1
|
Zhong Y, Zhang J, Fang L, Cheang UK. MOF-Modified Microrollers for Bioimaging and Sustained Antibiotic Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47163-47177. [PMID: 39196769 DOI: 10.1021/acsami.4c08535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Central nervous system (CNS) infections caused by neurosurgery or intrathecal injection of contaminated cerebrospinal fluid are a common and difficult complication. Drug-delivery microrobots are among the latest solutions proposed for antibacterial applications. However, there is a lack of research into developing microrobots with the ability to sustain antibody delivery while can move efficiently in the CNS. Here, biocompatible antibacterial metal-organic framework (MOF)-modified microrollers (MMRs) to combat CNS infections are proposed. The MMRs are iron-based metal-organic framework (NH2-MIL-101(Fe)) modified for enhanced adsorption and Fe/Al coated for magnetic actuation and biocompatibility. The MMRs have demonstrated a faster and unhindered magnetically actuated motion on the uneven biological tissue surface in an organ-on-a-chip that mimicked the CNS compared to it on smooth surface. CFD results consistently align with the experimental findings. The MMRs can be loaded with rhodamine 6G for bioimaging, allowing them to be imaged through sections of the main human tissues by fluorescence microscopy, or tetracycline hydrochloride for antibiotic delivery, allowing them to inhibit the growth of Staphylococcus aureus biofilms by sustained release of antibiotics for 9 days. This study provides a strategy to integrate high-capacity adsorption material with magnetically actuated locomotion for long-term targeted antibacterial applications in biological environments.
Collapse
Affiliation(s)
- Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junkai Zhang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lijun Fang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Akat A, Karaöz E. A systematic review of cell therapy modalities and outcomes in cerebral palsy. Mol Cell Biochem 2024:10.1007/s11010-024-05072-3. [PMID: 39033213 DOI: 10.1007/s11010-024-05072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Cerebral palsy is widely recognized as a condition that results in significant physical and cognitive disabilities. Interventions aim to improve the quality of life and reduce disability. Despite numerous treatments and significant advancements, cerebral palsy remains incurable due to its diverse origins. This review evaluated clinical trials, studies, and case reports on various cell therapy approaches for cerebral palsy. It assessed the clinical outcomes of applying different cell types, including mesenchymal stem cells, olfactory ensheathing cells, neural stem/progenitor cells, macrophages, and mononuclear cells derived from peripheral blood, cord blood, and bone marrow. In 60 studies involving 1474 CP patients, six major adverse events (0.41%) and 485 mild adverse events (32.9%) were reported. Favorable therapeutic effects were observed in 54 out of 60 cell therapy trials, indicating a promising potential for cell treatments in cerebral palsy. Intrathecal MSC and BM-MNC applications revealed therapeutic benefits, with MSC studies being generally safer than other cell therapies. However, MSC and BM-MNC trials have shown inconsistent results, with some demonstrating superior efficacy for certain outcomes. Cell dosage, transplantation route, and frequency of administration can affect the efficacy of these therapies. Our findings highlight the promise of cell therapies for improving cerebral palsy treatment and stress the need for ongoing research to refine treatment protocols and enhance safety. To establish conclusive evidence on the comparative effectiveness of various cell types in treating cerebral palsy, randomized, double-blind clinical trials are essential.
Collapse
Affiliation(s)
- Ayberk Akat
- Yıldız Technical University, Davutpaşa Caddesi No.127, Esenler, 34210, Istanbul, Turkey.
| | - Erdal Karaöz
- Liv Hospital Ulus, Regenerative Medicine and Stem Cell Center, Istanbul, Turkey
| |
Collapse
|
4
|
Arms LM, Duchatel RJ, Jackson ER, Sobrinho PG, Dun MD, Hua S. Current status and advances to improving drug delivery in diffuse intrinsic pontine glioma. J Control Release 2024; 370:835-865. [PMID: 38744345 DOI: 10.1016/j.jconrel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma - DIPG), is the primary cause of brain tumor-related death in pediatric patients. DIPG is characterized by a median survival of <12 months from diagnosis, harboring the worst 5-year survival rate of any cancer. Corticosteroids and radiation are the mainstay of therapy; however, they only provide transient relief from the devastating neurological symptoms. Numerous therapies have been investigated for DIPG, but the majority have been unsuccessful in demonstrating a survival benefit beyond radiation alone. Although many barriers hinder brain drug delivery in DIPG, one of the most significant challenges is the blood-brain barrier (BBB). Therapeutic compounds must possess specific properties to enable efficient passage across the BBB. In brain cancer, the BBB is referred to as the blood-brain tumor barrier (BBTB), where tumors disrupt the structure and function of the BBB, which may provide opportunities for drug delivery. However, the biological characteristics of the brainstem's BBB/BBTB, both under normal physiological conditions and in response to DIPG, are poorly understood, which further complicates treatment. Better characterization of the changes that occur in the BBB/BBTB of DIPG patients is essential, as this informs future treatment strategies. Many novel drug delivery technologies have been investigated to bypass or disrupt the BBB/BBTB, including convection enhanced delivery, focused ultrasound, nanoparticle-mediated delivery, and intranasal delivery, all of which are yet to be clinically established for the treatment of DIPG. Herein, we review what is known about the BBB/BBTB and discuss the current status, limitations, and advances of conventional and novel treatments to improving brain drug delivery in DIPG.
