1
|
Kawashima T, Nakamura M, Sakono M. A one-process production of completely biotinylated proteins in a T7 expression system. Biotechnol Appl Biochem 2024; 71:1070-1078. [PMID: 38770738 DOI: 10.1002/bab.2598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Streptavidin is a tetrameric protein with high specificity and affinity for biotin. The interaction between avidin and biotin has become a valuable tool in nanotechnology. In recent years, the site-specific biotin modification of proteins using biotin ligases, such as BirA, has attracted attention. This study established an in vivo method for achieving the complete biotinylation of target proteins using a single plasmid co-expressing BirA and its target proteins. Specifically, a biotin-modified protein was produced in Escherichia coli strain BL21(DE3) using a single plasmid containing genes encoding both BirA and a protein fused to BirA's substrate sequence, Avitag. This approach simplifies the production of biotinylated proteins in E. coli and allows the creation of various biotinylated protein types through gene replacement. Furthermore, the biotin modification rate of the obtained target protein could be evaluated using Native-PAGE without performing complicated isolation operations of biotinylated proteins. In Native-PAGE, biotin-modified proteins and unmodified proteins were confirmed as clearly different bands, and it was possible to easily derive the modification rate from the respective band intensities.
Collapse
Affiliation(s)
- Takuma Kawashima
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| | - Mitsuki Nakamura
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| | - Masafumi Sakono
- Department of Applied Chemistry, Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| |
Collapse
|
2
|
Lledos M, Calatayud DG, Cortezon-Tamarit F, Ge H, Pourzand C, Botchway SW, Sodupe M, Lledós A, Eggleston IM, Pascu SI. Tripodal BODIPY-Tagged and Functional Molecular Probes: Synthesis, Computational Investigations and Explorations by Multiphoton Fluorescence Lifetime Imaging Microscopy. Chemistry 2024; 30:e202400858. [PMID: 38887133 DOI: 10.1002/chem.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
A range of novel BODIPY derivatives with a tripodal aromatic core was synthesized and characterized spectroscopically. These new fluorophores showed promising features as probes for in vitro assays in live cells and offer strategic routes for further functionalization towards hybrid nanomaterials. Incorporation of biotin tags facilitated proof-of-concept access to targeted bioconjugates as molecular probes. Computational explorations using DFT and TD-DFT calculations identified the most stable tripodal linker conformations and predicted their absorption and emission behavior. The uptake and speciation of these molecules in living prostate cancer cells was imaged by single- and two-photon excitation techniques coupled with two-photon fluorescence lifetime imaging (2P FLIM).
Collapse
Affiliation(s)
- Marina Lledos
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
| | - David G Calatayud
- Department of Inorganic Chemistry, Universidad Autonoma de Madrid, Francisco Tomas y Valiente 7, 28049, Madrid, Spain
| | | | - Haobo Ge
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
- Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
| | - Charareh Pourzand
- Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, BA2 7AY, Bath, UK
| | - Stanley W Botchway
- STFC Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Science and Innovation Campus, Harwell, Oxfordshire, OX11 0QX, UK
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Ian M Eggleston
- Department of Life Sciences, University of Bath, BA2 7AY, Bath, UK
- Centre for Therapeutic Innovation, University of Bath, BA2 7AY, Bath, UK
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, U.K
- Centre for Therapeutic Innovation, University of Bath, BA2 7AY, Bath, UK
| |
Collapse
|
3
|
Kwon SY, You SH, Im JH, Nguyen DH, Kim DY, Pyo A, Kim GJ, Bom HS, Hong Y, Min JJ. Tumor Pre-Targeting System Using Streptavidin-Expressing Bacteria. Mol Imaging Biol 2024; 26:593-602. [PMID: 38814379 DOI: 10.1007/s11307-024-01915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE A major obstacle to targeted cancer therapy is identifying suitable targets that are specifically and abundantly expressed by solid tumors. Certain bacterial strains selectively colonize solid tumors and can deliver genetically encoded cargo molecules to the tumor cells. Here, we engineered bacteria to express monomeric streptavidin (mSA) in tumors, and developed a novel tumor pre-targeting system by visualizing the presence of tumor-associated mSA using a biotinylated imaging probe. PROCEDURES We constructed a plasmid expressing mSA fused to maltose-binding protein and optimized the ribosome binding site sequence to increase solubility and expression levels. E. coli MG1655 was transformed with the recombinant plasmid, expression of which is driven by the pBAD promotor. Expression of mSA was induced by L-arabinose 4 days after injection of bacteria into mice bearing CT26 mouse colon carcinoma cells. Selective accumulation of mSA in tumor tissues was visualized by optical imaging after administration of a biotinylated fluorescent dye. Counting of viable bacterial cells was also performed. RESULTS Compared with a conventional system, the novel expression system resulted in significantly higher expression of mSA and sustained binding to biotin. Imaging signals in tumor tissues were significantly stronger in the mSA-expressing group than in non-expressing group (P = 0.0005). Furthermore, the fluorescent signal in tumor tissues became detectable again after multiple inductions with L-arabinose. The bacterial counts in tumor tissues showed no significant differences between conditions with and without L-arabinose (P = 0.45). Western blot analysis of tumor tissues confirmed expression and binding of mSA to biotin. CONCLUSIONS We successfully engineered tumor-targeting bacteria carrying a recombinant plasmid expressing mSA, which was targeted to, and expressed in, tumor tissues. These data demonstrate the potential of this novel tumor pre-targeting system when combined with biotinylated imaging probes or therapeutic agents.
Collapse
Affiliation(s)
- Seong-Young Kwon
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, 58128, Republic of Korea
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea
| | - Sung-Hwan You
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea
- CNCure Biotech, Jeonnam, 58128, Republic of Korea
| | - Jin Hee Im
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, 58128, Republic of Korea
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea
| | - Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea
| | - Dong-Yeon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ayoung Pyo
- College of Pharmacy and Research Institute of Pharmaceutical Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University College of Natural Sciences, Gwangju, 61186, Republic of Korea
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, 58128, Republic of Korea
| | - Yeongjin Hong
- CNCure Biotech, Jeonnam, 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, 58128, Republic of Korea.
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Jeonnam, 58128, Republic of Korea.
- CNCure Biotech, Jeonnam, 58128, Republic of Korea.
| |
Collapse
|
4
|
Fathi-Karkan S, Sargazi S, Shojaei S, Farasati Far B, Mirinejad S, Cordani M, Khosravi A, Zarrabi A, Ghavami S. Biotin-functionalized nanoparticles: an overview of recent trends in cancer detection. NANOSCALE 2024; 16:12750-12792. [PMID: 38899396 DOI: 10.1039/d4nr00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Electrochemical bio-sensing is a potent and efficient method for converting various biological recognition events into voltage, current, and impedance electrical signals. Biochemical sensors are now a common part of medical applications, such as detecting blood glucose levels, detecting food pathogens, and detecting specific cancers. As an exciting feature, bio-affinity couples, such as proteins with aptamers, ligands, paired nucleotides, and antibodies with antigens, are commonly used as bio-sensitive elements in electrochemical biosensors. Biotin-avidin interactions have been utilized for various purposes in recent years, such as targeting drugs, diagnosing clinically, labeling immunologically, biotechnology, biomedical engineering, and separating or purifying biomolecular compounds. The interaction between biotin and avidin is widely regarded as one of the most robust and reliable noncovalent interactions due to its high bi-affinity and ability to remain selective and accurate under various reaction conditions and bio-molecular attachments. More recently, there have been numerous attempts to develop electrochemical sensors to sense circulating cancer cells and the measurement of intracellular levels of protein thiols, formaldehyde, vitamin-targeted polymers, huwentoxin-I, anti-human antibodies, and a variety of tumor markers (including alpha-fetoprotein, epidermal growth factor receptor, prostate-specific Ag, carcinoembryonic Ag, cancer antigen 125, cancer antigen 15-3, etc.). Still, the non-specific binding of biotin to endogenous biotin-binding proteins present in biological samples can result in false-positive signals and hinder the accurate detection of cancer biomarkers. This review summarizes various categories of biotin-functional nanoparticles designed to detect such biomarkers and highlights some challenges in using them as diagnostic tools.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166 Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shirin Shojaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye.
