88 nm and zeta potential of about -18.85 mV) was suitable for penetration in tumour micro vessels. In the form of CdNPs@BSA, the 77% of the secondary structure and almost all of the tertiary structure remain intact. Comparing to CdNPs, CdNPs@BSA could significantly suppress the MDA-MB 231 while they were less toxic on WBCs. Therefore, they could be a brilliant candidate to be used as a chemotherapeutic agent against invasive breast cancer cells.
Collapse
Affiliation(s)
- Marzieh Azizi
- a Institute of Biochemistry and Biophysics (IBB) , University of Tehran , Tehran , Iran
| | - Hedayatollah Ghourchian
- a Institute of Biochemistry and Biophysics (IBB) , University of Tehran , Tehran , Iran.,b Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center , University of Tehran , Tehran , Iran
| | - Fatemeh Yazdian
- c Biological Sciences, Faculty of New Science and Technology , University of Tehran , Tehran , Iran
| | | |
Collapse
|
22
|
Khara G, Padalia H, Moteriya P, Chanda S. Peltophorum pterocarpum Flower-Mediated Synthesis, Characterization, Antimicrobial and Cytotoxic Activities of ZnO Nanoparticles. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/s13369-017-2875-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Feng L, Li J, Yang L, Zhu L, Huang X, Zhang S, Luo L, Jiang Z, Jiang T, Xu W, Wang X, Jin H. Tamoxifen activates Nrf2-dependent SQSTM1 transcription to promote endometrial hyperplasia. Am J Cancer Res 2017. [PMID: 28638475 PMCID: PMC5479276 DOI: 10.7150/thno.19135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-term application of Tamoxifen (TAM) is usually recommended for hormone receptor positive breast cancer patients. Unfortunately, TAM will inevitably increase the incidence of endometrial hyperplasia even endometrial cancer. Despite of substantial investigations, no effective approaches to prevent TAM-induced endometrial carcinogenesis have been acknowledged. In this study, we found that inhibition of Nrf2 could be valuable to prevent TAM-induced endometrial hyperplasia. Upon TAM treatment, the mRNA and protein expression of autophagy adaptor SQSTM1 was specifically increased in endometrial cells but not breast cancer cells. Knocking-down of SQSTM1 expression retarded TAM-promoted growth of endometrial cancer cells. TAM stimulated SQSTM1 transcription specifically in endometrial cells by enhancing phosphorylation and nuclear translocation of Nrf2. Indeed, the expression of Nrf2 and SQSTM1 were positively correlated in primary endometrial tissues. In rats with TAM-induced endometrial hyperplasia, both Nrf2 and SQSTM1 expression were increased. Nrf2 inhibitor brusatol effectively attenuated TAM-induced SQSTM1 upregulation and endometrial hyperplasia. The kinase of Nrf2, PRKCD, was activated by TAM. Once PRKCD was depleted, TAM failed to promote Nrf2 phosphorylation and SQSTM1 expression. In summary, TAM stimulated Nrf2-dependent SQSTM1 transcription to promote endometrial hyperplasia by activating PRKCD. Therefore, blocking PRKCD-Nrf2-SQSTM1 signaling could be useful to prevent TAM-induced endometrial hyperplasia.
Collapse
|
24
|
El-Shorbagy HM. Potential anti-genotoxic effect of sodium butyrate to modulate induction of DNA damage by tamoxifen citrate in rat bone marrow cells. Cytotechnology 2017; 69:89-102. [PMID: 27905024 PMCID: PMC5264625 DOI: 10.1007/s10616-016-0039-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Sodium butyrate (SB) is one of the histone deacetylase inhibitors (HDACi's) that is recently evidenced to have a prooxidant activity and an ability to reduce hydrogen peroxide-induced DNA damage. Since the majority of estrogen receptor positive breast cancer patients are treated with tamoxifen citrate (TC), which exerts well established oxidative and genotoxic effects, thus the basic objective of this study is to determine whether SB could ameliorate or curate tamoxifen citrate-induced oxidative DNA damage and genotoxic effect in vivo through up-regulation of some antioxidant enzymes. The individual and combined effects of SB and TC have been examined on rat bone marrow cells, using Micronucleus assays (MN), Comet assay, DNA fragmentation, expression of some antioxidant genes using Real time-PCR and finally, oxidative stress analysis. SB significantly increased the mitotic activity (P < 0.05), while TC induced marked micronuclei and oxidative DNA damage, in the SB post-treatment group, the combination of SB (300 mg/kg) and TC (40 mg/kg) was able to decrease the induction of MN and oxidative DNA damage through up-regulation of Cat, Sod and Gpx1 genes significantly at (P < 0.05) more efficiently than that in the SB pre-treatment one. Therefore, we postulate that SB can be used therapeutically in combination with TC treatment to modulate TC genotoxic effect by reducing its oxidative stress, and thus being an appropriate agonist agent to combine with TC than each compound alone.
