1
|
Otavi S, Lad N, Shah S, Navale A, Acharya S, Kaur G, Mishra M, Tekade RK. Lipidic Nanosystem as State-of-the-Art Nanovehicle for Biomedical Applications. Indian J Microbiol 2024; 64:429-444. [PMID: 39010996 PMCID: PMC11246368 DOI: 10.1007/s12088-024-01298-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 04/29/2024] [Indexed: 07/17/2024] Open
Abstract
Lipids have tremendously transformed the biomedical field, especially in the last few decades. Nanosystems, especially Lipid nanocapsules (LNCs), have emerged as the most demanding nanovehicle systems for delivering drugs, genes, and other diagnostic agents. Unique attributes and characteristic features such as higher encapsulation efficiency, stealth effect, ability to solubilize a wide range of drugs, capability to inhibit P-gp efflux pumps, and higher stability play a vital role in engaging this nanosystem. LNCs are a lipid-based nano-drug delivery method that combines the most significant traits of liposomes with polymeric nanoparticles. Structurally, LNCs have an oily core consisting of medium and long triglycerides and an aqueous phase encased in an amphiphilic shell. This manuscript crosstalks LNCs for various biomedical applications. A detailed elaboration of the structural composition, methods of preparation, and quality control aspects has also been attained, with particular emphasis on application approaches, ongoing challenges, and their possible resolution. The manuscript also expounds the preclinical data and discusses the patents atlas of LNCs to assist biomedical scientists working in this area and foster additional research. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01298-3.
Collapse
Affiliation(s)
- Shivam Otavi
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Niyatiben Lad
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Sweety Shah
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Aniket Navale
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Sweta Acharya
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Gagandeep Kaur
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Mahima Mishra
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER), An Institute of National Importance, Ahmedabad, India
- Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Gandhinagar, 382355 Palaj, Gujarat India
| |
Collapse
|
2
|
Huang TH, Chen CJ, Lin HCA, Chen CH, Fang JY. Self-Nanoemulsifying Drug Delivery System-Containing the Poorly Absorbed Drug - Valsartan in Post-Bariatric Surgery. Int J Nanomedicine 2023; 18:2647-2658. [PMID: 37220630 PMCID: PMC10200115 DOI: 10.2147/ijn.s394624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Purpose Morbid obesity and its related metabolic syndrome are an important health issue. Recently, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) have accounted for the most popular bariatric surgeries. Valsartan (VST) is a common hypertension drug, and nano-carriers can increase its solubility and bioavailability. This study aims to explore the nano-VST formula in bariatric surgery subjects. Methods High-fat fed animals were used as obese models. Operations were performed according to a standardized protocol. The drug was administrated by gavage, and blood samples were taken by serial tail vein sampling. Caco-2 cells were used for examining cell viability and drug uptake. A self-nano-emusifying drug delivery system (SNEDDS) formula was composed of sefsol-218, RH-40 and propylene glycol by a specified ratio, while high-performance liquid chromatography (HPLC) was used for determining drug concentrations. Results Post-operatively, subjects that underwent RYGB lost more body weight compared to the SG group. The SNEDDS did not exhibit cytotoxicity after adequate dilution, and the cytotoxicity was not related to VST dose. A better cellular uptake of SNEDDS was observed in vitro. The SNEDDS formula achieved a diameter of 84 nm in distilled water and 140 nm in simulated gastric fluid. In obese animals, the maximum serum concentration (Cmax) of VST was increased 1.68-folds by SNEDDS. In RYGB with SUS, the Cmax was reduced to less than 50% of the obese group. SNEDDS increased the Cmax to 3.5 folds higher than SUS and resulted in 3.28-folds higher AUC0-24 in the RYGB group. Fluorescence imaging also confirmed a stronger signal of SNEDDS in the gastrointestinal mucosa. SNEDDS accumulated a higher drug concentration than suspension alone in the liver of the obese group. Conclusion SNEDDS could reverse the VST malabsorption in RYGB. Further studies are mandatory to clarify post-SG change of drug absorption.
Collapse
Affiliation(s)
- Tzu-Hao Huang
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Chia Angela Lin
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
3
|
Lu Y, Shi Y, Wu Q, Sun X, Zhang WZ, Xu XL, Chen W. An Overview of Drug Delivery Nanosystems for Sepsis-Related Liver Injury Treatment. Int J Nanomedicine 2023; 18:765-779. [PMID: 36820059 PMCID: PMC9938667 DOI: 10.2147/ijn.s394802] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
Sepsis, which is a systemic inflammatory response syndrome caused by infection, has high morbidity and mortality. Sepsis-related liver injury is one of the manifestations of sepsis-induced multiple organ syndrome. To date, an increasing number of studies have shown that the hepatic inflammatory response, oxidative stress, microcirculation coagulation dysfunction, and bacterial translocation play extremely vital roles in the occurrence and development of sepsis-related liver injury. In the clinic, sepsis-related liver injury is mainly treated by routine empirical methods on the basis of the primary disease. However, these therapies have some shortcomings, such as serious side effects, short duration of drug effects and lack of specificity. The emergence of drug delivery nanosystems can significantly improve drug bioavailability and reduce toxic side effects. In this paper, we reviewed drug delivery nanosystems designed for the treatment of sepsis-related liver injury according to their mechanisms (hepatic inflammation response, oxidative stress, coagulation dysfunction in the microcirculation, and bacterial translocation). Although much promising progress has been achieved, translation into clinical practice is still difficult. To this end, we also discussed the key issues currently facing this field, including immune system rejection and single treatment modalities. Finally, with the rigorous optimization of nanotechnology and the deepening of research, drug delivery nanosystems have great potential for the treatment of sepsis-related liver injury.
