1
|
Mochalova EN, Cherkasov VR, Sizikov AA, Litvinenko AV, Vorobeva TS, Norvillo NB, Gopanenko AV, Ivashchenko IA, Nikitin MP, Ivashchenko AA. Liposome-encapsulated aprotinin biodistribution in mice: Side-by-side comparison with free drug formulation. Biochem Biophys Res Commun 2024; 734:150636. [PMID: 39250873 DOI: 10.1016/j.bbrc.2024.150636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Injuries of the respiratory system caused by viral infections (e.g., by influenza virus, respiratory syncytial virus, metapneumovirus, or coronavirus) can lead to long-term complications or even life-threatening conditions. The challenges of treatment of such diseases have become particularly pronounced during the recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One promising drug is the anti-fibrinolytic and anti-inflammatory protease inhibitor aprotinin, which has demonstrated considerable inhibition of the replication of some viruses. Encapsulation of aprotinin in liposomes can significantly improve the effectiveness of the drug, however, the use of nanoparticles as carriers of aprotinin can radically change its biodistribution in the body. Here we show that the liposomal form of aprotinin accumulates more efficiently in the lungs, heart, and kidneys than the molecular form by side-by-side comparison of the ex vivo biodistribution of these two fluorescently labeled formulations in mice using bioimaging. In particular, we synthesized liposomes of different compositions and studied their accumulation in various organs and tissues. Direct comparison of the biodistributions of liposomal and free aprotinin showed that liposomes accumulated in the lungs 1.82 times more effectively, and in the heart and kidneys - 3.56 and 2.00 times, respectively. This suggests that the liposomal formulation exhibits a longer residence time in the target organ and, thus, has the potential for a longer therapeutic effect. The results reveal the great potential of the aprotinin-loaded liposomes for the treatment of respiratory system injuries and heart- and kidney-related complications of viral infections.
Collapse
Affiliation(s)
- Elizaveta N Mochalova
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia; Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991, Moscow, Russia
| | - Vladimir R Cherkasov
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St, 119991, Moscow, Russia
| | - Artem A Sizikov
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | | | - Tatiana S Vorobeva
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | - Natalia B Norvillo
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | - Alexander V Gopanenko
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia
| | - Ilya A Ivashchenko
- Moscow Institute of Physics and Technology, 1А Kerchenskaya St, 117303, Moscow, Russia
| | - Maxim P Nikitin
- Sirius University of Science and Technology, 1 Olimpiyskiy Ave, 354340, Sirius, Krasnodar region, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St, 117997, Moscow, Russia; Moscow Center for Advanced Studies, 20 Kulakova St, 123592, Moscow, Russia.
| | | |
Collapse
|
2
|
Ivachtchenko AV, Ivashchenko AA, Shkil DO, Ivashchenko IA. Aprotinin-Drug against Respiratory Diseases. Int J Mol Sci 2023; 24:11173. [PMID: 37446350 PMCID: PMC10342444 DOI: 10.3390/ijms241311173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Aprotinin (APR) was discovered in 1930. APR is an effective pan-protease inhibitor, a typical "magic shotgun". Until 2007, APR was widely used as an antithrombotic and anti-inflammatory drug in cardiac and noncardiac surgeries for reduction of bleeding and thus limiting the need for blood transfusion. The ability of APR to inhibit proteolytic activation of some viruses leads to its use as an antiviral drug for the prevention and treatment of acute respiratory virus infections. However, due to incompetent interpretation of several clinical trials followed by incredible controversy in the literature, the usage of APR was nearly stopped for a decade worldwide. In 2015-2020, after re-analysis of these clinical trials' data the restrictions in APR usage were lifted worldwide. This review discusses antiviral mechanisms of APR action and summarizes current knowledge and prospective regarding the use of APR treatment for diseases caused by RNA-containing viruses, including influenza and SARS-CoV-2 viruses, or as a part of combination antiviral treatment.
Collapse
Affiliation(s)
- Alexandre V. Ivachtchenko
- ChemDiv Inc., San Diego, CA 92130, USA; (A.A.I.); (I.A.I.)
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | | - Dmitrii O. Shkil
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | |
Collapse
|
3
|
Mertes PM, Karila C, Demoly P, Auroy Y, Ponvert C, Lucas MM, Malinovsky JM. [What is the reality of anaphylactoid reactions during anaesthesia? Classification, prevalence, clinical features, drugs involved and morbidity and mortality]. ACTA ACUST UNITED AC 2011; 30:223-39. [PMID: 21353759 DOI: 10.1016/j.annfar.2011.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- P-M Mertes
- Service d'anesthésie-réanimation chirurgicale, hôpital Central, CHU de Nancy, 29 avenue de Lattre-de-Tassigny, Nancy cedex, France.