Collapse
|
25
|
Ramkumar R, Balasubramani G, Raja RK, Raja M, Govindan R, Girija EK, Perumal P. Lantana camara Linn root extract-mediated gold nanoparticles and their in vitro antioxidant and cytotoxic potentials. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:748-757. [PMID: 28064507 DOI: 10.1080/21691401.2016.1276923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Lantana camara Linn root extract derived gold nanoparticles (Au NPs) were characterized by Ultraviolet-Visible spectroscopy, X-ray diffraction, fourier transform-infrared, high resolution transmission electron microscopy, selected area electron diffraction pattern and energy dispersive X-ray analyses. In DPPH assay, the inhibitory concentration (IC50) of Au NPs and gallic acid was 24.17 and 5.39 μg/ml, whereas, for cytotoxicity assay, the IC50 of Au NPs was 17.72 and 32.98 μg/ml on MBA-MB-231 and Vero cells, respectively. Thus, the Au NPs possess significant in vitro antioxidant and cytotoxic properties which could be considered as potential alternate for the development of anticancer drug in future.
Collapse
Affiliation(s)
- Rajendiran Ramkumar
- a Department of Biotechnology , Padmavani Arts and Science College for Women , Salem , India
| | | | | | - Manickam Raja
- b Department of Biotechnology , School of Biosciences, Periyar University , Salem , India
| | - Raji Govindan
- c Department of Physics , School of Physical Sciences, Periyar University , Salem , India
| | | | - Pachiappan Perumal
- b Department of Biotechnology , School of Biosciences, Periyar University , Salem , India
| |
Collapse
|
26
|
Biomolecule-loaded chitosan nanoparticles induce apoptosis and molecular changes in cancer cell line (SiHa). Int J Biol Macromol 2016; 88:18-26. [DOI: 10.1016/j.ijbiomac.2016.03.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 11/18/2022]
|
27
|
Wibowo E, Pollock PA, Hollis N, Wassersug RJ. Tamoxifen in men: a review of adverse events. Andrology 2016; 4:776-88. [DOI: 10.1111/andr.12197] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 12/16/2022]
Affiliation(s)
- E. Wibowo
- Vancouver Prostate Centre; Vancouver Coastal Health Research Institute; Vancouver BC Canada
| | - P. A. Pollock
- Vancouver Prostate Centre; Vancouver Coastal Health Research Institute; Vancouver BC Canada
| | - N. Hollis
- Solid Organ Transplant Clinic; Vancouver General Hospital; Vancouver BC Canada
| | - R. J. Wassersug
- Department of Urologic Sciences; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
28
|
Mellor CL, Steinmetz FP, Cronin MTD. Using Molecular Initiating Events to Develop a Structural Alert Based Screening Workflow for Nuclear Receptor Ligands Associated with Hepatic Steatosis. Chem Res Toxicol 2016; 29:203-12. [DOI: 10.1021/acs.chemrestox.5b00480] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Claire L. Mellor
- School of Pharmacy and Biomolecular
Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Fabian P. Steinmetz
- School of Pharmacy and Biomolecular
Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| | - Mark T. D. Cronin
- School of Pharmacy and Biomolecular
Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, England
| |
Collapse
|
29
|
Cytotoxic Effect of Palladium Nanoparticles Synthesized From Syzygium aromaticum Aqueous Extracts and Induction of Apoptosis in Cervical Carcinoma. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40011-015-0678-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Nazarali SA, Narod SA. Tamoxifen for women at high risk of breast cancer. BREAST CANCER-TARGETS AND THERAPY 2014; 6:29-36. [PMID: 24648767 PMCID: PMC3933348 DOI: 10.2147/bctt.s43763] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tamoxifen has been used as a treatment for women who have been diagnosed with breast cancer for roughly four decades and has been approved as chemoprevention for over ten years. Although tamoxifen has been proven to be beneficial in preventing breast cancer in high-risk women, its use has not been widely embraced. To some extent, this is due to several of its side effects, including an increased risk of endometrial cancer and pulmonary embolism, but these serious side effects are rare. The risks and benefits of tamoxifen chemoprevention should be considered for each patient.
Collapse
Affiliation(s)
- Safia A Nazarali
- Women's College Research Institute, Women's College Hospital, and The University of Toronto, Toronto, Ontario, Canada
| | - Steven A Narod
- Women's College Research Institute, Women's College Hospital, and The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Gurunathan S, Raman J, Abd Malek SN, John PA, Vikineswary S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int J Nanomedicine 2013; 8:4399-413. [PMID: 24265551 PMCID: PMC3833323 DOI: 10.2147/ijn.s51881] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are an important class of nanomaterial for a wide range of industrial and biomedical applications. AgNPs have been used as antimicrobial and disinfectant agents due their detrimental effect on target cells. The aim of our study was to determine the cytotoxic effects of biologically synthesized AgNPs using hot aqueous extracts of the mycelia of Ganoderma neo-japonicum Imazeki on MDA-MB-231 human breast cancer cells. METHODS We developed a green method for the synthesis of water-soluble AgNPs by treating silver ions with hot aqueous extract of the mycelia of G. neo-japonicum. The formation of AgNPs was characterized by ultraviolet-visible absorption spectroscopy, X-ray diffraction, dynamic light scattering, and transmission electron microscopy. Furthermore, the toxicity of synthesized AgNPs was evaluated using a series of assays: such as cell viability, lactate dehydrogenase leakage, reactive oxygen species generation, caspase 3, DNA laddering, and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick-end labeling in human breast cancer cells (MDA-MB-231). RESULTS The ultraviolet-visible absorption spectroscopy results showed a strong resonance centered on the surface of AgNPs at 420 nm. The X-ray diffraction analysis confirmed that the synthesized AgNPs were single-crystalline, corresponding with the result of transmission electron microscopy. Treatment of MDA-MB-231 breast cancer cells with various concentrations of AgNPs (1-10 μg/mL) for 24 hours revealed that AgNPs could inhibit cell viability and induce membrane leakage in a dose-dependent manner. Cells exposed to AgNPs showed increased reactive oxygen species and hydroxyl radical production. Furthermore, the apoptotic effects of AgNPs were confirmed by activation of caspase 3 and DNA nuclear fragmentation. CONCLUSION The results indicate that AgNPs possess cytotoxic effects with apoptotic features and suggest that the reactive oxygen species generated by AgNPs have a significant role in apoptosis. The present findings suggest that AgNPs could contribute to the development of a suitable anticancer drug, which may lead to the development of a novel nanomedicine for the treatment of cancers.