Collapse
Affiliation(s)
- Yi Lu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yi Shi
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qian Wu
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xin Sun
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Wei-Zhen Zhang
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, People’s Republic of China,Xiao-Ling Xu, Shulan International Medical College, Zhejiang Shuren University, 8 Shuren Street, Hangzhou, 310015, People’s Republic of China, Email
| | - Wei Chen
- ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Correspondence: Wei Chen, ICU, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, People’s Republic of China, Tel +86-21-64385700-3522, Email
| |
Collapse
|
4
|
Kong H, Ju E, Yi K, Xu W, Lao Y, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102051. [PMID: 34665528 PMCID: PMC8693080 DOI: 10.1002/advs.202102051] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Liver disease, particularly viral hepatitis and hepatocellular carcinoma (HCC), is a global healthcare burden and leads to more than 2 million deaths per year worldwide. Despite some success in diagnosis and vaccine development, there are still unmet needs to improve diagnostics and therapeutics for viral hepatitis and HCC. The emerging clustered regularly interspaced short palindromic repeat/associated proteins (CRISPR/Cas) technology may open up a unique avenue to tackle these two diseases at the genetic level in a precise manner. Especially, liver is a more accessible organ over others from the delivery point of view, and many advanced strategies applied for nanotheranostics can be adapted in CRISPR-mediated diagnostics or liver gene editing. In this review, the focus is on these two aspects of viral hepatitis and HCC applications. An overview on CRISPR editor development and current progress in clinical trials is first given, followed by highlighting the recent advances integrating the merits of gene editing and nanotheranostics. The promising systems that are used in other applications but may hold potentials in liver gene editing are also discussed. This review concludes with the perspectives on rationally designing the next-generation CRISPR approaches and improving the editing performance.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Ke Yi
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia University3960 Broadway Lasker Room 450New YorkNY10032USA
| | - Du Cheng
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen University135 Xingangxi RoadGuangzhou510275P. R. China
| | - Qi Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
5
|
The Emerging Role of Nanomedicine in the Management of Nonalcoholic Fatty Liver Disease: A State-of-the-Art Review. Bioinorg Chem Appl 2021; 2021:4041415. [PMID: 34659388 PMCID: PMC8519727 DOI: 10.1155/2021/4041415] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that can lead to end-stage liver disease needing a liver transplant. Many pharmacological approaches are used to reduce the disease progression in NAFLD. However, current strategies remain ineffective to reverse the progression of NAFLD completely. Employing nanoparticles as a drug delivery system has demonstrated significant potential for improving the bioavailability of drugs in the treatment of NAFLD. Various types of nanoparticles are exploited in this regard for the management of NAFLD. In this review, we cover the current therapeutic approaches to manage NAFLD and provide a review of recent up-to-date advances in the uses of nanoparticles for the treatment of NAFLD.
Collapse
|
6
|
Böttger R, Pauli G, Chao PH, AL Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155:79-101. [PMID: 32574575 DOI: 10.1016/j.addr.2020.06.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/26/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Liver diseases such as hepatitis, cirrhosis, and hepatocellular carcinoma are global health problems accounting for approximately 800 million cases and over 2 million deaths per year worldwide. Major drawbacks of standard pharmacological therapies are the inability to deliver a sufficient concentration of a therapeutic agent to the diseased liver, and nonspecific drug delivery leading to undesirable systemic side effects. Additionally, depending on the specific liver disease, drug delivery to a subset of liver cells is required. In recent years, lipid nanoparticles have been developed to passively and actively target drugs to the liver. The success of this approach has been highlighted by the FDA-approval of the first liver-targeting lipid nanoparticle, ONPATTRO, in 2018 and many other promising candidate technologies are expected to follow. This review summarizes recent developments of various lipid-based liver-targeting technologies, namely solid-lipid nanoparticles, liposomes, niosomes and micelles, and discusses the challenges and future perspectives in this field.