| | | | | | | | | | | | | |
Collapse
|
4
|
Fraser IS, Porte RJ, Kouides PA, Lukes AS. A benefit-risk review of systemic haemostatic agents: part 1: in major surgery. Drug Saf 2008; 31:217-30. [PMID: 18302446 DOI: 10.2165/00002018-200831030-00003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic haemostatic agents play an important role in the management of blood loss during major surgery where significant blood loss is likely and their use has increased in recent times as a consequence of demand for blood products outstripping supply and the risks associated with transfusions. Their main application is as prophylaxis to reduce bleeding in major surgery, including cardiac and orthopaedic surgery and orthotopic liver transplantation. Aprotinin has been the predominant agent used in this setting; of the other antifibrinolytic agents that have been studied, tranexamic acid is the most effective and epsilon-aminocaproic acid may also have a role. Eptacog alfa (recombinant factor VIIa) has also shown promise. Tranexamic acid, epsilon-aminocaproic acid and eptacog alfa are generally well tolerated; however, when considering the methods to reduce or prevent blood loss intra- and postoperatively, the benefits of these agents need to be weighed against the risk of adverse events. Recently, concerns have been raised about the safety of aprotinin after an association between increased renal dysfunction and mortality was shown in retrospective observational studies and an increase in all-cause mortality with aprotinin relative to tranexamic acid or epsilon-aminocaproic acid was seen after a pre-planned periodic analysis of the large BART (Blood conservation using Antifibrinolytics in a Randomized Trial) study. The latter finding resulted in the trial being halted, and aprotinin has subsequently been withdrawn from the market pending detailed analysis of efficacy and safety results from the study. Part 1 of this benefit-risk review examines the efficacy and adverse effect profiles of systemic haemostatic agents commonly used in surgery, and provides individual benefit-risk profiles that may assist clinicians in selecting appropriate pharmacological therapy in this setting.
Collapse
Affiliation(s)
- Ian S Fraser
- Department of Obstetrics and Gynaecology, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | |
Collapse
|
5
|
|
6
|
Weber RS, Jabbour N, Martin RCG. Anemia and transfusions in patients undergoing surgery for cancer. Ann Surg Oncol 2007; 15:34-45. [PMID: 17943390 PMCID: PMC7101818 DOI: 10.1245/s10434-007-9502-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/03/2007] [Accepted: 06/05/2007] [Indexed: 12/13/2022]
Abstract
Preoperative, operative, and postoperative factors may all contribute to high rates of anemia in patients undergoing surgery for cancer. Allogeneic blood transfusion is associated with both infectious risks and noninfectious risks such as human errors, hemolytic reactions, transfusion-related acute lung injury, transfusion-associated graft-versus-host disease, and transfusion-related immune modulation. Blood transfusion may also be associated with increased risk of cancer recurrence. Blood-conservation measures such as preoperative autologous donation, acute normovolemic hemodilution, perioperative blood salvage, recombinant human erythropoietin (epoetin alfa), electrosurgical dissection, and minimally invasive surgical procedures may reduce the need for allogeneic blood transfusion in elective surgery. This review summarizes published evidence of the consequences of anemia and blood transfusion, the effects of blood storage, the infectious and noninfectious risks of blood transfusion, and the role of blood-conservation strategies for cancer patients who undergo surgery. The optimal blood-management strategy remains to be defined by additional clinical studies. Until that evidence becomes available, the clinical utility of blood conservation should be assessed for each patient individually as a component of preoperative planning in surgical oncology.
Collapse
Affiliation(s)
- Randal S Weber
- University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA.
| | | | | |
Collapse
|
7
|
Myles PS, Esmore DS. Intraoperative coronary thrombosis with aprotinin in the prebypass period. J Cardiothorac Vasc Anesth 2007; 21:558-60. [PMID: 17678784 DOI: 10.1053/j.jvca.2007.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Indexed: 11/11/2022]
Affiliation(s)
- Paul S Myles
- Department of Anaesthesia and Perioperative Medicine, Alfred Hospital, Melbourne, Australia.