Collapse
Affiliation(s)
- Lauren M Arms
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Ryan J Duchatel
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Evangeline R Jackson
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Pedro Garcia Sobrinho
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Susan Hua
- Therapeutic Targeting Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Paediatric Program, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
5
|
Iring A, Baranyi M, Iring-Varga B, Mut-Arbona P, Gál ZT, Nagy D, Hricisák L, Varga J, Benyó Z, Sperlágh B. Blood oxygen regulation via P2Y12R expressed in the carotid body. Respir Res 2024; 25:61. [PMID: 38281036 PMCID: PMC10821555 DOI: 10.1186/s12931-024-02680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/03/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Peripheral blood oxygen monitoring via chemoreceptors in the carotid body (CB) is an integral function of the autonomic cardiorespiratory regulation. The presence of the purinergic P2Y12 receptor (P2Y12R) has been implicated in CB; however, the exact role of the receptor in O2 sensing and signal transduction is unknown. METHODS The presence of P2Y12R was established by immunoblotting, RT qPCR and immunohistochemistry. Primary glomus cells were used to assess P2Y12R function during hypoxia and hypercapnia, where monoamines were measured by HPLC; calcium signal was recorded utilizing OGB-1 and N-STORM Super-Resolution System. Ingravescent hypoxia model was tested in anaesthetized mice of mixed gender and cardiorespiratory parameters were recorded in control and receptor-deficient or drug-treated experimental animals. RESULTS Initially, the expression of P2Y12R in adult murine CB was confirmed. Hypoxia induced a P2Y12R-dependent release of monoamine transmitters from isolated CB cells. Receptor activation with the endogenous ligand ADP promoted release of neurotransmitters under normoxic conditions, while blockade disrupted the amplitude and duration of the intracellular calcium concentration. In anaesthetised mice, blockade of P2Y12R expressed in the CB abrogated the initiation of compensatory cardiorespiratory changes in hypoxic environment, while centrally inhibited receptors (i.e. microglial receptors) or receptor-deficiency induced by platelet depletion had limited influence on the physiological adjustment to hypoxia. CONCLUSIONS Peripheral P2Y12R inhibition interfere with the complex mechanisms of acute oxygen sensing by influencing the calcium signalling and the release of neurotransmitter molecules to evoke compensatory response to hypoxia. Prospectively, the irreversible blockade of glomic receptors by anti-platelet drugs targeting P2Y12Rs, propose a potential, formerly unrecognized side-effect to anti-platelet medications in patients with pulmonary morbidities.
Collapse
Affiliation(s)
- András Iring
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary.
- Institute of Translational Medicine, Semmelweis University, Budapest, 1094, Hungary.
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Bernadett Iring-Varga
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, 1085, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, 1085, Hungary
| | - Zsuzsanna T Gál
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Dorina Nagy
- Institute of Translational Medicine, Semmelweis University, Budapest, 1094, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, Hungarian Research Network, Semmelweis University (HUN-REN-SU), Budapest, 1094, Hungary
| | - László Hricisák
- Institute of Translational Medicine, Semmelweis University, Budapest, 1094, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, Hungarian Research Network, Semmelweis University (HUN-REN-SU), Budapest, 1094, Hungary
| | - János Varga
- Department of Pulmonology, Faculty of Medicine, Semmelweis University, Budapest, 1083, Hungary
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, 1094, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, Hungarian Research Network, Semmelweis University (HUN-REN-SU), Budapest, 1094, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, 1085, Hungary
| |
Collapse
|
6
|
Pan K, Concannon K, Li J, Zhang J, Heymach JV, Le X. Emerging therapeutics and evolving assessment criteria for intracranial metastases in patients with oncogene-driven non-small-cell lung cancer. Nat Rev Clin Oncol 2023; 20:716-732. [PMID: 37592034 PMCID: PMC10851171 DOI: 10.1038/s41571-023-00808-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2023] [Indexed: 08/19/2023]
Abstract
The improved survival outcomes of patients with non-small-cell lung cancer (NSCLC), largely owing to the improved control of systemic disease provided by immune-checkpoint inhibitors and novel targeted therapies, have highlighted the challenges posed by central nervous system (CNS) metastases as a devastating yet common complication, with up to 50% of patients developing such lesions during the course of the disease. Early-generation tyrosine-kinase inhibitors (TKIs) often provide robust systemic disease control in patients with oncogene-driven NSCLCs, although these agents are usually unable to accumulate to therapeutically relevant concentrations in the CNS owing to an inability to cross the blood-brain barrier. However, the past few years have seen a paradigm shift with the emergence of several novel or later-generation TKIs with improved CNS penetrance. Such agents have promising levels of activity against brain metastases, as demonstrated by data from preclinical and clinical studies. In this Review, we describe current preclinical and clinical evidence of the intracranial activity of TKIs targeting various oncogenic drivers in patients with NSCLC, with a focus on newer agents with enhanced CNS penetration, leptomeningeal disease and the need for intrathecal treatment options. We also discuss evolving assessment criteria and regulatory considerations for future clinical investigations.
Collapse
Affiliation(s)
- Kelsey Pan
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle Concannon
- Department of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Doudakmanis C, Dimeas G, Dimeas IE, Pitsilka MM, Daniil Z. Intrahepatic Gallbladder Rupture and Biloma Mimicking Pulmonary Embolism Following Orthopedic Surgery. Cureus 2023; 15:e46905. [PMID: 37954818 PMCID: PMC10638943 DOI: 10.7759/cureus.46905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/14/2023] Open
Abstract
In this case report, a 75-year-old male with a history of coronary artery disease, type 2 diabetes, hypertension, and benign prostate hypertrophy developed postoperative fever and chest pain following left knee arthroplasty. Upon admission to the emergency department, pulmonary embolism was considered highly probable, and the patient was treated with anticoagulation and antibiotics due to diagnostic uncertainty. However, further investigations revealed a complex condition involving an intraparenchymal gallbladder rupture resulting in a biloma secondary to choledocholithiasis. The patient's history of receiving spinal anesthesia with intrathecal morphine was identified as a potential causative factor to the sphincter of Oddi constriction, leading to increased biliary pressure and gallbladder rupture. This case highlights the importance of having a broad differential diagnosis in postoperative patients, especially when the clinical presentation is atypical. With the diagnosis being confirmed, the patient underwent successful treatment, including biliary stenting, drainage of the biloma, and ultimately cholecystectomy. This case underlines the need for vigilance and a multidisciplinary approach in managing complex postoperative complications, emphasizing that clinical presentations may sometimes deviate significantly from the expected, requiring further investigation and individualized treatment.