Collapse
|
32
|
Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:535796. [PMID: 23936814 PMCID: PMC3722883 DOI: 10.1155/2013/535796] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 01/03/2023]
Abstract
Silver nanoparticles (AgNPs) have been used as an antimicrobial and disinfectant agents. However, there is limited information about antitumor potential. Therefore, this study focused on determining cytotoxic effects of AgNPs on MDA-MB-231 breast cancer cells and its mechanism of cell death. Herein, we developed a green method for synthesis of AgNPs using culture supernatant of Bacillus funiculus, and synthesized AgNPs were characterized by various analytical techniques such as UV-visible spectrophotometer, particle size analyzer, and transmission electron microscopy (TEM). The toxicity was evaluated using cell viability, metabolic activity, and oxidative stress. MDA-MB-231 breast cancer cells were treated with various concentrations of AgNPs (5 to 25 μg/mL) for 24 h. We found that AgNPs inhibited the growth in a dose-dependent manner using MTT assay. AgNPs showed dose-dependent cytotoxicity against MDA-MB-231 cells through activation of the lactate dehydrogenase (LDH), caspase-3, reactive oxygen species (ROS) generation, eventually leading to induction of apoptosis which was further confirmed through resulting nuclear fragmentation. The present results showed that AgNPs might be a potential alternative agent for human breast cancer therapy.
Collapse
|
33
|
Yu JS, Kim AK. Platycodin D induces apoptosis in MCF-7 human breast cancer cells. J Med Food 2010; 13:298-305. [PMID: 20412017 DOI: 10.1089/jmf.2009.1226] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Platycodin D (PD), a major constituent isolated from the root of Platycodon grandiflorum, has been suggested to possess anticancer activities, as indicated by its capabilities to induce mitotic arrest and apoptosis in several cancer cells. However, little is known of the underlying action mechanism. This study is the first to investigate the anticancer effect of PD in the human breast cancer cell, MCF-7. Our data showed that PD exhibited marked cell growth inhibition by inducing apoptosis. This induction was associated with activation of caspase-8 and -9 activities and poly(ADP-ribose) polymerase. PD triggered the mitochondrial apoptotic pathway, as indicated by up-regulation of levels of cellular Bax and down-regulation of levels of Bcl-2 and caspase-9 activation. We found that PD induced proteolytic activation of Bid, a member of the proapoptotic Bcl-2 family, implicating PD-induced apoptosis as possibly being functionally linked to a death receptor-mediated pathway. The PD treatment also was accompanied by an increase in cellular generation of reactive oxygen species, indicating that PD-induced apoptosis is likely to be mediated through mitochondrial dysfunction. In addition, we revealed that the mitogen-activated protein kinases, including extracellular signal-regulated kinase 1/2, c-Jun NH(2)-terminal kinase 1/2, and p38, which play important roles in apoptosis, were activated by treatment with PD. These results provide a basic mechanism for the anticancer properties of PD and suggest that PD is a promising candidate for chemotherapy and chemoprevention of breast cancer.
Collapse
Affiliation(s)
- Ji Sun Yu
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | | |
Collapse
|
34
|
Lee MH, Kim JW, Kim JH, Kang KS, Kong G, Lee MO. Gene expression profiling of murine hepatic steatosis induced by tamoxifen. Toxicol Lett 2010; 199:416-24. [PMID: 20937368 DOI: 10.1016/j.toxlet.2010.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/24/2022]
Abstract
Tamoxifen is an antiestrogenic agent used widely in the treatment of estrogen receptor-positive breast cancer. However, hepatic steatosis has been reported during clinical trials of tamoxifen. To explore the mechanism responsible for this tamoxifen-induced hepatic steatosis, we used microarray analysis to profile the gene expression pattern of mouse liver after tamoxifen treatment. Tamoxifen was administered orally as a single dose of 10mg/kg (low dose), 50mg/kg (medium dose), or 100mg/kg (high dose) to C57BL/6 mice, and the livers were removed 2h, 4h, 8h, and 24h later. From microarray data obtained from the liver samples, 414 genes were selected as tamoxifen-responsive genes (P<0.05, two-way ANOVA; cutoff ≥ 1.5-fold response). These genes were classified into three groups: 308 of the 414 genes showed a time-dependent response, nine genes showed a dose-dependent response, and 97 genes showed a time- and dose-dependent response. Most of the 308 time-dependent-responsive genes were associated predominantly with the biological processes involved in lipid metabolism. Overrepresented transcription factor binding site analysis showed that the following nuclear receptors that are important in lipid and carbohydrate metabolism were overrepresented: the androgen receptor (AR), nuclear receptor subfamily 2 group F member 1 (NR2F1), hepatocyte nuclear factor 4α (HNF4α), and retinoic acid receptor-related orphan receptor alpha 1 (RORα1). Reporter gene analysis further revealed that tamoxifen repressed the 5α-dihydrotestosterone-induced activation of the AR and the intrinsic transactivation function of RORα1, HNF4α, and NR2F1. Taken together, these data provide a better understanding of the molecular mechanism underlying tamoxifen-induced steatogenic hepatotoxicity and useful information for predicting steatogenic hepatotoxicity.