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
5
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
6
|
Xu Z, Zhou H, Li L, Chen Z, Zhang X, Feng Y, Wang J, Li Y, Wu Y. Immunoassay System Based on the Technology of Time-Resolved Fluorescence Resonance Energy Transfer. SENSORS (BASEL, SWITZERLAND) 2024; 24:1430. [PMID: 38474966 DOI: 10.3390/s24051430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
To enhance the specificity and sensitivity, cut the cost, and realize joint detection of multiple indicators, an immunoassay system based on the technology of time-resolved fluorescence resonance energy transfer (TR-FRET) was studied. Due to the FRET of the reagent, the donor probe and acceptor probe emitted specific fluorescence to enhance specificity. Long-lifetime specific fluorescence from the acceptor probe was combined with time-resolved technology to enhance sensitivity. A xenon flash lamp and a photomultiplier tube (PMT) were selected as the light source and detector, respectively. A filter-switching mechanism was placed in the light path, so the fluorescence signal from the donor and acceptor was measured alternately. The instrument's design is given, and some specificI parts are described in detail. Key technical specifications of the instrument and procalcitonin (PCT), C-reactive protein (CRP), and interleukin-6(IL-6) were tested, and the test results were presented subsequently. The CV value of the self-designed counting module is better than 0.01%, and the instrument noises for 620 nm and 665 nm are 41.44 and 10.59, respectively. When set at 37 °C, the temperature bias (B) is 0.06 °C, and the temperature fluctuation is 0.10 °C. The CV and bias are between ±3% and 5%, respectively, when pipetting volumes are between 10 μL and 100 μL. Within the concentration range of 0.01 nM to 10 nM, the luminescence values exhibit linear regression correlation coefficients greater than 0.999. For PCT detection, when the concentration ranges from 0.02 ng/mL to 50 ng/mL, the correlation coefficient of linear fitting exceeds 0.999, and the limit of quantification is 0.096 ng/mL. For CRP and IL-6, the detection concentration ranges from 0 ng/mL to 500 ng/mL and 0 ng/mL to 20 ng/mL, respectively, with limits of quantification of 2.70 ng/mL and 2.82 ng/mL, respectively. The experimental results confirm the feasibility of the technical and instrumental solutions.
Collapse
Affiliation(s)
- Zhengping Xu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Hong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Li Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhang Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xin Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yongtong Feng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jianping Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuan Li
- Chongqing Guoke Medical Innovation Technology Development Co., Ltd., Chongqing 401122, China
| | - Yanfan Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
7
|
Qin X, Li Y, Li C, Li X, Wu Y, Wu Q, Wen H, Jiang D, Liu S, Nan W, Liang Y, Zhang H. A Rapid and Simplified Method to Isolate Specific Regulators Based on Biotin-Avidin Binding Affinities in Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:883-893. [PMID: 38118073 DOI: 10.1021/acs.jafc.3c05638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Transcription factors (TFs) are indispensable components of transcriptional regulatory pathways involved in crop growth and development. Herein, we developed a new method for the identification of upstream TFs specific to genes in crops based on the binding affinities of biotin and avidin. First, we constructed and verified the new biotin and avidin system (BAS) by a coprecipitation assay. Subsequently, the feasibility of DNA-based BAS (DBAS) was further proved by in vivo and in vitro assays. Furthermore, we cloned the promoter of rice OsNRT1.1B and the possible regulators were screened and identified. Additionally, partial candidates were validated by the electrophoresis mobility shift assay (EMSA), yeast one-hybrid, and luciferase activity assays. Remarkably, the results showed that the candidates PIP3 and PIP19 both responded to nitrate immediately and overexpression of PIP3 caused retard growth, which indicates that the candidates are functional and the new DBAS method is useful to isolate regulators in crops.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuanyuan Wu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Huan Wen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Shifeng Liu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
8
|
Malley R, Lu YJ, Sebastian S, Zhang F, Willer DO. Multiple antigen presenting system (MAPS): state of the art and potential applications. Expert Rev Vaccines 2024; 23:196-204. [PMID: 38174559 DOI: 10.1080/14760584.2023.2299384] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Technological innovations have been instrumental in advancing vaccine design and protective benefit. Improvements in the safety, tolerability, and efficacy/effectiveness profiles have profoundly reduced vaccine-preventable global disease morbidity and mortality. Here we present an original vaccine platform, the Multiple Antigen Presenting System (MAPS), that relies on high-affinity interactions between a biotinylated polysaccharide (PS) and rhizavidin-fused pathogen-specific proteins. MAPS allows for flexible combinations of various PS and protein components. AREAS COVERED This narrative review summarizes the underlying principles of MAPS and describes its applications for vaccine design against bacterial and viral pathogens in non-clinical and clinical settings. EXPERT OPINION The utilization of high-affinity non-covalent biotin-rhizavidin interactions in MAPS allows for combining multiple PS and disease-specific protein antigens in a single vaccine. The modular design enables a simplified exchange of vaccine components. Published studies indicate that MAPS technology may support enhanced immunogenic breadth (covering more serotypes, inducing B- and T-cell responses) beyond that which may be elicited via PS- or protein-based conjugate vaccines. Importantly, a more detailed characterization of MAPS-based candidate vaccines is warranted, especially in clinical studies. It is anticipated that MAPS-based vaccines could be adapted and leveraged across numerous diseases of global public health importance.