Collapse
Affiliation(s)
- Christos Doudakmanis
- Department of Critical Care Medicine, University Hospital of Larissa, Larissa, GRC
- 2nd Propaedeutic Department of Surgery, Laiko General Hospital of Athens, Athens, GRC
| | - George Dimeas
- Department of Respiratory Medicine, University Hospital of Larissa, Larissa, GRC
| | - Ilias E Dimeas
- Department of Respiratory Medicine, University Hospital of Larissa, Larissa, GRC
| | - Maria M Pitsilka
- Department of Respiratory Medicine, University Hospital of Larissa, Larissa, GRC
| | - Zoe Daniil
- Department of Respiratory Medicine, University Hospital of Larissa, Larissa, GRC
| |
Collapse
|
8
|
Ajeeb R, Clegg JR. Intrathecal delivery of Macromolecules: Clinical status and emerging technologies. Adv Drug Deliv Rev 2023; 199:114949. [PMID: 37286086 DOI: 10.1016/j.addr.2023.114949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The proximity and association of cerebrospinal fluid (CSF) and the intrathecal (IT) space with deep targets in the central nervous system (CNS) parenchyma makes IT injection an attractive route of administration for brain drug delivery. However, the extent to which intrathecally administered macromolecules are effective in treating neurological diseases is a question of both clinical debate and technological interest. We present the biological, chemical, and physical properties of the intrathecal space that are relevant to drug absorption, distribution, metabolism, and elimination from CSF. We then analyze the evolution of IT drug delivery in clinical trials over the last 20 years. Our analysis revealed that the percentage of clinical trials assessing IT delivery for the delivery of biologics (i.e., macromolecules, cells) for treatment of chronic conditions (e.g., neurodegeneration, cancer, and metabolic diseases) has steadily increased. Clinical trials exploring cell or macromolecular delivery within the IT space have not evaluated engineering technologies, such as depots, particles, or other delivery systems. Recent pre-clinical studies have evaluated IT macromolecule delivery in small animals, postulating that delivery efficacy can be assisted by external medical devices, micro- or nanoparticles, bulk biomaterials, and viral vectors. Further studies are necessary to evaluate the extent to which engineering technologies and IT administration improve CNS targeting and therapeutic outcome.
Collapse
Affiliation(s)
- Rana Ajeeb
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, United States
| | - John R Clegg
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK, United States; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States; Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
9
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
10
|
The glymphatic system: implications for drugs for central nervous system diseases. Nat Rev Drug Discov 2022; 21:763-779. [PMID: 35948785 DOI: 10.1038/s41573-022-00500-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2022] [Indexed: 12/14/2022]
Abstract
In the past decade, evidence for a fluid clearance pathway in the central nervous system known as the glymphatic system has grown. According to the glymphatic system concept, cerebrospinal fluid flows directionally through the brain and non-selectively clears the interstitium of metabolic waste. Importantly, the glymphatic system may be modulated by particular drugs such as anaesthetics, as well as by non-pharmacological factors such as sleep, and its dysfunction has been implicated in central nervous system disorders such as Alzheimer disease. Although the glymphatic system is best described in rodents, reports using multiple neuroimaging modalities indicate that a similar transport system exists in the human brain. Here, we overview the evidence for the glymphatic system and its role in disease and discuss opportunities to harness the glymphatic system therapeutically; for example, by improving the effectiveness of intrathecally delivered drugs.
Collapse
|
11
|
Seiner A, Burla GKR, Shrestha D, Bowen M, Horvath JD, Martin BA. Investigation of Human Intrathecal Solute Transport Dynamics Using a Novel in vitro Cerebrospinal Fluid System Analog. FRONTIERS IN NEUROIMAGING 2022; 1:879098. [PMID: 37555174 PMCID: PMC10406265 DOI: 10.3389/fnimg.2022.879098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/24/2022] [Indexed: 08/10/2023]
Abstract
BACKGROUND Understanding the relationship between cerebrospinal fluid (CSF) dynamics and intrathecal drug delivery (ITDD) injection parameters is essential to improve treatment of central nervous system (CNS) disorders. METHODS An anatomically detailed in vitro model of the complete CSF system was constructed. Patient-specific cardiac- and respiratory-induced CSF oscillations were input to the model in the subarachnoid space and within the ventricles. CSF production was input at the lateral ventricles and CSF absorption at the superior sagittal sinus. A model small molecule simulated drug product containing fluorescein was imaged within the system over a period of 3-h post-lumbar ITDD injections and used to quantify the impact of (a) bolus injection volume and rate, (b) post-injection flush volume, rate, and timing, (c) injection location, and (d) type of injection device. For each experiment, neuraxial distribution of fluorescein in terms of spatial temporal concentration, area-under-the-curve (AUC), and percent of injected dose (%ID) to the brain was quantified at a time point 3-h post-injection. RESULTS For all experiments conducted with ITDD administration in the lumbar spine, %ID to the brain did not exceed 11.6% at a time point 3-h post-injection. Addition of a 12 mL flush slightly increased solute transport to the brain up to +3.9%ID compared to without a flush (p < 0.01). Implantation of a lumbar catheter with the tip at an equivalent location to the lumbar placed needle, but with rostral tip orientation, resulted in a small improvement of 1.5%ID to the brain (p < 0.05). An increase of bolus volume from 5 to 20 mL improved solute transport to the brain from 5.0 to 6.3%ID, but this improvement was not statistically significant. Increasing bolus injection rate from 5 to 13.3 mL/min lacked improvement of solute transport to the brain, with a value of 6.3 compared to 5.7%ID. CONCLUSION The in vitro modeling approach allowed precisely controlled and repeatable parametric investigation of ITDD injection protocols and devices. In combination, the results predict that parametric changes in lumbar spine ITDD-injection related parameters and devices can alter %ID to the brain and be tuned to optimize therapeutic benefit to CNS targets.