Collapse
Affiliation(s)
- Min-Ho Lee
- College of Pharmacy and Bio-MAX Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
35
|
Preparation, characterization, and biodistribution of letrozole loaded PLGA nanoparticles in Ehrlich Ascites tumor bearing mice. Int J Pharm 2010; 397:194-200. [DOI: 10.1016/j.ijpharm.2010.06.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 11/18/2022]
|
36
|
Grunberg SM, Weiss MH, Russell CA, Spitz IM, Ahmadi J, Sadun A, Sitruk-Ware R. Long-Term Administration of Mifepristone (RU486): Clinical Tolerance During Extended Treatment of Meningioma. Cancer Invest 2009; 24:727-33. [PMID: 17162554 DOI: 10.1080/07357900601062339] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Mifepristone (RU486) is an oral antiprogestational and, to a lesser extent, antiglucocorticoid agent commonly used for short-term (single-day) therapy. However, treatment of neoplasms or chronic conditions will require long-term administration. Meningioma is a benign central nervous system tumor that is often progesterone-but not estrogen-receptor positive, making long-term antiprogestational therapy a logical treatment strategy. METHODS Patients with unresectable meningioma were treated with oral mifepristone 200 mg/day. This dose was selected to provide significant antiprogestational but not antiglucocorticoid activity. Patients also received oral dexamethasone 1 mg/day for the first 14 days. Serial follow-up allowed evaluation for tolerability and side effects of long-term therapy as well as observation for efficacy (tumor shrinkage or improvement in visual fields). RESULTS Twenty-eight patients received daily oral mifepristone for a total of 1,626 patient-months of treatment. The median duration of therapy was 35 months (range 2-157 months). Repeated oral administration was well tolerated with mild fatigue (22 patients), hot flashes (13 patients), and gynecomastia/breast tenderness (6 patients) being the most common side effects. However, endometrial hyperplasia or polyps were documented in 3 patients and one patient developed peritoneal adenocarcinoma after 9 years of therapy. Minor responses (improved automated visual field examination or improved CT or MRI scan) were noted in 8 patients, 7 of whom were male or premenopausal female. CONCLUSIONS Long-term administration of mifepristone is feasible and clinically well tolerated, with generally mild toxicity. However, endometrial hyperplasia was noted in several patients. In view of the association between long-term treatment with tamoxifen (another agent that can induce an unopposed estrogen effect) and endometrial cancer, this observation will require further investigation and screening. Minor regression of meningioma that can result in significant clinical benefit is suggested in the male and premenopausal female subgroups of patients.
Collapse
Affiliation(s)
- Steven M Grunberg
- Division of Hematology/Oncology, University of Vermont College of Medicine, Burlington, Vermont, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The anti-oestrogen tamoxifen, which is widely used in the treatment of breast cancer and is also approved for the prevention of this disease, causes an increased incidence of endometrial cancer in women. The ability of tamoxifen to induce endometrial tumours and the underlying carcinogenic mechanisms have been a subject of intense interest over the last approximately 20 years. They are central to the assessment of risks versus benefits for the drug, especially in a chemopreventive context. This review outlines the clinical justification for using tamoxifen as a chemopreventive agent and describes the genotoxic mechanisms considered responsible for tamoxifen-induced tumours in rat liver and how these might relate to women. In rat hepatic tissue, tamoxifen is metabolically activated via alpha-hydroxylation and sulphate conjugation to give a reactive species that binds to DNA predominantly at the N(2)-position of guanine, producing pro-mutagenic lesions. Whether tamoxifen-DNA adducts contribute similarly to the development of cancers in women depends on whether they can be formed in human tissues and the type of specific molecular and cellular responses they induce, if present. This review discusses the current data relating to these issues and highlights areas where further research is needed.
Collapse
Affiliation(s)
- Karen Brown
- Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE2 7LX, UK.