Collapse
|
7
|
Huang X, Chau Y. Intravitreal nanoparticles for retinal delivery. Drug Discov Today 2019; 24:1510-1523. [DOI: 10.1016/j.drudis.2019.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/17/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
|
8
|
Liu P, Wang L, DuBois BG, Colandrea VJ, Liu R, Cai J, Du X, Quan W, Morris W, Bai J, Bishwokarma B, Cheng M, Piesvaux J, Ray K, Alpert C, Chiu CS, Zielstorff M, Metzger JM, Yang L, Leung D, Alleyne C, Vincent SH, Pucci V, Li X, Crespo A, Stickens D, Hale JJ, Ujjainwalla F, Sinz CJ. Discovery of Orally Bioavailable and Liver-Targeted Hypoxia-Inducible Factor Prolyl Hydroxylase (HIF-PHD) Inhibitors for the Treatment of Anemia. ACS Med Chem Lett 2018; 9:1193-1198. [PMID: 30613325 DOI: 10.1021/acsmedchemlett.8b00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
We report herein the design and synthesis of a series of orally active, liver-targeted hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitors for the treatment of anemia. In order to mitigate the concerns for potential systemic side effects, we pursued liver-targeted HIF-PHD inhibitors relying on uptake via organic anion transporting polypeptides (OATPs). Starting from a systemic HIF-PHD inhibitor (1), medicinal chemistry efforts directed toward reducing permeability and, at the same time, maintaining oral absorption led to the synthesis of an array of structurally diverse hydroxypyridone analogues. Compound 28a was chosen for further profiling, because of its excellent in vitro profile and liver selectivity. This compound significantly increased hemoglobin levels in rats, following chronic QD oral administration, and displayed selectivity over systemic effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaqiang Cai
- WuXi PharmaTech, No. 1 Building, 288 Fute Zhong Road, WaiGaoQiao Free Trade Zone, Shanghai 200131, China
| | - Xiaoxing Du
- WuXi PharmaTech, No. 1 Building, 288 Fute Zhong Road, WaiGaoQiao Free Trade Zone, Shanghai 200131, China
| | - Weiguo Quan
- WuXi PharmaTech, No. 1 Building, 288 Fute Zhong Road, WaiGaoQiao Free Trade Zone, Shanghai 200131, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Redox-responsive polymer inhibits macrophages uptake for effective intracellular gene delivery and enhanced cancer therapy. Colloids Surf B Biointerfaces 2018; 175:392-402. [PMID: 30554018 DOI: 10.1016/j.colsurfb.2018.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/09/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Abstract
The development of advanced gene delivery carriers with stimuli-responsive release manner for tumor therapeutics is desirable, since they can exclusively release the therapeutic gene via their structural changes in response to the specific stimuli of the target site. Moreover, interactions between macrophages and drug delivery systems (DDSs) seriously impair the treatment efficiency of DDSs, thus macrophages uptake inhibition would to some extent improve the intracellular uptake of DDSs in tumor cells. Herein, a PEGylated redox-responsive gene delivery system was developed for effective cancer therapy. PEG modified glycolipid-like polymer (P-CSSO) was electrostatic interacted with p53 to form P-CSSO/p53 complexes, which exhibited an enhanced redox sensitivity in that the disulfide bond was degraded and the rate the plasmid released from P-CSSO was 2.29-fold that of nonresponsive platform (P-CSO-SA) in 10 mM levels of glutathione (GSH). PEGylation could significantly weaken macrophages uptake, while enhance the accumulation of P-CSSO in tumor cells both in vitro and in vivo. Compared with nonresponsive complexes (P-CSO-SA/p53) (59.2%) and Lipofectamine™ 2000/p53 complexes (52.0%), the tumor inhibition rate of P-CSSO/p53 complexes (77.1%) significantly increased, which was higher than CSSO/p53 complexes (69.9%). The present study indicates that tumor microenvironment sensitive and macrophages uptake suppressive P-CSSO/p53 is a powerful in vivo gene delivery system for enhanced anticancer therapy.