Collapse
Affiliation(s)
- Akari Seiner
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States
| | | | - Dev Shrestha
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States
| | - Mayumi Bowen
- Genentech, Inc., A Member of the Roche Group, South San Francisco, CA, United States
| | - Joshua D. Horvath
- Genentech, Inc., A Member of the Roche Group, South San Francisco, CA, United States
| | - Bryn A. Martin
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID, United States
- Alcyone Therapeutics Inc., Lowell, MA, United States
| |
Collapse
|
12
|
Khani M, Burla GKR, Sass LR, Arters ON, Xing T, Wu H, Martin BA. Human in silico trials for parametric computational fluid dynamics investigation of cerebrospinal fluid drug delivery: impact of injection location, injection protocol, and physiology. Fluids Barriers CNS 2022; 19:8. [PMID: 35090516 PMCID: PMC8796513 DOI: 10.1186/s12987-022-00304-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022] Open
Abstract
Background Intrathecal drug delivery has a significant role in pain management and central nervous system (CNS) disease therapeutics. A fluid-physics based tool to assist clinicians in choosing specific drug doses to the spine or brain may help improve treatment schedules. Methods This study applied computational fluid dynamics (CFD) and in vitro model verification to assess intrathecal drug delivery in an anatomically idealized model of the human CSF system with key anatomic features of the CNS. Key parameters analyzed included the role of (a) injection location including lumbar puncture (LP), cisterna magna (CM) and intracerebroventricular (ICV), (b) LP injection rate, injection volume, and flush volume, (c) physiologic factors including cardiac-induced and deep respiration-induced CSF stroke volume increase. Simulations were conducted for 3-h post-injection and used to quantify spatial–temporal tracer concentration, regional area under the curve (AUC), time to maximum concentration (Tmax), and maximum concentration (Cmax), for each case. Results CM and ICV increased AUC to brain regions by ~ 2 logs compared to all other simulations. A 3X increase in bolus volume and addition of a 5 mL flush both increased intracranial AUC to the brain up to 2X compared to a baseline 5 mL LP injection. In contrast, a 5X increase in bolus rate (25 mL/min) did not improve tracer exposure to the brain. An increase in cardiac and respiratory CSF movement improved tracer spread to the brain, basal cistern, and cerebellum up to ~ 2 logs compared to the baseline LP injection. Conclusion The computational modeling approach provides ability to conduct in silico trials representative of CSF injection protocols. Taken together, the findings indicate a strong potential for delivery protocols to be optimized to reach a target region(s) of the spine and/or brain with a needed therapeutic dose. Parametric modification of bolus rate/volume and flush volume was found to have impact on tracer distribution; albeit to a smaller degree than injection location, with CM and ICV injections resulting in greater therapeutic dose to brain regions compared to LP. CSF stroke volume and frequency both played an important role and may potentially have a greater impact than the modest changes in LP injection protocols analyzed such as bolus rate, volume, and flush. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00304-4.
Collapse
|
13
|
Wang G, Zhao X, Wu H, Lovejoy DB, Zheng M, Lee A, Fu L, Miao K, An Y, Sayyadi N, Ding K, Chung RS, Lu Y, Li J, Morsch M, Shi B. A Robust Intrinsically Green Fluorescent Poly(Amidoamine) Dendrimer for Imaging and Traceable Central Nervous System Delivery in Zebrafish. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003654. [PMID: 32875740 DOI: 10.1002/smll.202003654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Intrinsically fluorescent poly(amidoamine) dendrimers (IF-PAMAM) are an emerging class of versatile nanoplatforms for in vitro tracking and bio-imaging. However, limited tissue penetration of their fluorescence and interference due to auto-fluorescence arising from biological tissues limit its application in vivo. Herein, a green IF-PAMAM (FGP) dendrimer is reported and its biocompatibility, circulation, biodistribution and potential role for traceable central nervous system (CNS)-targeted delivery in zebrafish is evaluated, exploring various routes of administration. Key features of FGP include visible light excitation (488 nm), high fluorescence signal intensity, superior photostability and low interference from tissue auto-fluorescence. After intravenous injection, FGP shows excellent imaging and tracking performance in zebrafish. Further conjugating FGP with transferrin (FGP-Tf) significantly increases its penetration through the blood-brain barrier (BBB) and prolongs its circulation in the blood stream. When administering through local intratissue microinjection, including intracranial and intrathecal injection in zebrafish, both FGP and FGP-Tf exhibit excellent tissue diffusion and effective cellular uptake in the brain and spinal cord, respectively. This makes FGP/FGP-Tf attractive for in vivo tracing when transporting to the CNS is desired. The work addresses some of the major shortcomings in IF-PAMAM and provides a promising application of these probes in the development of drug delivery in the CNS.