| |
Collapse
|
38
|
Schild-Hay LJ, Leil TA, Divi RL, Olivero OA, Weston A, Poirier MC. Tamoxifen induces expression of immune response-related genes in cultured normal human mammary epithelial cells. Cancer Res 2009; 69:1150-5. [PMID: 19155303 PMCID: PMC2633418 DOI: 10.1158/0008-5472.can-08-2806] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Use of tamoxifen is associated with a 50% reduction in breast cancer incidence and an increase in endometrial cancer incidence. Here, we documented tamoxifen-induced gene expression changes in cultured normal human mammary epithelial cells (strains 5, 16, and 40), established from tissue taken at reduction mammoplasty from three individuals. Cells exposed to 0, 10, or 50 micromol/L of tamoxifen for 48 hours were evaluated for (E)-alpha-(deoxyguanosine-N(2)-yl)-tamoxifen (dG-N(2)-TAM) adduct formation using TAM-DNA (DNA modified with dG-N(2)-TAM) chemiluminescence immunoassay, gene expression changes using National Cancer Institute DNA-oligonucleotide microarray, and real-time PCR. At 48 hours, cells exposed to 10 and 50 micromol/L of tamoxifen were 85.6% and 48.4% viable, respectively, and there were no measurable dG-N(2)-TAM adducts. For microarrays, cells were exposed to 10 micromol/L of tamoxifen and genes with expression changes of >3-fold were as follows: 13 genes up-regulated and 1 down-regulated for strain 16; 17 genes up-regulated for strain 5, and 11 genes up-regulated for strain 40. Interferon-inducible genes (IFITM1, IFIT1, MXI, and GIP3), and a potassium ion channel (KCNJ1) were up-regulated in all three strains. No significant expression changes were found for genes related to estrogen or xenobiotic metabolism. Real-time PCR revealed the up-regulation of IFNA1 and confirmed the tamoxifen-induced up-regulation of the five other genes identified by microarray, with the exception of GIP3 and MX1, which were not up-regulated in strain 40. Induction of IFN-related genes in the three normal human mammary epithelial cell strains suggests that, in addition to hormonal effects, tamoxifen exposure may enhance immune response in normal breast tissue.
Collapse
Affiliation(s)
- Laura J Schild-Hay
- Carcinogen-DNA Interactions Section, LCBG, CCR, National Cancer Institute, NIH, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | |
Collapse
|
39
|
Liapis E, McLuckie KIE, Lewis PD, Farmer PB, Brown K. Mutagenicity of tamoxifen DNA adducts in human endometrial cells and in silico prediction of p53 mutation hotspots. Nucleic Acids Res 2008; 36:5933-45. [PMID: 18805907 PMCID: PMC2566887 DOI: 10.1093/nar/gkn586] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tamoxifen elevates the risk of endometrial tumours in women and alpha-(N(2)-deoxyguanosinyl)-tamoxifen adducts are reportedly present in endometrial tissue of patients undergoing therapy. Given the widespread use of tamoxifen there is considerable interest in elucidating the mechanisms underlying treatment-associated cancer. Using a combined experimental and multivariate statistical approach we have examined the mutagenicity and potential consequences of adduct formation by reactive intermediates in target uterine cells. pSP189 plasmid containing the supF gene was incubated with alpha-acetoxytamoxifen or 4-hydroxytamoxifen quinone methide (4-OHtamQM) to generate dG-N(2)-tamoxifen and dG-N(2)-4-hydroxytamoxifen, respectively. Plasmids were replicated in Ishikawa cells then screened in Escherichia coli. Treatment with both alpha-acetoxytamoxifen and 4-OHtamQM caused a dose-related increase in adduct levels, resulting in a damage-dependent increase in mutation frequency for alpha-acetoxytamoxifen; 4-OHtamQM had no apparent effect. Only alpha-acetoxytamoxifen generated statistically different supF mutation spectra relative to the spontaneous pattern, with most mutations being GC-->TA transversions. Application of the LwPy53 algorithm to the alpha-acetoxytamoxifen spectrum predicted strong GC-->TA hotspots at codons 244 and 273. These signature alterations do not correlate with current reports of the mutations observed in endometrial carcinomas from treated women, suggesting that dG-N(2)-tam adduct formation in the p53 gene is not a prerequisite for endometrial cancer initiation in women.
Collapse
Affiliation(s)
- Evagelos Liapis
- Department of Cancer Studies and Molecular Medicine, Department of Biochemistry, University of Leicester, Leicester, LE2 7LX, UK
| | | | | | | | | |
Collapse
|
40
|
Tang X, Zhu X, Liu S, Nicholson RC, Ni X. Phytoestrogens induce differential estrogen receptor beta-mediated responses in transfected MG-63 cells. Endocrine 2008; 34:29-35. [PMID: 18937077 DOI: 10.1007/s12020-008-9099-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/20/2008] [Accepted: 08/24/2008] [Indexed: 11/27/2022]
Abstract
Phytoestrogens may function as partial agonists or antagonists of estrogen in many tissues including bone. Five phytoestrogens, belonging to the isoflavones and the flavonoids groups, were assayed in the human MG-63 osteoblastic cell line for their ability to stimulate transcriptional activity of an estrogen-response element (ERE)-luciferase reporter gene via the estrogen receptor beta (ERbeta). Although MG-63 cells were shown to express endogenous estrogen receptors, estradiol (E2) did not affect transcriptional activity of an ERE reporter in these cells. However, E2 did activate the ERE-reporter significantly in MG-63 cells where ERbeta was overexpressed. The isoflavones, genistein and daidzein, caused a dose-dependent increase in the ERE-reporter activity in MG-63 cells overexpressing ERbeta. Among the flavonoids, kaempferol activated ERE-reporter activity, whereas puerarin inhibited ERE-reporter transcription in cells overexpressing ERbeta. Quercetin had no effect on ERE-reporter activity over a concentration range of 10(-10)-10(-6) mol/l. The ERE-reporter activity induced by daidzein, genistein, and kaempferol was blocked by both ICI 182780 and 4-hydroxytamoxifen and partly blocked by puerarin. Our results demonstrated that different phytoestrogens exhibited differential transcription activity of an ERE-reporter via ERbeta-mediated mechanisms in MG-63 cells.