Collapse
Affiliation(s)
- Richard Malley
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Ying-Jie Lu
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | | | - Fan Zhang
- Division of Infectious Diseases, Department of Medicine, Boston Children's Hospital, Boston, MA, USA
| | - David O Willer
- GSK, Global Medical Affairs, Vaccines Research and Development, Mississauga, Ontario, Canada
| |
Collapse
|
9
|
Yuan S, Che Y, Wang Z, Xing K, Xie X, Chen Y. Mitochondrion-targeted carboxymethyl chitosan hybrid nanoparticles loaded with Coenzyme Q10 protect cardiac grafts against cold ischaemia‒reperfusion injury in heart transplantation. J Transl Med 2023; 21:925. [PMID: 38124174 PMCID: PMC10734076 DOI: 10.1186/s12967-023-04763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Heart transplantation (HT) has been approved as an optimal therapeutic regimen for patients with terminal-stage cardiac failure. However, cold ischaemia‒reperfusion (I/R) injury remains an unavoidable and outstanding challenge, which is a major factor in early graft dysfunction and an obstacle to long-term survival in HT. Cold I/R injury induces cardiac graft injury by promoting mitochondrial dysfunction and augmenting free radical production and inflammatory responses. We therefore designed a mitochondrion-targeted nanocarrier loaded with Coenzyme Q10 (CoQ10) (CoQ10@TNPs) for treatment of cold I/R injury after cardiac graft in a murine heterotopic cardiac transplantation model. METHODS Hybrid nanoparticles composed of CaCO3/CaP/biotinylated-carboxymethylchitosan (CaCO3/CaP/BCMC) were synthesized using the coprecipitation method, and the mitochondria-targeting tetrapeptide SS31 was incorporated onto the surface of the hybrid nanoparticles through biotin-avidin interactions. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used for characterisation. In vitro, the hypoxia-reoxygenation model of H9c2 cells was employed to replicate in vivo cold I/R injury and treated with CoQ10@TNPs. The impact of CoQ10@TNPs on H9c2 cell injury was assessed by analysis of oxidative damage and apoptosis. In vivo, donor hearts (DHs) were perfused with preservation solution containing CoQ10@TNPs and stored in vitro at 4 °C for 12 h. The DHs were heterotopically transplanted and analysed for graft function, oxidative damage, apoptosis, and inflammatory markers 1 day post-transplantation. RESULTS CoQ10@TNPs were successfully synthesized and delivered CoQ10 to the mitochondria of the cold ischaemic myocardium. In vitro experiments demonstrated that CoQ10@TNPs was taken up by H9c2 cells at 4 °C and localized within the mitochondria, thus ameliorating oxidative stress damage and mitochondrial injury in cold I/R injury. In vivo experiments showed that CoQ10@TNPs accumulated in DH tissue at 4 °C, localized within the mitochondria during cold storage and improved cardiac graft function by attenuating mitochondrial oxidative injury and inflammation. CONCLUSIONS CoQ10@TNPs can precisely deliver CoQ10 to the mitochondria of cold I/R-injured cardiomyocytes to effectively eliminate mitochondrial reactive oxygen species (mtROS), thus reducing oxidative injury and inflammatory reactions in cold I/R-injured graft tissues and finally improving heart graft function. Thus, CoQ10@TNPs offer an effective approach for safeguarding cardiac grafts against extended periods of cold ischaemia, emphasizing the therapeutic potential in mitigating cold I/R injury during HT. These findings present an opportunity to enhance existing results following HT and broaden the range of viable grafts for transplantation.
Collapse
Affiliation(s)
- Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanjia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Zhiwei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China.
| | - Kai Xing
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoping Xie
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanyang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430000, Hubei, People's Republic of China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Tripathi R, Guglani A, Ghorpade R, Wang B. Biotin conjugates in targeted drug delivery: is it mediated by a biotin transporter, a yet to be identified receptor, or (an)other unknown mechanism(s)? J Enzyme Inhib Med Chem 2023; 38:2276663. [PMID: 37955285 PMCID: PMC10653662 DOI: 10.1080/14756366.2023.2276663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
Conjugation of drugs with biotin is a widely studied strategy for targeted drug delivery. The structure-activity relationship (SAR) studies through H3-biotin competition experiments conclude with the presence of a free carboxylic acid being essential for its uptake via the sodium-dependent multivitamin transporter (SMVT, the major biotin transporter). However, biotin conjugation with a payload requires modification of the carboxylic acid to an amide or ester group. Then, there is the question as to how/whether the uptake of biotin conjugates goes through the SMVT. If not, then what is the mechanism? Herein, we present known uptake mechanisms of biotin and its applications reported in the literature. We also critically analyse possible uptake mechanism(s) of biotin conjugates to address the disconnect between the results from SMVT-based SAR and "biotin-facilitated" targeted drug delivery. We believe understanding the uptake mechanism of biotin conjugates is critical for their future applications and further development.
Collapse
Affiliation(s)
- Ravi Tripathi
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Anchala Guglani
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Rujuta Ghorpade
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
11
|
Meng W, Wang L, Du X, Xie M, Yang F, Li F, Wu ZE, Gan J, Wei H, Cao C, Lu S, Cao B, Li L, Li L, Zhu G. Engineered mesenchymal stem cell-derived extracellular vesicles constitute a versatile platform for targeted drug delivery. J Control Release 2023; 363:235-252. [PMID: 37739016 DOI: 10.1016/j.jconrel.2023.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Extracellular vesicles (EVs) are promising therapeutic carriers owing to their ideal size range and intrinsic biocompatibility. However, limited targeting ability has caused major setbacks in the clinical application of EV therapeutics. To overcome this, we genetically engineered natural free streptavidin (SA) on the cellular surface of bone marrow mesenchymal stem cells (BMSCs) and obtained typical EVs from these cells (BMSC-EVs). Biotin-coated gold nanoparticles confirmed the expression of SA on the membrane of EVs, which has a high affinity for biotinylated molecules. Using a squamous cell carcinoma model, we demonstrated that a pH-sensitive fusogenic peptide -modification of BMSC-EVs achieved targetability in the microenvironment of a hypoxic tumor to deliver anti-tumor drugs. Using EGFR+HER2- and EGFR-HER2+ breast cancer models, we demonstrated that anti-EGFR and anti-HER2 modifications of BMSC-EVs were able to specifically deliver drugs to EGFR+ and HER2+ tumors, respectively. Using a collagen-induced arthritis model, we confirmed that anti-IL12/IL23-modified BMSC-EVs specifically accumulated in the arthritic joint and alleviated inflammation. Administration of SA-overexpressing BMSC-EVs has limited immunogenicity and high safety in vivo, suggesting that BMSC-derived EVs are ideal drug delivery vehicle. These representative scenarios of targeting modification suggest that, using different biotinylated molecules, the SA-overexpressing BMSC-EVs could be endowed with different targetabilities, which allows BMSC-EVs to serve as a versatile platform for targeted drug delivery under various situations.
Collapse
Affiliation(s)
- Wanrong Meng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linlin Wang
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610041 Chengdu, China
| | - Xueyu Du
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610041 Chengdu, China
| | - Mingzhe Xie
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610041 Chengdu, China
| | - Fan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fei Li
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Zhanxuan E Wu
- Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Jianguo Gan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongxuan Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chang Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shun Lu
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610041 Chengdu, China
| | - Bangrong Cao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610041 Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Li
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610041 Chengdu, China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
12
|
Porębska N, Ciura K, Chorążewska A, Zakrzewska M, Otlewski J, Opaliński Ł. Multivalent protein-drug conjugates - An emerging strategy for the upgraded precision and efficiency of drug delivery to cancer cells. Biotechnol Adv 2023; 67:108213. [PMID: 37453463 DOI: 10.1016/j.biotechadv.2023.108213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/20/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
With almost 20 million new cases per year, cancer constitutes one of the most important challenges for public health systems. Unlike traditional chemotherapy, targeted anti-cancer strategies employ sophisticated therapeutics to precisely identify and attack cancer cells, limiting the impact of drugs on healthy cells and thereby minimizing the unwanted side effects of therapy. Protein drug conjugates (PDCs) are a rapidly growing group of targeted therapeutics, composed of a cancer-recognition factor covalently coupled to a cytotoxic drug. Several PDCs, mainly in the form of antibody-drug conjugates (ADCs) that employ monoclonal antibodies as cancer-recognition molecules, are used in the clinic and many PDCs are currently in clinical trials. Highly selective, strong and stable interaction of the PDC with the tumor marker, combined with efficient, rapid endocytosis of the receptor/PDC complex and its subsequent effective delivery to lysosomes, is critical for the efficacy of targeted cancer therapy with PDCs. However, the bivalent architecture of contemporary clinical PDCs is not optimal for tumor receptor recognition or PDCs internalization. In this review, we focus on multivalent PDCs, which represent a rapidly evolving and highly promising therapeutics that overcome most of the limitations of current bivalent PDCs, enhancing the precision and efficiency of drug delivery to cancer cells. We present an expanding set of protein scaffolds used to generate multivalent PDCs that, in addition to folding into well-defined multivalent molecular structures, enable site-specific conjugation of the cytotoxic drug to ensure PDC homogeneity. We provide an overview of the architectures of multivalent PDCs developed to date, emphasizing their efficacy in the targeted treatment of various cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Krzysztof Ciura
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Aleksandra Chorążewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland.