Collapse
Affiliation(s)
- Guoying Wang
- Huaihe Hosiptal, Henan University, Kaifeng, 475001, China
- Centre for Motor Neuron Disease, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Xiaowei Zhao
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Haigang Wu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - David B Lovejoy
- Centre for Motor Neuron Disease, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Meng Zheng
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Albert Lee
- Centre for Motor Neuron Disease, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Libing Fu
- Centre for Motor Neuron Disease, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Kaiting Miao
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yi An
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Nima Sayyadi
- School of Pharmacy, Henan University, Kaifeng, 475001, China
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW, 2109, Australia
| | - Kunjie Ding
- ARC Centre of Excellence for Nanoscale Biophotonics (CNBP), Macquarie University, Sydney, NSW, 2109, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yiqing Lu
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jia Li
- Centre for Motor Neuron Disease, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- School of Pharmacy, Henan University, Kaifeng, 475001, China
| | - Marco Morsch
- Centre for Motor Neuron Disease, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Bingyang Shi
- Centre for Motor Neuron Disease, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
14
|
Zaman RU, Mulla NS, Braz Gomes K, D'Souza C, Murnane KS, D'Souza MJ. Nanoparticle formulations that allow for sustained delivery and brain targeting of the neuropeptide oxytocin. Int J Pharm 2018; 548:698-706. [PMID: 30031864 DOI: 10.1016/j.ijpharm.2018.07.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022]
Abstract
Oxytocin is a promising candidate for the treatment of social-deficit disorders such as Autism Spectrum Disorder, but oxytocin cannot readily pass the blood-brain barrier. Moreover, oxytocin requires frequent dosing as it is rapidly metabolized in blood. We fabricated four polymeric nanoparticle formulations using poly(lactic-co-glycolic acid) (PLGA) or bovine serum albumin (BSA) as the base material. In order to target them to the brain, we then conjugated the materials to either transferrin or rabies virus glycoprotein (RVG) as targeting ligands. The formulations were characterized in vitro for size, zeta potential, encapsulation efficiency, and release profiles. All formulations showed slightly negative charges and sizes ranging from 100 to 278 nm in diameter, with RVG-conjugated BSA nanoparticles exhibiting the smallest sizes. No formulation was found to be immunogenic or cytotoxic. The encapsulation efficiency was ≥75% for all nanoparticle formulations. Release studies demonstrated that BSA nanoparticle formulation exhibited a faster initial burst of release compared to PLGA particles, in addition to later sustained release. This initial burst release would be favorable for clinical dosing as therapeutic effects could be quickly established, especially in combination with additional sustained release to maintain the therapeutic effects. Our size and release profile data indicate that RVG-conjugated BSA nanoparticles are the most favorable formulation for brain delivery of oxytocin.
Collapse
Affiliation(s)
- Rokon Uz Zaman
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Nihal S Mulla
- Pharmaceutical Sciences Department, Drake University, Des Moines, IA 50311, USA
| | - Keegan Braz Gomes
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Cherilyn D'Souza
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA
| | - Martin J D'Souza
- Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA.
| |
Collapse
|
15
|
Pizzichelli G, Kehlet B, Evju Ø, Martin BA, Rognes ME, Mardal KA, Sinibaldi E. Numerical study of intrathecal drug delivery to a permeable spinal cord: effect of catheter position and angle. Comput Methods Biomech Biomed Engin 2017; 20:1599-1608. [DOI: 10.1080/10255842.2017.1393805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- G. Pizzichelli
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Pontedera, Italy
| | - B. Kehlet
- Simula Research Laboratory, Lysaker, Norway
| | - Ø. Evju
- Simula Research Laboratory, Lysaker, Norway
| | - B. A. Martin
- Department of Biological Engineering, The University of Idaho, Moscow, ID, USA
| | - M. E. Rognes
- Simula Research Laboratory, Lysaker, Norway
- Departments of Mathematics and Informatics, University of Oslo, Oslo, Norway
| | - K. A. Mardal
- Simula Research Laboratory, Lysaker, Norway
- Departments of Mathematics and Informatics, University of Oslo, Oslo, Norway
| | - E. Sinibaldi
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Pontedera, Italy
| |
Collapse
|
16
|
Haga PT, Pizzichelli G, Mortensen M, Kuchta M, Pahlavian SH, Sinibaldi E, Martin BA, Mardal KA. A numerical investigation of intrathecal isobaric drug dispersion within the cervical subarachnoid space. PLoS One 2017; 12:e0173680. [PMID: 28296953 PMCID: PMC5351861 DOI: 10.1371/journal.pone.0173680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 02/25/2017] [Indexed: 12/19/2022] Open
Abstract
Intrathecal drug and gene vector delivery is a procedure to release a solute within the cerebrospinal fluid. This procedure is currently used in clinical practice and shows promise for treatment of several central nervous system pathologies. However, intrathecal delivery protocols and systems are not yet optimized. The aim of this study was to investigate the effects of injection parameters on solute distribution within the cervical subarachnoid space using a numerical platform. We developed a numerical model based on a patient-specific three dimensional geometry of the cervical subarachnoid space with idealized dorsal and ventral nerve roots and denticulate ligament anatomy. We considered the drug as massless particles within the flow field and with similar properties as the CSF, and we analyzed the effects of anatomy, catheter position, angle and injection flow rate on solute distribution within the cerebrospinal fluid by performing a series of numerical simulations. Results were compared quantitatively in terms of drug peak concentration, spread, accumulation rate and appearance instant over 15 seconds following the injection. Results indicated that solute distribution within the cervical spine was altered by all parameters investigated within the time range analyzed following the injection. The presence of spinal cord nerve roots and denticulate ligaments increased drug spread by 60% compared to simulations without these anatomical features. Catheter position and angle were both found to alter spread rate up to 86%, and catheter flow rate altered drug peak concentration up to 78%. The presented numerical platform fills a first gap towards the realization of a tool to parametrically assess and optimize intrathecal drug and gene vector delivery protocols and systems. Further investigation is needed to analyze drug spread over a longer clinically relevant time frame.