Collapse
Affiliation(s)
- Xiaolu Tang
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai, 200433, People's Republic of China
| | | | | | | | | |
Collapse
|
41
|
Salvo VA, Boué SM, Fonseca JP, Elliott S, Corbitt C, Collins-Burow BM, Curiel TJ, Srivastav SK, Shih BY, Carter-Wientjes C, Wood CE, Erhardt PW, Beckman BS, McLachlan JA, Cleveland TE, Burow ME. Antiestrogenic glyceollins suppress human breast and ovarian carcinoma tumorigenesis. Clin Cancer Res 2007; 12:7159-64. [PMID: 17145841 DOI: 10.1158/1078-0432.ccr-06-1426] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We have identified the phytoalexin compounds glyceollins I, II, and III, which exhibit marked antiestrogenic effects on estrogen receptor function and estrogen-dependent tumor growth in vivo. The purpose of this study was to investigate the interactions among the induced soy phytoalexins glyceollins I, II, and III on the growth of estrogen-dependent MCF-7 breast cancer and BG-1 ovarian cancer cells implanted in ovariectomized athymic mice. EXPERIMENTAL DESIGN Four treatment groups for each cell line were used: vehicle control, 20 mg/kg/mouse/d glyceollin mixture injection, 0.72 mg estradiol (E2) implant, and E2 implant + 20 mg/kg/mouse/d glyceollin injection. RESULTS Treatment with glyceollin suppressed E2-stimulated tumor growth of MCF-7 cells (-53.4%) and BG-1 cells (-73.1%) in ovariectomized athymic mice. These tumor-inhibiting effects corresponded with significantly lower E2-induced progesterone receptor expression in the tumors. In contrast to tamoxifen, the glyceollins had no estrogen-agonist effects on uterine morphology and partially antagonized the uterotropic effects of estrogen. CONCLUSIONS These findings identify glyceollins as antiestrogenic agents that may be useful in the prevention or treatment of breast and ovarian carcinoma.
Collapse
Affiliation(s)
- Virgilo A Salvo
- Section of Hematology and Medical Oncology, Department of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brown K, Tompkins EM, Boocock DJ, Martin EA, Farmer PB, Turteltaub KW, Ubick E, Hemingway D, Horner-Glister E, White INH. Tamoxifen forms DNA adducts in human colon after administration of a single [14C]-labeled therapeutic dose. Cancer Res 2007; 67:6995-7002. [PMID: 17638912 DOI: 10.1158/0008-5472.can-07-0913] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tamoxifen is widely prescribed for the treatment of breast cancer and is also licensed in the United States for the prevention of this disease. However, tamoxifen therapy is associated with an increased occurrence of endometrial cancer in women, and there is also evidence that it may elevate the risk of colorectal cancer. The underlying mechanisms responsible for tamoxifen-induced carcinogenesis in women have not yet been elucidated, but much interest has focused on the role of DNA adduct formation. We investigated the propensity of tamoxifen to bind irreversibly to colorectal DNA when given to 10 women as a single [(14)C]-labeled therapeutic (20 mg) dose, approximately 18 h before undergoing colon resections. Using the sensitive technique of accelerator mass spectrometry, coupled with high-performance liquid chromatography separation of enzymatically digested DNA, a peak corresponding to authentic dG-N(2)-tamoxifen adduct was detected in samples from three patients, at levels ranging from 1 to 7 adducts/10(9) nucleotides. No [(14)C]-radiolabel associated with tamoxifen or its major metabolites was detected. The presence of detectable CYP3A4 protein in all colon samples suggests that this tissue has the potential to activate tamoxifen to alpha-hydroxytamoxifen, in addition to that occurring in the systemic circulation, and direct interaction of this metabolite with DNA could account for the binding observed. Although the level of tamoxifen-induced damage displayed a degree of interindividual variability, when present, it was approximately 10 to 100 times higher than that reported for other suspect human colon carcinogens such as 2-amino-1-methyl-6-phenyimidazo[4,5-b]pyridine. These findings provide a mechanistic basis through which tamoxifen could increase the incidence of colon cancers in women.
Collapse
Affiliation(s)
- Karen Brown
- Cancer Biomarkers and Prevention Group, Reproductive Sciences, Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sundar SN, Kerekatte V, Equinozio CN, Doan VB, Bjeldanes LF, Firestone GL. Indole-3-Carbinol Selectively Uncouples Expression and Activity of Estrogen Receptor Subtypes in Human Breast Cancer Cells. Mol Endocrinol 2006; 20:3070-82. [PMID: 16901971 DOI: 10.1210/me.2005-0263] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Estrogen-responsive breast cancer cells, such as MCF7 and T47D cells, express both estrogen receptor (ER)-α (ERα) and ERβ. Indole-3-carbinol (I3C) strongly down-regulated ERα protein and transcript levels, without altering the level of ERβ protein, in both cell lines. In cells transfected with the ERα promoter linked to a luciferase gene reporter, I3C ablated ERα promoter activity. Propyl pyrazole triol (PPT) is a highly selective ERα agonist, whereas, 17β-estradiol activates both ERα and ERβ. I3C treatment inhibited the PPT- and 17β-estradiol-induced proliferation of breast cancer cells, disrupted the PPT and 17β-estradiol stimulation of estrogen response element (ERE)-driven reporter plasmid activity as well as of endogenous progesterone receptor transcripts. Using an in vitro ERE binding assay, I3C was shown to inhibit the level of functional ERα and stimulated the level of ERE binding ERβ even though the protein levels of this receptor remained constant. In ERα−/ERβ+ MDA-MB-231 breast cancer cells, I3C treatment stimulated a 6-fold increase in binding of ERβ to the ERE. I3C also induced ERE- and activator protein 1-driven reporter plasmid activities in the absence of an ER agonist, suggesting that ERβ is activated in indole-treated cells. Taken together, our results demonstrate that the expression and function of ERα and ERβ can be uncoupled by I3C with a key cellular consequence being a significantly higher ERβ:ERα ratio that is generally highly associated with antiproliferative status of human breast cancer cells.