| |
Collapse
|
13
|
Bhadran A, Shah T, Babanyinah GK, Polara H, Taslimy S, Biewer MC, Stefan MC. Recent Advances in Polycaprolactones for Anticancer Drug Delivery. Pharmaceutics 2023; 15:1977. [PMID: 37514163 PMCID: PMC10385458 DOI: 10.3390/pharmaceutics15071977] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Poly(ε-Caprolactone)s are biodegradable and biocompatible polyesters that have gained considerable attention for drug delivery applications due to their slow degradation and ease of functionalization. One of the significant advantages of polycaprolactone is its ability to attach various functionalities to its backbone, which is commonly accomplished through ring-opening polymerization (ROP) of functionalized caprolactone monomer. In this review, we aim to summarize some of the most recent advances in polycaprolactones and their potential application in drug delivery. We will discuss different types of polycaprolactone-based drug delivery systems and their behavior in response to different stimuli, their ability to target specific locations, morphology, as well as their drug loading and release capabilities.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Somayeh Taslimy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
14
|
Li X, Pan C, Li C, Wang K, Ye J, Sun P, Guo Y, Wu J, Wang H, Zhu L. Self-Assembled Proteinaceous Nanoparticles for Co-Delivery of Antigens and Cytosine Phosphoguanine (CpG) Adjuvants: Implications for Nanovaccines. ACS APPLIED NANO MATERIALS 2023; 6:7637-7648. [PMID: 37207131 PMCID: PMC10178782 DOI: 10.1021/acsanm.3c00787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Nanotechnology has developed rapidly, giving rise to "nanovaccinology". In particular, protein-based nanocarriers have gained widespread attention because of their excellent biocompatibility. As the development of flexible and rapid vaccines is challenging, modular extensible nanoparticles are urgently needed. In this study, a multifunctional nanocarrier capable of delivering various biomolecules (including polysaccharides, proteins, and nucleic acids) was designed by fusing the cholera toxin B subunit with streptavidin. Then, the nanocarrier was used to prepare a bioconjugate nanovaccine against S. flexneri by co-delivery of antigens and CpG adjuvants. Subsequent experimental results indicated that the nanovaccine with multiple components could stimulate both adaptive and innate immunity. Moreover, combining nanocarriers and CpG adjuvants with glycan antigens could improve the survival of vaccinated mice during the interval of two vaccination injections. The multifunctional nanocarrier and the design strategy demonstrated in this study could be utilized in the development of many other nanovaccines against infectious diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Chao Pan
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Caixia Li
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Kangfeng Wang
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Jingqin Ye
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Peng Sun
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Yan Guo
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Jun Wu
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Hengliang Wang
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| | - Li Zhu
- State Key Laboratory of Pathogen
and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China
| |
Collapse
|
15
|
Che YJ, Ren XH, Wang ZW, Wu Q, Xing K, Zhang M, Xu C, Han D, Yuan S, Zheng SH, Chen YY, Liao XR, Shi F, Zhong XH, Cai X, Cheng SX. Lymph-Node-Targeted Drug Delivery for Effective Immunomodulation to Prolong the Long-Term Survival After Heart Transplantation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207227. [PMID: 36314402 DOI: 10.1002/adma.202207227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The chronic rejection responses and side effects of the systematic administration of immunosuppressants are the main obstacles to heart allograft and patient survival. The development of xenotransplantation also urgently requires more efficient immune regulation strategies. Herein, it is demonstrated that lymph-node (LN)-targeted drug delivery can realize LN-specific immunomodulation with attenuated immune suppression on distant peripheral immune organs to effectively prolong long-term survival after heart transplantation in a chronic murine heart transplantation model. A chemokine C-C motif ligand 21 (CCL21) specific aptamer for LN targeting is decorated onto the surface of the hybrid nanoparticular delivery vector mainly composed of CaCO3 /CaP/heparin. The targeting delivery system can dramatically enhance accumulation of the loaded immunosuppressant, fingolimod hydrochloride (FTY720), in draining lymph nodes (dLNs) for inducing powerful immune suppression. By promoting the generation of endogenous regulatory T cells (Tregs ) and decreasing the proportion of effector T cells (Teffs ) in dLNs after heart transplantation, the LN-targeting strategy can effectively regulate local immune responses instead of systemic immunity, which reduces the incidence of long-term complications. This study provides an efficient strategy to improve the survival rate after organ transplantation by precise and localized immunoregulation with minimized side effects of immunosuppression.
Collapse
Affiliation(s)
- Yan-Jia Che
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhi-Wei Wang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Qi Wu
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Kai Xing
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Min Zhang
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Shun Yuan
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Si-Hao Zheng
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Yuan-Yang Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Xin-Ru Liao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Feng Shi
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Xiao-Han Zhong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Xin Cai
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
16
|
Li W, Yin S, Shen Y, Li H, Yuan L, Zhang XB. Molecular Engineering of pH-Responsive NIR Oxazine Assemblies for Evoking Tumor Ferroptosis via Triggering Lysosomal Dysfunction. J Am Chem Soc 2023; 145:3736-3747. [PMID: 36730431 DOI: 10.1021/jacs.2c13222] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ferroptosis, a newly discovered form of regulated cell death, is emerging as a promising approach to tumor therapy. However, the spatiotemporal control of cell-intrinsic Fenton chemistry to modulate tumor ferroptosis remains challenging. Here, we report an oxazine-based activatable molecular assembly (PTO-Biotin Nps), which is capable of triggering the lysosomal dysfunction-mediated Fenton pathway with excellent spatiotemporal resolution via near-infrared (NIR) light to evoke ferroptosis. In this system, a pH-responsive NIR photothermal oxazine molecule was designed and functionalized with a tumor-targeting hydrophilic biotin-poly(ethylene glycol) (PEG) chain to engineer well-defined nanostructured assemblies within a single-molecular framework. PTO-Biotin Nps possesses a selective tropism to lysosome accumulation inside tumor cells, accommodated by its enhanced photothermal activity in the acidic microenvironment. Upon NIR light activation, PTO-Biotin Nps promoted lysosomal dysfunction and induced cytosolic acidification and impaired autophagy. More importantly, photoactivation-mediated lysosomal dysfunction via PTO-Biotin Nps was found to markedly enhance cellular Fenton reactions and evoke ferroptosis, thereby improving antitumor efficacy and mitigating systemic side effects. Overall, our study demonstrates that the molecular engineering approach of pH-responsive photothermal oxazine assemblies enables the spatiotemporal modulation of the intrinsic ferroptosis mechanism, offering a novel strategy for the development of metal-free Fenton inducers in antitumor therapy.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shulu Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Haiyan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
17
|
Abstract
Super-resolution imaging techniques that overcome the diffraction limit of light have gained wide popularity for visualizing cellular structures with nanometric resolution. Following the pace of hardware developments, the availability of new fluorescent probes with superior properties is becoming ever more important. In this context, fluorescent nanoparticles (NPs) have attracted increasing attention as bright and photostable probes that address many shortcomings of traditional fluorescent probes. The use of NPs for super-resolution imaging is a recent development and this provides the focus for the current review. We give an overview of different super-resolution methods and discuss their demands on the properties of fluorescent NPs. We then review in detail the features, strengths, and weaknesses of each NP class to support these applications and provide examples from their utilization in various biological systems. Moreover, we provide an outlook on the future of the field and opportunities in material science for the development of probes for multiplexed subcellular imaging with nanometric resolution.