| | | |
Collapse
|
8
|
Ferraris VA, Ferraris SP, Saha SP, Hessel EA, Haan CK, Royston BD, Bridges CR, Higgins RSD, Despotis G, Brown JR, Spiess BD, Shore-Lesserson L, Stafford-Smith M, Mazer CD, Bennett-Guerrero E, Hill SE, Body S. Perioperative blood transfusion and blood conservation in cardiac surgery: the Society of Thoracic Surgeons and The Society of Cardiovascular Anesthesiologists clinical practice guideline. Ann Thorac Surg 2007; 83:S27-86. [PMID: 17462454 DOI: 10.1016/j.athoracsur.2007.02.099] [Citation(s) in RCA: 615] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/21/2007] [Accepted: 02/08/2007] [Indexed: 01/24/2023]
Abstract
BACKGROUND A minority of patients having cardiac procedures (15% to 20%) consume more than 80% of the blood products transfused at operation. Blood must be viewed as a scarce resource that carries risks and benefits. A careful review of available evidence can provide guidelines to allocate this valuable resource and improve patient outcomes. METHODS We reviewed all available published evidence related to blood conservation during cardiac operations, including randomized controlled trials, published observational information, and case reports. Conventional methods identified the level of evidence available for each of the blood conservation interventions. After considering the level of evidence, recommendations were made regarding each intervention using the American Heart Association/American College of Cardiology classification scheme. RESULTS Review of published reports identified a high-risk profile associated with increased postoperative blood transfusion. Six variables stand out as important indicators of risk: (1) advanced age, (2) low preoperative red blood cell volume (preoperative anemia or small body size), (3) preoperative antiplatelet or antithrombotic drugs, (4) reoperative or complex procedures, (5) emergency operations, and (6) noncardiac patient comorbidities. Careful review revealed preoperative and perioperative interventions that are likely to reduce bleeding and postoperative blood transfusion. Preoperative interventions that are likely to reduce blood transfusion include identification of high-risk patients who should receive all available preoperative and perioperative blood conservation interventions and limitation of antithrombotic drugs. Perioperative blood conservation interventions include use of antifibrinolytic drugs, selective use of off-pump coronary artery bypass graft surgery, routine use of a cell-saving device, and implementation of appropriate transfusion indications. An important intervention is application of a multimodality blood conservation program that is institution based, accepted by all health care providers, and that involves well thought out transfusion algorithms to guide transfusion decisions. CONCLUSIONS Based on available evidence, institution-specific protocols should screen for high-risk patients, as blood conservation interventions are likely to be most productive for this high-risk subset. Available evidence-based blood conservation techniques include (1) drugs that increase preoperative blood volume (eg, erythropoietin) or decrease postoperative bleeding (eg, antifibrinolytics), (2) devices that conserve blood (eg, intraoperative blood salvage and blood sparing interventions), (3) interventions that protect the patient's own blood from the stress of operation (eg, autologous predonation and normovolemic hemodilution), (4) consensus, institution-specific blood transfusion algorithms supplemented with point-of-care testing, and most importantly, (5) a multimodality approach to blood conservation combining all of the above.
Collapse
|
9
|
|
10
|
Vuylsteke A, Saravanan P, Gerrard C, Cafferty F. The impact of administration of tranexamic acid in reducing the use of red blood cells and other blood products in cardiac surgery. BMC Anesthesiol 2006; 6:9. [PMID: 16942621 PMCID: PMC1569373 DOI: 10.1186/1471-2253-6-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 08/30/2006] [Indexed: 11/18/2022] Open
Abstract
Background To study the effect of administration of tranexamic acid on the use of blood and blood products, return to theatre for post-operative bleeding and the length of intensive care stay after primary cardiac surgery, data for 4191 patients, of all priorities, who underwent primary cardiac operation during the period between 30/10/00 and 21/09/04 were analysed. Methods Retrospective analysis of data collected prospectively during the study period. The main outcome measures were whether or not patients were transfused with red blood cells, fresh frozen plasma or any blood product, the proportion of patients returned to theatre for investigation for post-operative bleeding and length of stay in the intensive care unit. We performed univariate analysis to identify the factors influencing the outcome measures and multivariate analysis to identify the effect of administration of tranexamic acid on the outcome measures. Results Administration of tranexamic acid was an independent factor affecting the transfusion of red blood cells, fresh frozen plasma or any blood product. It was also an independent factor influencing the rate of return to theatre for exploration of bleeding. The odds of receiving a transfusion or returning to theatre for bleeding were significantly lower in patients receiving tranexamic acid. The administration of tranexamic acid also significantly decreased blood loss. We did not find any association between the administration of tranexamic acid and the length of intensive care stay. Conclusion Based on the analysis of 4191 patients who underwent a primary cardiac operation, administration of tranexamic acid decreased the number of patients exposed to a transfusion or returned to theatre for bleeding in our institute.
Collapse
Affiliation(s)
- Alain Vuylsteke
- Department of Anaesthesia, Papworth Hospital NHS Foundation Trust, Papworth Everard, Cambridgeshire, CB3 8RE, UK
| | - Palanikumar Saravanan
- Department of Anaesthesia, Papworth Hospital NHS Foundation Trust, Papworth Everard, Cambridgeshire, CB3 8RE, UK
| | - Caroline Gerrard
- Department of Anaesthesia, Papworth Hospital NHS Foundation Trust, Papworth Everard, Cambridgeshire, CB3 8RE, UK
| | - Fay Cafferty
- Research and Development Department, Papworth Hospital NHS Foundation Trust, Papworth Everard, Cambridgeshire, CB3 8RE, UK
| |
Collapse
|