Collapse
Affiliation(s)
- Shyam N Sundar
- Department of Molecular and Cell Biology, 591 LSA, University of California at Berkeley, Berkeley, California 94720-3200 USA
| | | | | | | | | | | |
Collapse
|
44
|
Mahadevan B, Arora V, Schild LJ, Keshava C, Cate ML, Iversen PL, Poirier MC, Weston A, Pereira C, Baird WM. Reduction in tamoxifen-induced CYP3A2 expression and DNA adducts using antisense technology. Mol Carcinog 2006; 45:118-25. [PMID: 16329150 DOI: 10.1002/mc.20143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tamoxifen (TAM) is widely used in the treatment and prevention of breast cancer. There is clear evidence that cytochrome P450 (CYP) 3A enzymes play an important role in TAM metabolism, resulting in metabolites that lead to formation of TAM-DNA adducts. We have investigated the effect of CYP3A2 antisense (AVI-4472) exposure on CYP3A2 transcription, enzyme activity, translation, and TAM-DNA adducts, in livers of rats administered TAM (50 mg/kg body weight [bw]/day) for 7 days. The study design included administration of 0, 0.5, 2.5, or 12.5 mg AVI-4472/kg bw/day for 8 days, beginning 1 day before TAM exposure. The specific activity of CYP3A2 was increased after TAM administration, and decreased significantly (approximately 70%) in the presence of 12.5 mg AVI-4472. CYP3A2 protein levels, determined by immunoblot analysis, showed a similar pattern. Hepatic TAM-DNA adduct levels were measurable in all TAM-exposed groups. However, when rats were co-treated with 2.5 and 12.5 mg AVI-4472/kg bw/day, statistically significant (approximately 50%) reductions in TAM-DNA adduct levels (2.0-2.8 adducts/10(8) nucleotides) were observed compared to rats treated with TAM alone (5.1 adducts/10(8) nucleotides). Rat toxicology U34 arrays (Affymetrix) were used to investigate the modulation of gene expression patterns on co-administration of TAM with AVI-4472. Results indicated that several CYP genes were down regulated although no significant induction of CYP3A2 was observed in the TAM-exposed rats co-treated with AVI-4472. Overall the data suggest the utility of antisense technology in the redirection of TAM metabolism thereby lowering TAM genotoxicity in rat liver.
Collapse
Affiliation(s)
- Brinda Mahadevan
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev 2005; 26:898-915. [PMID: 16126938 DOI: 10.1210/er.2003-0034] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cross-regulation of Wnt/beta-catenin/Tcf ligands, kinases, and transcription factors with members of the nuclear receptor (NR) family has emerged as a clinically and developmentally important area of endocrine cell biology. Interactions between these signaling pathways result in a diverse array of cellular effects including altered cellular adhesion, tissue morphogenesis, and oncogenesis. Analyses of NR interactions with canonical Wnt signaling reveal two broad themes: Wnt/beta-catenin modulation of NRs (theme I), and ligand-dependent NR inhibition of the Wnt/beta-catenin/Tcf cascade (theme II). Beta-catenin, a promiscuous Wnt signaling member, has been studied intensively in relation to the androgen receptor (AR). Beta-catenin acts as a coactivator of AR transcription and is also involved in co-trafficking, increasing cell proliferation, and prostate pathogenesis. T cell factor, a transcriptional mediator of beta-catenin and AR, engages in a dynamic reciprocity of nuclear beta-catenin, p300/CREB binding protein, and transcriptional initiation factor 2/GC receptor-interaction protein, thereby facilitating hormone-dependent coactivation and transrepression. Beta-catenin responds in an equally dynamic manner with other NRs, including the retinoic acid (RA) receptor (RAR), vitamin D receptor (VDR), glucocorticoid receptor (GR), progesterone receptor, thyroid receptor (TR), estrogen receptor (ER), and peroxisome proliferator-activated receptor (PPAR). The NR ligands, vitamin D(3), trans/cis RA, glucocorticoids, and thiazolidines, induce dramatic changes in the physiology of cells harboring high Wnt/beta-catenin/Tcf activity. Wnt signaling regulates, directly or indirectly, developmental processes such as ductal branching and adipogenesis, two processes dependent on NR function. Beta-catenin has been intensively studied in colorectal cancer; however, it is now evident that beta-catenin may be important in cancers of the breast, prostate, and thyroid. This review will focus on the cross-regulation of AR and Wnt/beta-catenin/Tcf but will also consider the dynamic manner in which RAR/RXR, GR, TR, VDR, ER, and PPAR modulate canonical Wnt signaling. Although many commonalities exist by which NRs interact with the Wnt/beta-catenin signaling pathway, striking cell line and tissue-specific differences require deciphering and application to endocrine pathology.