Collapse
Affiliation(s)
- Wei Li
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | | | - Bingfu Lei
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Yingliang Liu
- Key
Laboratory for Biobased Materials and Energy of Ministry of Education,
College of Materials and Energy, South China
Agricultural University, Guangzhou 510642, People’s Republic
of China
| | - Clemens F. Kaminski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
18
|
Sut TN, Park H, Koo DJ, Yoon BK, Jackman JA. Distinct Binding Properties of Neutravidin and Streptavidin Proteins to Biotinylated Supported Lipid Bilayers: Implications for Sensor Functionalization. SENSORS 2022; 22:s22145185. [PMID: 35890865 PMCID: PMC9316181 DOI: 10.3390/s22145185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022]
Abstract
The exceptional strength and stability of noncovalent avidin-biotin binding is widely utilized as an effective bioconjugation strategy in various biosensing applications, and neutravidin and streptavidin proteins are two commonly used avidin analogues. It is often regarded that the biotin-binding abilities of neutravidin and streptavidin are similar, and hence their use is interchangeable; however, a deeper examination of how these two proteins attach to sensor surfaces is needed to develop reliable surface functionalization options. Herein, we conducted quartz crystal microbalance-dissipation (QCM-D) biosensing experiments to investigate neutravidin and streptavidin binding to biotinylated supported lipid bilayers (SLBs) in different pH conditions. While streptavidin binding to biotinylated lipid receptors was stable and robust across the tested pH conditions, neutravidin binding strongly depended on the solution pH and was greater with increasingly acidic pH conditions. These findings led us to propose a two-step mechanistic model, whereby streptavidin and neutravidin binding to biotinylated sensing interfaces first involves nonspecific protein adsorption that is mainly influenced by electrostatic interactions, followed by structural rearrangement of adsorbed proteins to specifically bind to biotin functional groups. Practically, our findings demonstrate that streptavidin is preferable to neutravidin for constructing SLB-based sensing platforms and can improve sensing performance for detecting antibody–antigen interactions.
Collapse
Affiliation(s)
- Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Hyeonjin Park
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
- Correspondence: (B.K.Y.); (J.A.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea; (T.N.S.); (H.P.); (D.J.K.)
- Correspondence: (B.K.Y.); (J.A.J.)
| |
Collapse
|
19
|
Kim S, Shukla RK, Kim E, Cressman SG, Yu H, Baek A, Choi H, Kim A, Sharma A, Wang Z, Huang CA, Reneau JC, Boyaka PN, Liyanage NPM, Kim S. Comparison of CD3e Antibody and CD3e-sZAP Immunotoxin Treatment in Mice Identifies sZAP as the Main Driver of Vascular Leakage. Biomedicines 2022; 10:1221. [PMID: 35740248 PMCID: PMC9220018 DOI: 10.3390/biomedicines10061221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 02/03/2023] Open
Abstract
Anti-CD3-epsilon (CD3e) monoclonal antibodies (mAbs) and CD3e immunotoxins (ITs) are promising targeted therapy options for various T-cell disorders. Despite significant advances in mAb and IT engineering, vascular leakage syndrome (VLS) remains a major dose-limiting toxicity for ITs and has been poorly characterized for recent "engineered" mAbs. This study undertakes a direct comparison of non-mitogenic CD3e-mAb (145-2C11 with Fc-silentTM murine IgG1: S-CD3e-mAb) and a new murine-version CD3e-IT (saporin-streptavidin (sZAP) conjugated with S-CD3e-mAb: S-CD3e-IT) and identifies their distinct toxicity profiles in mice. As expected, the two agents showed different modes of action on T cells, with S-CD3e-mAb inducing nearly complete modulation of CD3e on the cell surface, while S-CD3e-IT depleted the cells. S-CD3e-IT significantly increased the infiltration of polymorphonuclear leukocytes (PMNs) into the tissue parenchyma of the spleen and lungs, a sign of increased vascular permeability. By contrast, S-CD3e-mAbs-treated mice showed no notable signs of vascular leakage. Treatment with control ITs (sZAP conjugated with Fc-silent isotype antibodies) induced significant vascular leakage without causing T-cell deaths. These results demonstrate that the toxin portion of S-CD3e-IT, not the CD3e-binding portion (S-CD3e-mAb), is the main driver of vascular leakage, thus clarifying the molecular target for improving safety profiles in CD3e-IT therapy.
Collapse
Affiliation(s)
- Shihyoung Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Rajni Kant Shukla
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Eunsoo Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Sophie G. Cressman
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Hannah Yu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Alice Baek
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Hyewon Choi
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Alan Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Amit Sharma
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
- Department of Microbial Immunity and Infection, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Zhirui Wang
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Division of Plastic & Reconstructive Surgery, 12700 East 19th Avenue, Aurora, CO 80045, USA; (Z.W.); (C.A.H.)
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Division of Transplant Surgery, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - Christene A. Huang
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Division of Plastic & Reconstructive Surgery, 12700 East 19th Avenue, Aurora, CO 80045, USA; (Z.W.); (C.A.H.)
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Division of Transplant Surgery, 12700 East 19th Avenue, Aurora, CO 80045, USA
| | - John C. Reneau
- Division of Hematology, The Ohio State University, Columbus, OH 43210, USA;
| | - Prosper N. Boyaka
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
| | - Namal P. M. Liyanage
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
- Department of Microbial Immunity and Infection, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Sanggu Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA; (S.K.); (R.K.S.); (E.K.); (S.G.C.); (H.Y.); (A.B.); (H.C.); (A.K.); (A.S.); (P.N.B.); (N.P.M.L.)
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
20
|
Khan N, Ruchika, Kumar Dhritlahre R, Saneja A. Recent advances in dual-ligand targeted nanocarriers for cancer therapy. Drug Discov Today 2022; 27:2288-2299. [DOI: 10.1016/j.drudis.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/05/2022] [Accepted: 04/11/2022] [Indexed: 12/30/2022]
|
21
|
Claudia Pedrozo da Silva A, Fabiano de Freitas C, Aparecida Errerias Fernandes Cardinali C, Lazzarotto Braga T, Caetano W, Ida Bonini Ravanelli M, Hioka N, Luiz Tessaro A. Biotin-functionalized silica nanoparticles loaded with Erythrosine B asselective photodynamic treatment for Glioblastoma Multiforme. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Chen H, Feng Y, Cao Y, Tang Y, Liu T. A study on the detection of free and bound biotin based on TR-FRET technology. Analyst 2021; 147:318-324. [PMID: 34919107 DOI: 10.1039/d1an01664d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biotin is widely used in biological applications due to its highly selective and stable interaction with avidin, which highlights the great potential value of the quantitative determination of biotin concentration. However, the currently reported methods have many defects such as complicated operation processes and low sensitivity. Here, the time-resolved fluorescence resonance energy transfer (TR-FRET) assay is introduced to establish a convenient, rapid and sensitive biotin quantitative detection strategy. Europium cryptate (Eu3+) acts as an energy donor to label streptavidin, while APC acts as an energy acceptor to label biotin. Biotin in aqueous solution interacts with streptavidin in a competition mode. The obtained biotin detection range is 0.05-100 nM and the optimal limit of detection (LOD) of 0.03 nM biotin is obtained. Furthermore, an enzyme digestion test and a competition mode test were performed to analyze biotin in different states. The method used in this work has greatly improved the sensitivity of biotin quantitative detection and it's for the first time that a systematic study on the difference between free and bound biotin based on concentration results is conducted. It can be further extended to the detection of other biological molecules or multiplex detection of other small molecules.