Collapse
Affiliation(s)
- Per Thomas Haga
- Center for Biomedical Computing, Simula Research Laboratory, Fornebu, Norway
| | - Giulia Pizzichelli
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Pontedera, Italy
- Scuola Superiore Sant’Anna, The BioRobotics Institute, Pontedera, Italy
| | - Mikael Mortensen
- Center for Biomedical Computing, Simula Research Laboratory, Fornebu, Norway
- Dept. of Mathematics, University of Oslo, Oslo, Norway
| | | | - Soroush Heidari Pahlavian
- Conquer Chiari Research Center, Dept. of Mech. Engineering, University of Akron, Akron, Ohio, United States of America
| | - Edoardo Sinibaldi
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Pontedera, Italy
| | - Bryn A. Martin
- Dept. of Biological Engineering, The University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| | - Kent-Andre Mardal
- Center for Biomedical Computing, Simula Research Laboratory, Fornebu, Norway
- Dept. of Mathematics, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Curtis C, Zhang M, Liao R, Wood T, Nance E. Systems-level thinking for nanoparticle-mediated therapeutic delivery to neurological diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [PMID: 27562224 DOI: 10.1002/wnan.1422] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 07/17/2016] [Indexed: 12/27/2022]
Abstract
Neurological diseases account for 13% of the global burden of disease. As a result, treating these diseases costs $750 billion a year. Nanotechnology, which consists of small (~1-100 nm) but highly tailorable platforms, can provide significant opportunities for improving therapeutic delivery to the brain. Nanoparticles can increase drug solubility, overcome the blood-brain and brain penetration barriers, and provide timed release of a drug at a site of interest. Many researchers have successfully used nanotechnology to overcome individual barriers to therapeutic delivery to the brain, yet no platform has translated into a standard of care for any neurological disease. The challenge in translating nanotechnology platforms into clinical use for patients with neurological disease necessitates a new approach to: (1) collect information from the fields associated with understanding and treating brain diseases and (2) apply that information using scalable technologies in a clinically-relevant way. This approach requires systems-level thinking to integrate an understanding of biological barriers to therapeutic intervention in the brain with the engineering of nanoparticle material properties to overcome those barriers. To demonstrate how a systems perspective can tackle the challenge of treating neurological diseases using nanotechnology, this review will first present physiological barriers to drug delivery in the brain and common neurological disease hallmarks that influence these barriers. We will then analyze the design of nanotechnology platforms in preclinical in vivo efficacy studies for treatment of neurological disease, and map concepts for the interaction of nanoparticle physicochemical properties and pathophysiological hallmarks in the brain. WIREs Nanomed Nanobiotechnol 2017, 9:e1422. doi: 10.1002/wnan.1422 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Chad Curtis
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Rick Liao
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Thomas Wood
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.,Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.,Department of Radiology, University of Washington, Seattle, WA, USA.,Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Pizzichelli G, Di Michele F, Sinibaldi E. An analytical model for nanoparticles concentration resulting from infusion into poroelastic brain tissue. Math Biosci 2015; 272:6-14. [PMID: 26656677 DOI: 10.1016/j.mbs.2015.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 02/05/2023]
Abstract
We consider the infusion of a diluted suspension of nanoparticles (NPs) into poroelastic brain tissue, in view of relevant biomedical applications such as intratumoral thermotherapy. Indeed, the high impact of the related pathologies motivates the development of advanced therapeutic approaches, whose design also benefits from theoretical models. This study provides an analytical expression for the time-dependent NPs concentration during the infusion into poroelastic brain tissue, which also accounts for particle binding onto cells (by recalling relevant results from the colloid filtration theory). Our model is computationally inexpensive and, compared to fully numerical approaches, permits to explicitly elucidate the role of the involved physical aspects (tissue poroelasticity, infusion parameters, NPs physico-chemical properties, NP-tissue interactions underlying binding). We also present illustrative results based on parameters taken from the literature, by considering clinically relevant ranges for the infusion parameters. Moreover, we thoroughly assess the model working assumptions besides discussing its limitations. While not laying any claims of generality, our model can be used to support the development of more ambitious numerical approaches, towards the preliminary design of novel therapies based on NPs infusion into brain tissue.
Collapse
Affiliation(s)
- G Pizzichelli
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Viale R. Piaggio 34, 56025 Pontedera, Italy; Scuola Superiore Sant'Anna, The BioRobotics Institute, Viale R. Piaggio 34, 56025 Pontedera, Italy
| | - F Di Michele
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Viale R. Piaggio 34, 56025 Pontedera, Italy
| | - E Sinibaldi
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Viale R. Piaggio 34, 56025 Pontedera, Italy.
| |
Collapse
|
19
|
Scarpa M, Bellettato CM, Lampe C, Begley DJ. Neuronopathic lysosomal storage disorders: Approaches to treat the central nervous system. Best Pract Res Clin Endocrinol Metab 2015; 29:159-71. [PMID: 25987170 DOI: 10.1016/j.beem.2014.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmacological research has always focused on developing new therapeutic strategies capable of modifying a disease's natural history and improving patients' quality of life. Despite recent advances within the fields of medicine and biology, some diseases still represent a major challenge for successful therapy. Neuronopathic lysosomal storage disorders, in particular, have high rates of morbidity and mortality and a devastating socio-economic effect. Many of the available therapies, such as enzyme replacement therapy, can reverse the natural history of the disease in peripheral organs but, unfortunately, are still unable to reach the central nervous system effectively because they cannot cross the blood-brain barrier that surrounds and protects the brain. Moreover, many lysosomal storage disorders are characterized by a number of blood-brain barrier dysfunctions, which may further contribute to disease neuropathology and accelerate neuronal cell death. These issues, and their context in the development of new therapeutic strategies, will be discussed in detail in this chapter.