Collapse
|
10
|
Tatematsu K, Iijima M, Yoshimoto N, Nakai T, Okajima T, Kuroda S. Bio-nanocapsules displaying various immunoglobulins as an active targeting-based drug delivery system. Acta Biomater 2016; 35:238-47. [PMID: 26876802 DOI: 10.1016/j.actbio.2016.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/26/2016] [Accepted: 02/08/2016] [Indexed: 01/05/2023]
Abstract
The bio-nanocapsule (BNC) is an approximately 30-nm particle comprising the hepatitis B virus (HBV) envelope L protein and a lipid bilayer. The L protein harbors the HBV-derived infection machinery; therefore, BNC can encapsulate payloads such as drugs, nucleic acids, and proteins and deliver them into human hepatocytes specifically in vitro and in vivo. To diversify the possible functions of BNC, we generated ZZ-BNC by replacing the domain indispensable for the human hepatotrophic property of BNC (N-terminal region of L protein) with the tandem form of the IgG Fc-binding Z domain of Staphylococcus aureus protein A. Thus, the ZZ-BNC is an active targeting-based drug delivery system (DDS) nanocarrier that depends on the specificity of the IgGs displayed. However, the Z domain limits the animal species and subtypes of IgGs that can be displayed on ZZ-BNC. In this study, we introduced into BNC an Ig κ light chain-binding B1 domain of Finegoldia magna protein L (protein-L B1 domain) and an Ig Fc-binding C2 domain of Streptococcus species protein G (protein-G C2 domain) to produce LG-BNC. The LL-BNC was constructed in a similar way using a tandem form of the protein-L B1 domain. Both LG-BNC and LL-BNC could display rat IgGs, mouse IgG1, human IgG3, and human IgM, all of which not binding to ZZ-BNC, and accumulate in target cells in an antibody specificity-dependent manner. Thus, these BNCs could display a broad spectrum of Igs, significantly improving the prospects for BNCs as active targeting-based DDS nanocarriers. STATEMENT OF SIGNIFICANCE We previously reported that ZZ-BNC, bio-nanocapsule deploying the IgG-binding Z domain of protein A, could display cell-specific antibody in an oriented immobilization manner, and act as an active targeting-based DDS nanocarrier. Since the Z domain can only bind to limited types of Igs, we generated BNCs deploying other Ig-binding domains: LL-BNC harboring the tandem form of Ig-binding domain of protein L, and LG-BNC harboring the Ig binding domains of protein L and protein G sequentially. Both BNCs could display a broader spectrum of Igs than does the ZZ-BNC. When these BNCs displayed anti-CD11c IgG or anti-EGFR IgG, both of which cannot bind to Z domain, they could bind to and then enter their respective target cells.
Collapse
|
11
|
Lin Y, Li Z, Wang T, Wang X, Wang L, Dong W, Jing C, Yang X. MAR characteristic motifs mediate episomal vector in CHO cells. Gene 2015; 559:137-43. [DOI: 10.1016/j.gene.2015.01.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 01/24/2023]
|
12
|
Cuestas ML, Oubiña JR, Mathet VL. Hepatocellular carcinoma and multidrug resistance: Past, present and new challenges for therapy improvement. World J Pharmacol 2015; 4:96-116. [DOI: 10.5497/wjp.v4.i1.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/02/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent form of liver cancer and the third most common cause of cancer-related death in the world. The main risk factor worldwide for this type of malignancy is chronic hepatitis caused by hepatitis B virus and hepatitis C virus infections. Advances in early detection and treatment have improved life expectancy of patients with HCC. However, this disorder remains as a disease with poor prognosis. In fact, epidemiological studies have revealed that there is an 8-mo median survival rate in patients, approximately 20% of whom survive one year while only 5% remain alive after three years. Additionally, HCC is particularly difficult to treat because of its high recurrence rate, and its resistance to conventional chemotherapy is due, among other mechanisms, to several members of the ATP-Binding Cassette protein family involved in drug transport being overexpressed. Fortunately, there is evidence that these patients may benefit from alternative molecular-targeted therapies. This manuscript intends to provide further insight into the etiology and molecular mechanisms related to HCC development and the latest therapeutic approaches to treat this malignancy. The development of effective delivery systems of antitumor drugs able to target the liver parenchyma is also assessed. Finally, the prospects in the development of more efficient drug therapies to overcome multidrug resistance are also examined.
Collapse
|
13
|
Wu X, Lin B, Yu M, Yang L, Han J, Han S. A carbohydrate-grafted nanovesicle with activatable optical and acoustic contrasts for dual modality high performance tumor imaging. Chem Sci 2015; 6:2002-2009. [PMID: 28706650 PMCID: PMC5496387 DOI: 10.1039/c4sc03641g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/22/2014] [Indexed: 12/23/2022] Open
Abstract
Activatable molecular systems enabling precise tumor localization are valuable for complete tumor resection. Herein, we report sialic acid-capped polymeric nanovesicles encapsulating the near infrared profluorophore (pNIR@P@SA) for lysosome activation based dual modality tumor imaging. The probe features surface-anchored sialic acid for tumor targeting and a core of near infrared profluorophore (pNIR) which undergoes lysosomal acidity triggered isomerization to give optical and optoacoustic signals upon cell internalization. Imaging studies reveal high-efficiency uptake and signal activation of pNIR@P@SA in subcutaneous tumors and millimeter-sized liver tumor foci in mice. The high tumor-to-healthy organ signal contrasts and discernment of tiny liver tumors from normal liver tissues validate the potential of pNIR@P@SA for high performance optical and optoacoustic imaging guided tumor resection.