Collapse
Affiliation(s)
- Heng Chen
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
| | - Yongtong Feng
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
| | - Yang Cao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
| | - Yuguo Tang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
| | - Tao Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China.
| |
Collapse
|
23
|
Fatima I, Rahdar A, Sargazi S, Barani M, Hassanisaadi M, Thakur VK. Quantum Dots: Synthesis, Antibody Conjugation, and HER2-Receptor Targeting for Breast Cancer Therapy. J Funct Biomater 2021; 12:75. [PMID: 34940554 PMCID: PMC8708439 DOI: 10.3390/jfb12040075] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is becoming one of the main lethal carcinomas in the recent era, and its occurrence rate is increasing day by day. There are different breast cancer biomarkers, and their overexpression takes place in the metastasis of cancer cells. The most prevalent breast cancer biomarker is the human epidermal growth factor receptor2 (HER2). As this biomarker is overexpressed in malignant breast tissues, it has become the main focus in targeted therapies to fight breast cancer. There is a cascade of mechanisms involved in metastasis and cell proliferation in cancer cells. Nanotechnology has become extremely advanced in targeting and imaging cancerous cells. Quantum dots (QDs) are semiconductor NPs, and they are used for bioimaging, biolabeling, and biosensing. They are synthesized by different approaches such as top-down, bottom-up, and synthetic methods. Fully human monoclonal antibodies synthesized using transgenic mice having human immunoglobulin are used to target malignant cells. For the HER2 receptor, herceptin® (trastuzumab) is the most specific antibody (Ab), and it is conjugated with QDs by using different types of coupling mechanisms. This quantum dot monoclonal antibody (QD-mAb) conjugate is localized by injecting it into the blood vessel. After the injection, it goes through a series of steps to reach the intracellular space, and bioimaging of specifically the HER2 receptor occurs, where apoptosis of the cancer cells takes place either by the liberation of Ab or the free radicals.
Collapse
Affiliation(s)
- Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran; (M.B.); (M.H.)
| | - Mohadeseh Hassanisaadi
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran; (M.B.); (M.H.)
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 76184-11764, Iran
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| |
Collapse
|
24
|
A novel pneumococcal protein-polysaccharide conjugate vaccine based on biotin-streptavidin. Infect Immun 2021; 90:e0035221. [PMID: 34694917 DOI: 10.1128/iai.00352-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumococcal disease is a serious public health problem worldwide and an important cause of morbidity and mortality among children and adults in developing countries. Although vaccination is among the most effective approaches to prevent and control pneumococcal diseases, approved vaccines have limited protective effects. We developed a pneumococcal protein-polysaccharide conjugate vaccine that is mediated by the non-covalent interaction between biotin and streptavidin. Biotinylated type IV capsular polysaccharide was incubated with a fusion protein containing core streptavidin and Streptococcus pneumoniae virulence protein and relying on the non-covalent interaction between biotin and streptavidin to prepare the protein-polysaccharide conjugate vaccine. Analysis of vaccine efficacy revealed that mice immunized with the protein-polysaccharide conjugate vaccine produced antibodies with high potency against virulence proteins and polysaccharide antigens and were able to induce Th1 and Th17 responses. The antibodies identified using an opsonophagocytic assay were capable of activating the complement system and promoting pathogen elimination by phagocytes. Additionally, mice immunized with the protein-polysaccharide conjugate vaccine and then infected with a lethal dose of Streptococcus pneumoniae demonstrated induced protective immunity. The data indicated that the pneumococcal protein-polysaccharide (biotin-streptavidin) conjugate vaccine demonstrated broad-spectrum activity applicable to a wide range of people and ease of direct coupling between protein and polysaccharide. These findings provide further evidence for the application of biotin-streptavidin in S. pneumoniae vaccines.
Collapse
|
25
|
Wang Y, Cong H, Wang S, Yu B, Shen Y. Development and application of ultrasound contrast agents in biomedicine. J Mater Chem B 2021; 9:7633-7661. [PMID: 34586124 DOI: 10.1039/d1tb00850a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the rapid development of molecular imaging, ultrasound (US) medicine has evolved from traditional imaging diagnosis to integrated diagnosis and treatment at the molecular level. Ultrasound contrast agents (UCAs) play a crucial role in the integration of US diagnosis and treatment. As the micro-bubbles (MBs) in UCAs can enhance the cavitation effect and promote the biological effect of US, UCAs have also been studied in the fields of US thrombolysis, mediated gene transfer, drug delivery, and high intensity focused US. The application range of UCAs is expanding, and the value of their applications is improving. This paper reviews the development and application of UCAs in biomedicine in recent years, and the existing problems and prospects are pointed out.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
26
|
Famta P, Shah S, Chatterjee E, Singh H, Dey B, Guru SK, Singh SB, Srivastava S. Exploring new Horizons in overcoming P-glycoprotein-mediated multidrug-resistant breast cancer via nanoscale drug delivery platforms. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100054. [PMID: 34909680 PMCID: PMC8663938 DOI: 10.1016/j.crphar.2021.100054] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
The high probability (13%) of women developing breast cancer in their lifetimes in America is exacerbated by the emergence of multidrug resistance after exposure to first-line chemotherapeutic agents. Permeation glycoprotein (P-gp)-mediated drug efflux is widely recognized as the major driver of this resistance. Initial in vitro and in vivo investigations of the co-delivery of chemotherapeutic agents and P-gp inhibitors have yielded satisfactory results; however, these results have not translated to clinical settings. The systemic delivery of multiple agents causes adverse effects and drug-drug interactions, and diminishes patient compliance. Nanocarrier-based site-specific delivery has recently gained substantial attention among researchers for its promise in circumventing the pitfalls associated with conventional therapy. In this review article, we focus on nanocarrier-based co-delivery approaches encompassing a wide range of P-gp inhibitors along with chemotherapeutic agents. We discuss the contributions of active targeting and stimuli responsive systems in imparting site-specific cytotoxicity and reducing both the dose and adverse effects.
Collapse
Affiliation(s)
- Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Essha Chatterjee
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Hoshiyar Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Biswajit Dey
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
27
|
Farzipour S, Shaghaghi Z, Abbasi S, Albooyeh H, Alvandi M. Recent Achievements about Targeted Alpha Therapy-Based Targeting Vectors and Chelating Agents. Anticancer Agents Med Chem 2021; 22:1496-1510. [PMID: 34315393 DOI: 10.2174/1871520621666210727120308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
One of the most rapidly growing options in the management of cancer therapy is Targeted Alpha Therapy (TAT) through which lethal α-emitting radionuclides conjugated to tumor-targeting vectors selectively deliver high amount of radiation to cancer cells.225Ac, 212Bi, 211At, 213Bi, and 223Ra have been investigated by plenty of clinical trials and preclinical researches for the treatment of smaller tumor burdens, micro-metastatic disease, and post-surgery residual disease. In order to send maximum radiation to tumor cells while minimizing toxicity in normal cells, a high affinity of targeting vectors to cancer tissue is essential. Besides that, the stable and specific complex between chelating agent and α-emitters was found as a crucial parameter. The present review was planned to highlight recent achievements about TAT-based targeting vectors and chelating agents and provide further insight for future researches.