Collapse
Affiliation(s)
- David J Mulholland
- Department of Molecular and Medical Pharmacology, 650 Charles E. Young Drive, Center for Health Sciences 23-234, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
46
|
Schild LJ, Phillips DH, Osborne MR, Hewer A, Beland FA, Churchwell MI, Brown K, Gaskell M, Wright E, Poirier MC. Hepatic DNA adduct dosimetry in rats fed tamoxifen: a comparison of methods. Mutagenesis 2005; 20:115-24. [PMID: 15755801 DOI: 10.1093/mutage/gei015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Liver homogenates from rats fed tamoxifen (TAM) in the diet were shared among four different laboratories. TAM-DNA adducts were assayed by high pressure liquid chromatography-electrospray tandem mass spectrometry (HPLC-ES-MS/MS), TAM-DNA chemiluminescence immunoassay (TAM-DNA CIA), and (32)P-postlabeling with either thin layer ((32)P-P-TLC) or liquid chromatography ((32)P-P-HPLC) separation. In the first study, rats were fed a diet containing 500 p.p.m. TAM for 2 months, and the values for measurements of the (E)-alpha-(deoxyguanosin-N(2)-yl)-tamoxifen (dG-N(2)-TAM) adduct in replicate rat livers varied by 3.5-fold when quantified using 'in house' TAM-DNA standards, or other approaches where appropriate. In the second study, rats were fed 0, 50, 250 or 500 p.p.m. TAM for 2 months, and TAM-DNA values were quantified using both 'in house' approaches as well as a newly synthesized [N-methyl-(3)H]TAM-DNA standard that was shared among all the participating groups. In the second study, the total TAM-DNA adduct values varied by 2-fold, while values for the dG-N(2)-TAM varied by 2.5-fold. Ratios of dG-N(2)-TAM:(E)-alpha-(deoxyguanosin-N(2)-yl)-N-desmethyltamoxifen (dG-N(2)-N-desmethyl-TAM) in the second study were approximately 1:1 over the range of doses examined. The study demonstrated a remarkably good agreement for TAM-DNA adduct measurements among the diverse methods employed.
Collapse
Affiliation(s)
- Laura J Schild
- Carcinogen-DNA Interactions Section, National Cancer Institute, Building 37, Room 4032 NIH, 37 Convent Drive MSC-4255, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
This review will be restricted to measures aimed at primary prevention of cancer; reduction of the death rate through screening will not be covered. In many instances, cancer prevention is just one outcome of the benefits of good health practices, which may also benefit cardiovascular, lung, infectious, and metabolic diseases. Thus, reducing tobacco smoking will bring benefits in heart disease, neonatal and maternal health, stroke, and peripheral vascular disease as well as a variety of cancers, while dietary advice appropriate to cancer risk reduction will bring benefits in diabetes, stroke, kidney, and heart disease.
Collapse
Affiliation(s)
- Bernard W Stewart
- The Cancer Council Australia, GPO Box 4708, Sydney NSW 2001, Australia
| | | |
Collapse
|
48
|
Núñez NP, Jelovac D, Macedo L, Berrigan D, Perkins SN, Hursting SD, Barrett JC, Brodie A. Effects of the Antiestrogen Tamoxifen and the Aromatase Inhibitor Letrozole on Serum Hormones and Bone Characteristics in a Preclinical Tumor Model for Breast Cancer. Clin Cancer Res 2004; 10:5375-80. [PMID: 15328175 DOI: 10.1158/1078-0432.ccr-04-0261] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to evaluate and compare the effects of the antiestrogen tamoxifen and the aromatase inhibitor letrozole on tumor growth, serum hormones, uterine weight, body composition, and bone characteristics in mice. EXPERIMENTAL DESIGN Human estrogen-dependent breast cancer cells stably transfected with the aromatase gene (MCF-7CA cells) were inoculated in Matrigel subcutaneously into ovariectomized nude mice. This model represents postmenopausal breast cancer in many respects, including the fact that estrogen is no longer produced by the ovaries and is not under feedback regulation by gonadotropins. Mice that received subcutaneously implanted MCF-7CA cancer cells were then treated with tamoxifen or letrozole for 7 weeks. RESULTS As reported previously, tumor growth was markedly inhibited by both tamoxifen (100 microg/day) and letrozole (10 microg/day). Tamoxifen treatment led to increased bone mineral density (BMD) and hyperplastic uteri. Mice treated with letrozole had significantly smaller uteri than the controls and tamoxifen-treated mice. Letrozole did not affect BMD. There was no significant difference in systemic leptin and insulin-like growth factor I levels as a result of tamoxifen or letrozole treatment. CONCLUSIONS Tamoxifen treatment inhibited breast cancer cell growth and increased BMD but caused uterine hypertrophy in this preclinical model of postmenopausal breast cancer. Letrozole inhibited tumor growth without inducing uterine hypertrophy. In addition, letrozole had no effect on BMD. These findings provide experimental evidence that letrozole is an effective and safe (in terms of risk of endometrial cancer risk and osteoporosis) alternative or complement to tamoxifen treatment for breast cancer.
Collapse
Affiliation(s)
- Nomelí P Núñez
- Division of Cancer Prevention, Cancer Prevention Fellowship Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland 20892-8325, USA.
| | | | | | | | | | | | | | | |
Collapse
|