Collapse
Affiliation(s)
- Xuanjun Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , Innovation Center for Cell Biology, and Department of Chemical Biology , College of Chemistry and Chemical Engineering Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Bijuan Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , Innovation Center for Cell Biology, and Department of Chemical Biology , College of Chemistry and Chemical Engineering Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Mingzhu Yu
- State Key Laboratory for Physical Chemistry of Solid Surfaces , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , Innovation Center for Cell Biology, and Department of Chemical Biology , College of Chemistry and Chemical Engineering Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Liu Yang
- State Key Laboratory for Physical Chemistry of Solid Surfaces , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , Innovation Center for Cell Biology, and Department of Chemical Biology , College of Chemistry and Chemical Engineering Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology , Innovation Center for Cell Biology , School of Life Sciences , Xiamen University , Xiamen , 361005 , China
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation , Innovation Center for Cell Biology, and Department of Chemical Biology , College of Chemistry and Chemical Engineering Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| |
Collapse
|
14
|
Wang H, Thorling CA, Liang X, Bridle KR, Grice JE, Zhu Y, Crawford DHG, Xu ZP, Liu X, Roberts MS. Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. J Mater Chem B 2015; 3:939-958. [PMID: 32261972 DOI: 10.1039/c4tb01611d] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liver diseases, particularly viral hepatitis, cirrhosis and hepatocellular carcinoma, are common in clinical practice with high morbidity and mortality worldwide. Many substances for diagnostic imaging and therapy of liver diseases may have either severe adverse effects or insufficient effectiveness in vivo because of their nonspecific uptake. Therefore, by targeting the delivery of drugs into the liver or specific liver cells, drug efficiency may be largely improved. This review summarizes the up-to-date research progress focusing on nanoparticles targeting the liver for both diagnostic and therapeutic purposes. Targeting strategies, mechanisms of enhanced effects, and clinical applications of nanoparticles are discussed specifically. We believe that new targeting nanotechnology such as nanoprobes for multi-modality imaging and multifunctional nanoparticles would facilitate significant advancements in this active research area in the near future.
Collapse
Affiliation(s)
- Haolu Wang
- Therapeutics Research Centre, School of Medicine, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu X, Tian Y, Yu M, Lin B, Han J, Han S. A fluorescently labelled sialic acid for high performance intraoperative tumor detection. Biomater Sci 2014; 2:1120-1127. [PMID: 32482007 DOI: 10.1039/c4bm00028e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surgical resection is widely used for tumor treatment, necessitating approaches for the precise locating of elusive tumor foci. We report the high performance detection of tumors in mice with fluorescein-isothiocyanate (FITC) labelled sialic acid (FITC-SA), a fluorescent monosaccharide with low cytoxicity. Analysis of mice intravenously injected with FITC-SA revealed high target-to-background fluorescence ratios in subcutaneous tumors and liver tumor implants with 0.2-5 mm diameters, which are significantly below the clinical threshold of minimal residual cancer (∼1 cm clearance). Extracellular FITC-SA is quickly cleared from circulation whereas the intracellular FITC-SA could be metabolically incorporated into glycoproteins via a cellular sialylation pathway. Compared with FITC-SA-laden nanoparticles, free FITC-SA is preferentially and quickly taken up by tumors in mice and displays high tumor-to-background signal contrast, suggesting the potential for fluorescence directed surgical ablation of tumors.
Collapse
Affiliation(s)
- Xuanjun Wu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Biology, Xiamen University, Xiamen, 361005, China.
| | | | | | | | | | | |
Collapse
|
16
|
Wu X, Tian Y, Yu M, Han J, Han S. A targetable acid-responsive micellar system for signal activation based high performance surgical resolution of tumors. Biomater Sci 2014; 2:972-979. [DOI: 10.1039/c4bm00007b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High-performance illumination of subcutaneous tumor and liver tumor foci at sub-millimeter levels was achieved with lectin-targeted glyco-micelles which become fluorescent upon internalization into tumor lysosomes.
Collapse
Affiliation(s)
- Xuanjun Wu
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- The Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- and Innovation Center for Cell Biology
| | - Yunpeng Tian
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- The Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- and Innovation Center for Cell Biology
| | - Mingzhu Yu
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- The Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- and Innovation Center for Cell Biology
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology
- Innovation Center for Cell Biology
- School of Life Sciences
- Xiamen University
- Xiamen, China
| | - Shoufa Han
- Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- The Key Laboratory for Chemical Biology of Fujian Province
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation
- and Innovation Center for Cell Biology
| |
Collapse
|
17
|
Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev 2013; 42:7289-325. [DOI: 10.1039/c3cs60048c] [Citation(s) in RCA: 752] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Murata M, Narahara S, Umezaki K, Toita R, Tabata S, Piao JS, Abe K, Kang JH, Ohuchida K, Cui L, Hashizume M. Liver cell specific targeting by the preS1 domain of hepatitis B virus surface antigen displayed on protein nanocages. Int J Nanomedicine 2012; 7:4353-62. [PMID: 22927755 PMCID: PMC3420599 DOI: 10.2147/ijn.s31365] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Indexed: 02/06/2023] Open
Abstract
Protein nanocages are self-organized complexes of oligomers whose three-dimensional architecture can been determined in detail. These structures possess nanoscale inner cavities into which a variety of molecules, including therapeutic or diagnostic agents, can be encapsulated. These properties yield these particles suitable for a new class of drug delivery carrier, or as a bioimaging reagent that might respond to biochemical signals in many different cellular processes. We report here the design, synthesis, and biological characterization of a hepatocyte-specific nanocage carrying small heat-shock protein. These nanoscale protein cages, with a targeting peptide composed of a preS1 derivative from the hepatitis B virus on their surfaces, were prepared by genetic engineering techniques. PreS1-carrying nanocages showed lower cytotoxicity and significantly higher specificity for human hepatocyte cell lines than other cell lines in vitro. These results suggested that small heat-shock protein-based nanocages present great potential for the development of effective targeted delivery of various agents to specific cells.