Collapse
Affiliation(s)
- Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Shaghaghi
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Abbasi
- Department of Radiology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajar Albooyeh
- Department of Nuclear Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alvandi
- Department of Nuclear Medicine and Molecular Imaging, Clinical Development Research Unit of Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
28
|
Sarrett SM, Keinänen O, Dayts EJ, Dewaele-Le Roi G, Rodriguez C, Carnazza KE, Zeglis BM. Inverse electron demand Diels-Alder click chemistry for pretargeted PET imaging and radioimmunotherapy. Nat Protoc 2021; 16:3348-3381. [PMID: 34127865 PMCID: PMC8917728 DOI: 10.1038/s41596-021-00540-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/22/2021] [Indexed: 11/08/2022]
Abstract
Radiolabeled antibodies have shown promise as tools for both the nuclear imaging and endoradiotherapy of cancer, but the protracted circulation time of radioimmunoconjugates can lead to high radiation doses to healthy tissues. To circumvent this issue, we have developed an approach to positron emission tomography (PET) imaging and radioimmunotherapy (RIT) predicated on radiolabeling the antibody after it has reached its target within the body. This in vivo pretargeting strategy is based on the rapid and bio-orthogonal inverse electron demand Diels-Alder reaction between tetrazine (Tz) and trans-cyclooctene (TCO). Pretargeted PET imaging and RIT using TCO-modified antibodies in conjunction with Tz-bearing radioligands produce high activity concentrations in target tissues as well as reduced radiation doses to healthy organs compared to directly labeled radioimmunoconjugates. Herein, we describe how to prepare a TCO-modified antibody (humanized A33-TCO) as well as how to synthesize two Tz-bearing radioligands: one labeled with the positron-emitting radiometal copper-64 ([64Cu]Cu-SarAr-Tz) and one labeled with the β-emitting radiolanthanide lutetium-177 ([177Lu]Lu-DOTA-PEG7-Tz). We also provide a detailed description of pretargeted PET and pretargeted RIT experiments in a murine model of human colorectal carcinoma. Proper training in both radiation safety and the handling of laboratory mice is required for the successful execution of this protocol.
Collapse
Affiliation(s)
- Samantha M Sarrett
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Outi Keinänen
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Chemistry, Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Eric J Dayts
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
| | - Guillaume Dewaele-Le Roi
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Kathryn E Carnazza
- Brain and Mind Research Institute & Appel Institute for Alzheimer's Disease Research, Weill Cornell Medical College, New York, NY, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.
- PhD Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
29
|
Lyu Y, Martínez Á, D’Incà F, Mancin F, Scrimin P. The Biotin-Avidin Interaction in Biotinylated Gold Nanoparticles and the Modulation of Their Aggregation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1559. [PMID: 34199307 PMCID: PMC8231960 DOI: 10.3390/nano11061559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022]
Abstract
The biotin-avidin interaction is used as a binding tool for the conjugation of biomolecules for more diverse applications; these include nanoparticle conjugation. Despite this, a thorough investigation on the different aggregates that may result from the interaction of biotinylated nanoparticles (gold nanoparticles, AuNPs, in this work) with avidin has not been carried out so far. In this paper, we address this problem and show the type of aggregates formed under thermodynamic and kinetic control by varying the biotinylated AuNP/avidin ratio and the order of addition of the two partners. The analysis was performed by also addressing the amount of protein able to interact with the AuNPs surface and is fully supported by the TEM images collected for the different samples and the shift of the surface plasmon resonance band. We show that the percentage of saturation depends on the size of the nanoparticles, and larger nanoparticles (19 nm in diameter) manage to accommodate a relatively larger amount of avidins than smaller ones (11 nm). The AuNPs are isolated or form small clusters (mostly dimers or trimers) when a large excess or a very low amount of avidin is present, respectively, or form large clusters at stoichiometric concentration of the protein. Daisy-like systems are formed under kinetic control conditions when nanoparticles first covered with the protein are treated with a second batch of biotinylated ones but devoid of avidin.
Collapse
Affiliation(s)
| | | | | | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, 35131 Padova, Italy; (Y.L.); (Á.M.); (F.D.)
| | - Paolo Scrimin
- Department of Chemical Sciences, University of Padova, via Marzolo, 1, 35131 Padova, Italy; (Y.L.); (Á.M.); (F.D.)
| |
Collapse
|
30
|
Functionalization of Cellulose-Based Hydrogels with Bi-Functional Fusion Proteins Containing Carbohydrate-Binding Modules. MATERIALS 2021; 14:ma14123175. [PMID: 34207652 PMCID: PMC8227779 DOI: 10.3390/ma14123175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023]
Abstract
Materials with novel and enhanced functionalities can be obtained by modifying cellulose with a range of biomolecules. This functionalization can deliver tailored cellulose-based materials with enhanced physical and chemical properties and control of biological interactions that match specific applications. One of the foundations for the success of such biomaterials is to efficiently control the capacity to combine relevant biomolecules into cellulose materials in such a way that the desired functionality is attained. In this context, our main goal was to develop bi-functional biomolecular constructs for the precise modification of cellulose hydrogels with bioactive molecules of interest. The main idea was to use biomolecular engineering techniques to generate and purify different recombinant fusions of carbohydrate binding modules (CBMs) with significant biological entities. Specifically, CBM-based fusions were designed to enable the bridging of proteins or oligonucleotides with cellulose hydrogels. The work focused on constructs that combine a family 3 CBM derived from the cellulosomal-scaffolding protein A from Clostridium thermocellum (CBM3) with the following: (i) an N-terminal green fluorescent protein (GFP) domain (GFP-CBM3); (ii) a double Z domain that recognizes IgG antibodies; and (iii) a C-terminal cysteine (CBM3C). The ability of the CBM fusions to bind and/or anchor their counterparts onto the surface of cellulose hydrogels was evaluated with pull-down assays. Capture of GFP-CBM3 by cellulose was first demonstrated qualitatively by fluorescence microscopy. The binding of the fusion proteins, the capture of antibodies (by ZZ-CBM3), and the grafting of an oligonucleotide (to CBM3C) were successfully demonstrated. The bioactive cellulose platform described here enables the precise anchoring of different biomolecules onto cellulose hydrogels and could contribute significatively to the development of advanced medical diagnostic sensors or specialized biomaterials, among others.
Collapse
|
31
|
Ye Q, Wang Y, Shen S, Xu C, Wang J. Biomaterials-Based Delivery of Therapeutic Antibodies for Cancer Therapy. Adv Healthc Mater 2021; 10:e2002139. [PMID: 33870637 DOI: 10.1002/adhm.202002139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/05/2021] [Indexed: 12/19/2022]
Abstract
Considerable breakthroughs in the treatment of malignant tumors using antibody drugs, especially immunomodulating monoclonal antibodies (mAbs), have been made in the past decade. Despite technological advancements in antibody design and manufacture, multiple challenges face antibody-mediated cancer therapy, such as instability in vivo, poor tumor penetration, limited response rate, and undesirable off-target cytotoxicity. In recent years, an increasing number of biomaterials-based delivery systems have been reported to enhance the antitumor efficacy of antibody drugs. This review summarizes the advances and breakthroughs in integrating biomaterials with therapeutic antibodies for enhanced cancer therapy. A brief introduction to the principal mechanism of antibody-based cancer therapy is first established, and then various antibody immobilization strategies are provided. Finally, the current state-of-the-art in biomaterials-based antibody delivery systems and their applications in cancer treatment are summarized, highlighting how the delivery systems augment the therapeutic efficacy of antibody drugs. The outlook and perspective on biomaterials-based delivery of antitumor antibodies are also discussed.