Collapse
Affiliation(s)
- Maurizio Scarpa
- Center for Rare Diseases, Horst Schmidt Kliniken, Department of Child and Adolescent Medicine, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, D, Germany; University of Padova, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy; Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy.
| | - Cinzia Maria Bellettato
- Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy.
| | - Christina Lampe
- Center for Rare Diseases, Horst Schmidt Kliniken, Department of Child and Adolescent Medicine, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, D, Germany.
| | - David J Begley
- Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy; Kings College London, Institute of Pharmaceutical Science, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
20
|
Schweizer D, Vostiar I, Heier A, Serno T, Schoenhammer K, Jahn M, Jones S, Piequet A, Beerli C, Gram H, Goepferich A. Pharmacokinetics, biocompatibility and bioavailability of a controlled release monoclonal antibody formulation. J Control Release 2013; 172:975-82. [PMID: 24140353 DOI: 10.1016/j.jconrel.2013.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/06/2013] [Accepted: 10/07/2013] [Indexed: 02/08/2023]
Abstract
The sustained and localized delivery of monoclonal antibodies has become highly relevant, because of the increasing number of investigated local delivery applications in recent years. As the local delivery of antibodies is associated with high technological hurdles, very few successful approaches have been reported in the literature so far. Alginate-based delivery systems were previously described as promising sustained release formulations for monoclonal antibodies (mAbs). In order to further investigate their applicability, a single-dose animal study was conducted to compare the biocompatibility, the pharmacokinetics and the bioavailability of a human monoclonal antibody liquid formulation with two alginate-based sustained delivery systems after subcutaneous administration in rats. 28 days after injection, the depot systems were still found in the subcutis of the animals. A calcium cross-linked alginate formulation, which was injected as a hydrogel, was present as multiple compartments separated by subcutaneous tissue. An in situ forming alginate formulation was recovered as a single compact and cohesive structure. It can be assumed that the multiple compartments of the hydrogel formulation led to almost identical pharmacokinetic profiles for all tested animals, whereas the compact nature of the in situ forming system resulted in large interindividual variations in pharmacokinetics. As compared to the liquid formulation the hydrogel formulations led to lower mAb serum levels, and the in situ forming system to a shift in the time to reach the maximum mAb serum concentration (Tmax) from 2 to 4 days. Importantly, it was shown that after 28 days only marginal amounts of residual mAb were present in the alginate matrix and in the tissue at the injection site indicating nearly complete release. In line with this finding, systemic drug bioavailability was not affected by using the controlled release systems. This study successfully demonstrates the suitability and underlines the potential of polyanionic systems for local and controlled mAb delivery.
Collapse
Affiliation(s)
- Daniel Schweizer
- Novartis Pharma AG, Biologics Process Research & Development, 4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
O'Mahony AM, Godinho BMDC, Cryan JF, O'Driscoll CM. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: formulating the solution. J Pharm Sci 2013; 102:3469-84. [PMID: 23893329 DOI: 10.1002/jps.23672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 01/06/2023]
Abstract
The application of gene and RNAi-based therapies to the central nervous system (CNS), for neurological and neurodegenerative disease, offers immense potential. The issue of delivery to the target site remains the single greatest barrier to achieving this. There are challenges to gene and siRNA (small interfering RNA) delivery which are specific to the CNS, including the post-mitotic nature of neurons, their resistance to transfection and the blood-brain barrier. Viral vectors are highly efficient and have been used extensively in pre-clinical studies for CNS diseases. However, non-viral delivery offers an exciting alternative. In this review, we will discuss the extracellular and intracellular barriers to gene and siRNA delivery in the CNS. Our focus will be directed towards various non-viral strategies used to overcome these barriers. In this regard, we describe selected non-viral vectors and categorise them according to the barriers that they overcome by their formulation and targeting strategies. Some of the difficulties associated with non-viral vectors such as toxicity, large-scale manufacture and route of administration are discussed. We provide examples of optimised formulation approaches and discuss regulatory hurdles to clinical validation. Finally, we outline the components of an "ideal" formulation, based on a critical analysis of the approaches highlighted throughout the review.
Collapse
Affiliation(s)
- Aoife M O'Mahony
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
22
|
Papisov MI, Belov VV, Gannon KS. Physiology of the intrathecal bolus: the leptomeningeal route for macromolecule and particle delivery to CNS. Mol Pharm 2013; 10:1522-32. [PMID: 23316936 PMCID: PMC3646927 DOI: 10.1021/mp300474m] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Presently, there are no effective treatments for several diseases involving the CNS, which is protected by the blood-brain, blood-CSF, and blood-arachnoid barriers. Traversing any of these barriers is difficult, especially for macromolecular drugs and particulates. However, there is significant experimental evidence that large molecules can be delivered to the CNS through the cerebrospinal fluid (CSF). The flux of the interstitial fluid in the CNS parenchyma, as well as the macro flux of CSF in the leptomeningeal space, are believed to be generally opposite to the desirable direction of CNS-targeted drug delivery. On the other hand, the available data suggest that the layer of pia mater lining the CNS surface is not continuous, and the continuity of the leptomeningeal space (LMS) with the perivascular spaces penetrating into the parenchyma provides an unexplored avenue for drug transport deep into the brain via CSF. The published data generally do not support the view that macromolecule transport from the LMS to CNS is hindered by the interstitial and CSF fluxes. The data strongly suggest that leptomeningeal transport depends on the location and volume of the administered bolus and consists of four processes: (i) pulsation-assisted convectional transport of the solutes with CSF, (ii) active "pumping" of CSF into the periarterial spaces, (iii) solute transport from the latter to and within the parenchyma, and (iv) neuronal uptake and axonal transport. The final outcome will depend on the drug molecule behavior in each of these processes, which have not been studied systematically. The data available to date suggest that many macromolecules and nanoparticles can be delivered to CNS in biologically significant amounts (>1% of the administered dose); mechanistic investigation of macromolecule and particle behavior in CSF may result in a significantly more efficient leptomeningeal drug delivery than previously thought.