Collapse
Affiliation(s)
- Masaharu Murata
- Department of Advanced Medical Initiatives, Faculty of Medical Science, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Symens N, Méndez-Ardoy A, Díaz-Moscoso A, Sánchez-Fernández E, Remaut K, Demeester J, Fernández JMG, De Smedt SC, Rejman J. Efficient Transfection of Hepatocytes Mediated by mRNA Complexed to Galactosylated Cyclodextrins. Bioconjug Chem 2012; 23:1276-89. [DOI: 10.1021/bc3001003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nathalie Symens
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Alejandro Méndez-Ardoy
- Departamento de Química
Organica, Universidad de Sevilla, c/ Profesor Garcia Gonzalez 1, E-41012 Sevilla, Spain
| | - Alejandro Díaz-Moscoso
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo 49, Isla
de Cartuja, E-41092 Sevilla, Spain
| | - Elena Sánchez-Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo 49, Isla
de Cartuja, E-41092 Sevilla, Spain
| | - Katrien Remaut
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Joseph Demeester
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - José M. García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Américo 49, Isla
de Cartuja, E-41092 Sevilla, Spain
| | - Stefaan C. De Smedt
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Joanna Rejman
- Laboratory
of General Biochemistry
and Physical Pharmacy, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| |
Collapse
|
20
|
Kaneda Y. Virosome: a novel vector to enable multi-modal strategies for cancer therapy. Adv Drug Deliv Rev 2012; 64:730-8. [PMID: 21443915 DOI: 10.1016/j.addr.2011.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/22/2011] [Accepted: 03/20/2011] [Indexed: 01/11/2023]
Abstract
Despite advancements in treatments, cancer remains a life-threatening disease that is resistant to therapy. Single-modal cancer therapy is often insufficient to provide complete remission. A revolution in cancer therapy may someday be provided by vector-based gene and drug delivery systems. However, it remains difficult to achieve this aim because viral and non-viral vectors have their own advantages and limitations. To overcome these limitations, virosomes have been constructed by combining viral components with non-viral vectors or by using pseudovirions without viral genome replication. Viruses, such as influenza virus, HVJ (hemagglutinating virus of Japan; Sendai virus) and hepatitis B virus, have been used in the construction of virosomes. The HVJ-derived vector is particularly promising due to its highly efficient delivery of DNA, siRNA, proteins and anti-cancer drugs. Furthermore, the HVJ envelope (HVJ-E) vector has intrinsic anti-tumor activities including the activation of multiple anti-tumor immunities and the induction of cancer-selective apoptosis. HVJ-E is currently being clinically used for the treatment of melanoma. A promising multi-modal cancer therapy will be achieved when virosomes with intrinsic anti-tumor activities are utilized as vectors for the delivery of anti-tumor drugs and genes.
Collapse
Affiliation(s)
- Yasufumi Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
21
|
Li Z, Song Y, Yang Y, Yang L, Huang X, Han J, Han S. Rhodamine-deoxylactam functionalized poly[styrene-alter-(maleic acid)]s as lysosome activatable probes for intraoperative detection of tumors. Chem Sci 2012. [DOI: 10.1039/c2sc20733h] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
22
|
Wang Y, Jiang G, Qiu T, Ding F. Preparation and evaluation of paclitaxel-loaded nanoparticle incorporated with galactose-carrying polymer for hepatocyte targeted delivery. Drug Dev Ind Pharm 2011; 38:1039-46. [DOI: 10.3109/03639045.2011.637052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Oballa RM, Belair L, Black WC, Bleasby K, Chan CC, Desroches C, Du X, Gordon R, Guay J, Guiral S, Hafey MJ, Hamelin E, Huang Z, Kennedy B, Lachance N, Landry F, Li CS, Mancini J, Normandin D, Pocai A, Powell DA, Ramtohul YK, Skorey K, Sørensen D, Sturkenboom W, Styhler A, Waddleton DM, Wang H, Wong S, Xu L, Zhang L. Development of a Liver-Targeted Stearoyl-CoA Desaturase (SCD) Inhibitor (MK-8245) to Establish a Therapeutic Window for the Treatment of Diabetes and Dyslipidemia. J Med Chem 2011; 54:5082-96. [DOI: 10.1021/jm200319u] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Patil RR, Yu J, Banerjee SR, Ren Y, Leong D, Jiang X, Pomper M, Tsui B, Kraitchman DL, Mao HQ. Probing in vivo trafficking of polymer/DNA micellar nanoparticles using SPECT/CT imaging. Mol Ther 2011; 19:1626-35. [PMID: 21750533 DOI: 10.1038/mt.2011.128] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Successful translation of nonviral gene delivery to therapeutic applications requires detailed understanding of in vivo trafficking of the vehicles. This report compares the pharmacokinetic and biodistribution profiles of polyethylene glycol-b-polyphosphoramidate (PEG-b-PPA)/DNA micellar nanoparticles after administration through intravenous infusion, intrabiliary infusion, and hydrodynamic injection using single photon emission computed tomography/computed tomography (SPECT/CT) imaging. Nanoparticles were labeled with (111)In using an optimized protocol to retain their favorable physicochemical properties. Quantitative imaging analysis revealed different in vivo trafficking kinetics for PEG-b-PPA/DNA nanoparticles after different routes of administration. The intrabiliary infusion resulted in the highest liver uptake of micelles compared with the other two routes. Analysis of intrabiliary infusion by the two-compartment pharmacokinetic modeling revealed efficient retention of micelles in the liver and minimal micelle leakage from the liver to the blood stream. This study demonstrates the utility of SPECT/CT as an effective noninvasive imaging modality for the characterization of nanoparticle trafficking in vivo and confirms that intrabiliary infusion is an effective route for liver-targeted delivery of DNA-containing nanoparticles.
Collapse
Affiliation(s)
- Rajesh R Patil
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pugh S, McKenna R, Moolick R, Nielsen DR. Advances and opportunities at the interface between microbial bioenergy and nanotechnology. CAN J CHEM ENG 2010. [DOI: 10.1002/cjce.20434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Buse J, El-Aneed A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine (Lond) 2010; 5:1237-60. [DOI: 10.2217/nnm.10.107] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Lipid-based drug-delivery systems have evolved from micro- to nano-scale, enhancing the efficacy and therapeutic applications of these delivery systems. Production of lipid-based pharmaceutical nanoparticles is categorized into top-down (fragmentation of particulate material to reduce its average total dimensions) and bottom-up (amalgamation of molecules through chemical interactions creating particles of greater size) production methods. Selection of the appropriate method depends on the physiochemical properties of individual entities within the nanoparticles. The production method also influences the type of nanoparticle formulations being produced. Liposomal formulations and solid-core micelles are the most widely utilized lipid-based nanoparticles, with surface modifications improving their therapeutic outcomes through the production of long-circulating, tissue-targeted and/or pH-sensitive nanoparticles. More recently, solid lipid nanoparticles have been engineered to reduce toxicity toward mammalian cells, while multifunctional lipid-based nanoparticles (i.e., hybrid lipid nanoparticles) have been formulated to simultaneously perform therapeutic and diagnostic functions. This article will discuss novel lipid-based drug-delivery systems, outlining the properties and applications of lipid-based nanoparticles alongside their methods of production. In addition, a comparison between generations of the lipid-based nano-formulations is examined, providing insight into the current directions of lipid-based nanoparticle drug-delivery systems.
Collapse
Affiliation(s)
- Joshua Buse
- Drug Design & Discover Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N5C9, Canada
| | | |
Collapse
|
27
|
Viola JR, El-Andaloussi S, Oprea II, Smith CIE. Non-viral nanovectors for gene delivery: factors that govern successful therapeutics. Expert Opin Drug Deliv 2010; 7:721-35. [DOI: 10.1517/17425241003716810] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Cuestas ML, Mathet VL, Oubiña JR, Sosnik A. Drug delivery systems and liver targeting for the improved pharmacotherapy of the hepatitis B virus (HBV) infection. Pharm Res 2010; 27:1184-202. [PMID: 20333454 DOI: 10.1007/s11095-010-0112-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/01/2010] [Indexed: 12/17/2022]
Abstract
In spite of the progress made in vaccine and antiviral therapy development, hepatitis B virus (HBV) infection is still the most common cause of liver cirrhosis and hepatocellular carcinoma, with more than 400 million people chronically infected worldwide. Antiviral therapy with nucleos(t)ide analogues and/or immunomodulating peptides is the only option to control and prevent the progression of the disease in chronic hepatitis B (CHB)-infected patients. So far, the current antiviral monotherapy remains unsatisfactory because of the low efficacy and the development of drug resistance mutants. Moreover, viral rebound is frequently observed following therapy cessation, since covalent closed circular DNA (cccDNA) is not removed from hepatocytes by antiviral therapy. First, this review describes the current pharmacotherapy for the management of CHB and the new drug candidates being investigated. Then, the challenges in the development of drug delivery systems for the targeting of antiviral drugs to the liver parenchyma are discussed. Finally, perspectives in the design of a more efficient pharmacotherapy to eradicate the virus from the host are addressed.