Collapse
Affiliation(s)
- Mikhail I. Papisov
- Massachusetts General Hospital, Shriners Hospitals for Children – Boston, and Harvard Medical School, 51 Blossom St, Boston, MA 02114 USA
| | - Vasily V. Belov
- Massachusetts General Hospital, Shriners Hospitals for Children – Boston, and Harvard Medical School, 51 Blossom St, Boston, MA 02114 USA
| | - Kimberley S. Gannon
- NeuroPhage Pharmaceuticals, Inc. 3222 Third Street, Suite 31203 Cambridge, MA 02142 USA
| |
Collapse
|
23
|
Schweizer D, Schönhammer K, Jahn M, Göpferich A. Protein-polyanion interactions for the controlled release of monoclonal antibodies. Biomacromolecules 2012; 14:75-83. [PMID: 23157419 DOI: 10.1021/bm301352x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of the present study was to investigate ionic interactions between alginate and a monoclonal antibody (mAb1) and to utilize those interactions for the sustained release of mAb1. The existence of ionic interactions between alginate and mAb1 was strongly reflected by their rheological behavior. A 3-4 times increase in storage modulus (G') was observed by addition of 30 mg/mL mAb1 to a 20 mg/mL alginate solution. This increase was strongly dependent on pH and ionic strength. In vitro release studies revealed a marked pH-dependence of release rates and the reversibility of alginate-mAb1 complexation under physiological conditions. Two alginate-mAb1 sustained release formulations were developed by an internal gelation technique using CaCO(3) and CaHPO(4) as calcium sources for physical cross-linking. The CaCO(3) formulation provided a stable pH-environment, optimally suited for pH-sensitive proteins. CaHPO(4) led to a lower pH and stronger alginate-mAb1 interactions. The CaHPO(4) cross-linked alginate released mAb1 over a period of 10-15 days. The long release period and changes in viscoelastic properties of alginate, when being mixed with mAb1, indicate the incorporation of mAb1 molecules into a mixed network with alginate. The results of this study demonstrate that ionic interactions between polyanions and mAb1 are present and that they can be exploited for sustained release delivery of mAb1.
Collapse
Affiliation(s)
- Daniel Schweizer
- Biologics Process R&D, Technical R&D, Novartis Pharma AG, Basel, Switzerland
| | | | | | | |
Collapse
|
24
|
CNS penetration of intrathecal-lumbar idursulfase in the monkey, dog and mouse: implications for neurological outcomes of lysosomal storage disorder. PLoS One 2012; 7:e30341. [PMID: 22279584 PMCID: PMC3261205 DOI: 10.1371/journal.pone.0030341] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/14/2011] [Indexed: 02/03/2023] Open
Abstract
A major challenge for the treatment of many central nervous system (CNS) disorders is the lack of convenient and effective methods for delivering biological agents to the brain. Mucopolysaccharidosis II (Hunter syndrome) is a rare inherited lysosomal storage disorder resulting from a deficiency of iduronate-2-sulfatase (I2S). I2S is a large, highly glycosylated enzyme. Intravenous administration is not likely to be an effective therapy for disease-related neurological outcomes that require enzyme access to the brain cells, in particular neurons and oligodendrocytes. We demonstrate that intracerebroventricular and lumbar intrathecal administration of recombinant I2S in dogs and nonhuman primates resulted in widespread enzyme distribution in the brain parenchyma, including remarkable deposition in the lysosomes of both neurons and oligodendrocytes. Lumbar intrathecal administration also resulted in enzyme delivery to the spinal cord, whereas little enzyme was detected there after intraventricular administration. Mucopolysaccharidosis II model is available in mice. Lumbar administration of recombinant I2S to enzyme deficient animals reduced the storage of glycosaminoglycans in both superficial and deep brain tissues, with concurrent morphological improvements. The observed patterns of enzyme transport from cerebrospinal fluid to the CNS tissues and the resultant biological activity (a) warrant further investigation of intrathecal delivery of I2S via lumbar catheter as an experimental treatment for the neurological symptoms of Hunter syndrome and (b) may have broader implications for CNS treatment with biopharmaceuticals.
Collapse
|
25
|
Epidermal growth factor targeting of bacteriophage to the choroid plexus for gene delivery to the central nervous system via cerebrospinal fluid. Brain Res 2010; 1359:1-13. [PMID: 20732308 DOI: 10.1016/j.brainres.2010.08.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 08/09/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
Abstract
Because the choroid plexus normally controls the production and composition of cerebrospinal fluid and, as such, its many functions of the central nervous system, we investigated whether ligand-mediated targeting could deliver genes to its secretory epithelium. We show here that when bacteriophages are targeted with epidermal growth factor, they acquire the ability to enter choroid epithelial cells grown in vitro as cell cultures, ex vivo as tissue explants or in vivo by intracerebroventricular injection. The binding and internalization of these particles activate EGF receptors on targeted cells, and the dose- and time-dependent internalization of particles is inhibited by the presence of excess ligand. When the phage genome is further reengineered to contain like green fluorescent protein or firefly luciferase under control of the cytomegalovirus promoter, gene expression is detectable in the choroid plexus and ependymal epithelium by immunohistochemistry or by noninvasive imaging, respectively. Taken together, these data support the hypothesis that reengineered ligand-mediated gene delivery should be considered a viable strategy to increase the specificity of gene delivery to the central nervous system and bypass the blood-brain barrier so as to exploit the biological effectiveness of the choroid plexus as a portal of entry into the brain.
Collapse
|