Collapse
Affiliation(s)
- María L Cuestas
- Centro para el Estudio de Hepatitis Virales, Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Piso 11 (1121), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
29
|
Look M, Bandyopadhyay A, Blum JS, Fahmy TM. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev 2010; 62:378-93. [PMID: 19922750 DOI: 10.1016/j.addr.2009.11.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/14/2009] [Indexed: 12/31/2022]
Abstract
There is an urgent need for new strategies to combat infectious diseases in developing countries. Many pathogens have evolved to elude immunity and this has limited the utility of current therapies. Additionally, the emergence of co-infections and drug resistant pathogens has increased the need for advanced therapeutic and diagnostic strategies. These challenges can be addressed with therapies that boost the quality and magnitude of an immune response in a predictable, designable fashion that can be applied for wide-spread use. Here, we discuss how biomaterials and specifically nanoscale delivery vehicles can be used to modify and improve the immune system response against infectious diseases. Immunotherapy of infectious disease is the enhancement or modulation of the immune system response to more effectively prevent or clear pathogen infection. Nanoscale vehicles are particularly adept at facilitating immunotherapeutic approaches because they can be engineered to have different physical properties, encapsulated agents, and surface ligands. Additionally, nanoscaled point-of-care diagnostics offer new alternatives for portable and sensitive health monitoring that can guide the use of nanoscale immunotherapies. By exploiting the unique tunability of nanoscale biomaterials to activate, shape, and detect immune system effector function, it may be possible in the near future to generate practical strategies for the prevention and treatment of infectious diseases in the developing world.
Collapse
|
30
|
Zhong Q, Chinta DMD, Pamujula S, Wang H, Yao X, Mandal TK, Luftig RB. Optimization of DNA delivery by three classes of hybrid nanoparticle/DNA complexes. J Nanobiotechnology 2010; 8:6. [PMID: 20181278 PMCID: PMC2838804 DOI: 10.1186/1477-3155-8-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 02/24/2010] [Indexed: 01/16/2023] Open
Abstract
Plasmid DNA encoding a luciferase reporter gene was complexed with each of six different hybrid nanoparticles (NPs) synthesized from mixtures of poly (D, L-lactide-co-glycolide acid) (PLGA 50:50) and the cationic lipids DOTAP (1, 2-Dioleoyl-3-Trimethyammonium-Propane) or DC-Chol {3β-[N-(N', N'-Dimethylaminoethane)-carbamyl] Cholesterol}. Particles were 100-400 nm in diameter and the resulting complexes had DNA adsorbed on the surface (out), encapsulated (in), or DNA adsorbed and encapsulated (both). A luciferase reporter assay was used to quantify DNA expression in 293 cells for the uptake of six different NP/DNA complexes. Optimal DNA delivery occurred for 105 cells over a range of 500 ng - 10 μg of NPs containing 20-30 μg DNA per 1 mg of NPs. Uptake of DNA from NP/DNA complexes was found to be 500-600 times as efficient as unbound DNA. Regression analysis was performed and lines were drawn for DNA uptake over a four week interval. NP/DNA complexes with adsorbed NPs (out) showed a large initial uptake followed by a steep slope of DNA decline and large angle of declination; lines from uptake of adsorbed and encapsulated NPs (both) also exhibited a large initial uptake but was followed by a gradual slope of DNA decline and small angle of declination, indicating longer times of luciferase expression in 293 cells. NPs with encapsulated DNA only (in), gave an intermediate activity. The latter two effects were best seen with DOTAP-NPs while the former was best seen with DC-Chol-NPs. These results provide optimal conditions for using different hybrid NP/DNA complexes in vitro and in the future, will be tested in vivo.
Collapse
Affiliation(s)
- Qiu Zhong
- Department of Microbiology Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Chapter 8 - Bio-nanocapsule-liposome conjugates for in vivo pinpoint drug and gene delivery. Methods Enzymol 2009; 464:147-66. [PMID: 19903554 DOI: 10.1016/s0076-6879(09)64008-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A bio-nanocapsule (BNC) is an ~50-nm hepatitis B virus (HBV) subviral particle comprising HBV envelope L proteins and a lipid bilayer, and is synthesized in recombinant Saccharomyces cerevisiae. When BNCs are administered intravenously in a mouse xenograft model, they can accumulate specifically in human liver-derived tissues and enter cells efficiently by the HBV-derived human liver-specific infection machinery, localized at the outer-membrane pre-S region of the L protein. BNC specificity for the human liver can be altered to other tissues by substituting the pre-S region using targeting molecules (e.g., antibodies, lectins, cytokines). BNCs can spontaneously form complexes with liposomes (LPs) by the membrane fusogenic activity of the pre-S region. LPs containing various therapeutic materials (e.g., chemicals, proteins, DNA, RNA) can therefore be covered with BNCs to form an ~150-nm BNC-LP conjugate. BNC-LP conjugates injected intravenously can deliver incorporated materials to target tissues specifically and efficiently by utilizing the HBV-derived infection machinery. The stability of BNC-LP conjugates in the blood circulation is similar to that of PEGylated LPs. In this chapter, we describe the preparation and in vivo application of BNC-LP conjugates, and the potential of BNC-LP conjugates as in vivo pinpoint drug delivery systems.
Collapse
|