Collapse
Affiliation(s)
- Qian‐Ni Ye
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
| | - Yue Wang
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 P. R. China
| | - Cong‐Fei Xu
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 P. R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou 511442 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
32
|
Sperti Rota F, Charbonnier T, Lejault P, Zell J, Bernhard C, Valverde IE, Monchaud D. Biomimetic, Smart, and Multivalent Ligands for G-Quadruplex Isolation and Bioorthogonal Imaging. ACS Chem Biol 2021; 16:905-914. [PMID: 33914525 DOI: 10.1021/acschembio.1c00111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
G-quadruplexes (G4s) continue to gather wide attention in the field of chemical biology as their prevalence in the human genome and transcriptome strongly suggests that they play key regulatory roles in cell biology. G4-specific, cell-permeable small molecules (G4-ligands) innovatively permit the interrogation of cellular circuitries in order to assess to what extent G4s influence cell fate and functions. Here, we report on multivalent, biomimetic G4-ligands referred to as TASQs that enable both the isolation and visualization of G4s in human cells. Two biotinylated TASQs, BioTASQ and BioCyTASQ, are indeed efficient molecular tools to isolate G4s from mixtures of nucleic acids through simple affinity capture protocols and to image G4s in cells via a biotin/avidin pretargeted imaging system first applied here to G4s, found to be a reliable alternative to in situ click chemistry.
Collapse
Affiliation(s)
| | - Thibaut Charbonnier
- ICMUB, CNRS UMR6302, UBFC Dijon, 9, Avenue Alain Savary, 21078 Dijon, France
| | - Pauline Lejault
- ICMUB, CNRS UMR6302, UBFC Dijon, 9, Avenue Alain Savary, 21078 Dijon, France
| | - Joanna Zell
- ICMUB, CNRS UMR6302, UBFC Dijon, 9, Avenue Alain Savary, 21078 Dijon, France
| | - Claire Bernhard
- ICMUB, CNRS UMR6302, UBFC Dijon, 9, Avenue Alain Savary, 21078 Dijon, France
| | - Ibai E Valverde
- ICMUB, CNRS UMR6302, UBFC Dijon, 9, Avenue Alain Savary, 21078 Dijon, France
| | - David Monchaud
- ICMUB, CNRS UMR6302, UBFC Dijon, 9, Avenue Alain Savary, 21078 Dijon, France
| |
Collapse
|
33
|
Lima PHCD, Butera AP, Cabeça LF, Ribeiro-Viana RM. Liposome surface modification by phospholipid chemical reactions. Chem Phys Lipids 2021; 237:105084. [PMID: 33891960 DOI: 10.1016/j.chemphyslip.2021.105084] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Liposomal systems are well known for playing an important role as drug carriers, presenting several therapeutic applications in different sectors, such as in drug delivery, diagnosis, and in many other academic areas. A novel class of this nanoparticle is the actively target liposome, which is constructed with the surface modified with appropriated molecules (or ligands) to actively bind a target molecule of certain cells, system, or tissue. There are many ways to functionalize these nanostructures, from non-covalent adsorption to covalent bond formation. In this review, we focus on the strategies of modifying liposomes by glycerophospholipid covalent chemical reaction. The approach used in this text summarizes the main reactions and strategies used in phospholipid modification that can be carried out by chemists and researchers from other areas. The knowledge of these methodologies is of great importance for planning new studies using this material and also for manipulating its properties.
Collapse
Affiliation(s)
- Pedro Henrique Correia de Lima
- Programa de Pós-graduação em Ciências e Engenharia de Materiais (PPGCEM-UTFPR), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Anna Paola Butera
- Departamento de Química, Universidade Estadual de Londrina, UEL, CEP 86051-980, Londrina, PR, Brazil
| | - Luis Fernando Cabeça
- Programa de Pós-graduação em Ciências e Engenharia de Materiais (PPGCEM-UTFPR), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Renato Márcio Ribeiro-Viana
- Programa de Pós-graduação em Ciências e Engenharia de Materiais (PPGCEM-UTFPR), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil.
| |
Collapse
|
34
|
Moitra P, Misra SK, Kumar K, Kondaiah P, Tran P, Duan W, Bhattacharya S. Cancer Stem Cell-Targeted Gene Delivery Mediated by Aptamer-Decorated pH-Sensitive Nanoliposomes. ACS Biomater Sci Eng 2021; 7:2508-2519. [PMID: 33871960 DOI: 10.1021/acsbiomaterials.1c00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new pH-responsive cationic co-liposomal formulation was prepared in this study using the twin version of the amphiphile palmitoyl homocysteine, TPHC; natural zwitterionic lipid, DOPE; and cholesterol-based twin cationic lipid, C5C, at specified molar ratios. This co-liposome was further decorated with a newly designed fluorescently tagged, cholesterol-tethered EpCAM-targeting RNA aptamer for targeted gene delivery. This aptamer-guided nanoliposomal formulation, C5C/DOPE/TPHC at 8:24:1 molar ratio, could efficiently transport the genes in response to low pH of cellular endosomes selectively to the EpCAM overexpressing cancer stem cells. This particular observation was extended using siRNA against GFP to validate their transfection capabilities in response to EpCAM expression. Overall, the aptamer-guided nanoliposomal formulation was found to be an excellent transfectant for in vitro siRNA gene delivery.
Collapse
Affiliation(s)
- Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, School of Medicine, Health Sciences Facility III, University of Maryland Baltimore, 670 W Baltimore Street, Baltimore, Maryland 21201, United States.,Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santosh K Misra
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Krishan Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Phuong Tran
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Santanu Bhattacharya
- Technical Research Centre, Indian Association for the Cultivation of Science, Kolkata 700032, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.,School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
35
|
Barbosa MMF, Kanno AI, Farias LP, Madej M, Sipos G, Sbrana S, Romani L, Boraschi D, Leite LCC, Italiani P. Primary and Memory Response of Human Monocytes to Vaccines: Role of Nanoparticulate Antigens in Inducing Innate Memory. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:931. [PMID: 33917456 PMCID: PMC8067467 DOI: 10.3390/nano11040931] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 01/09/2023]
Abstract
Innate immune cells such as monocytes and macrophages are activated in response to microbial and other challenges and mount an inflammatory defensive response. Exposed cells develop the so-called innate memory, which allows them to react differently to a subsequent challenge, aiming at better protection. In this study, using human primary monocytes in vitro, we have assessed the memory-inducing capacity of two antigenic molecules of Schistosoma mansoni in soluble form compared to the same molecules coupled to outer membrane vesicles of Neisseria lactamica. The results show that particulate challenges are much more efficient than soluble molecules in inducing innate memory, which is measured as the production of inflammatory and anti-inflammatory cytokines (TNFα, IL-6, IL-10). Controls run with LPS from Klebsiella pneumoniae compared to the whole bacteria show that while LPS alone has strong memory-inducing capacity, the entire bacteria are more efficient. These data suggest that microbial antigens that are unable to induce innate immune activation can nevertheless participate in innate activation and memory when in a particulate form, which is a notion that supports the use of nanoparticulate antigens in vaccination strategies for achieving adjuvant-like effects of innate activation as well as priming for improved reactivity to future challenges.
Collapse
Affiliation(s)
- Mayra M. Ferrari Barbosa
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Alex Issamu Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Leonardo Paiva Farias
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA 40296-710, Brazil;
| | - Mariusz Madej
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
| | - Gergö Sipos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
| | - Silverio Sbrana
- Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, 54100 Massa, Italy;
| | - Luigina Romani
- Dipartimento di Medicina e Chirurgia, University of Perugia, 06132 Perugia, Italy;
| | - Diana Boraschi
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP 05503-900, Brazil; (M.M.F.B.); (A.I.K.)
| | - Paola Italiani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy; (M.M.); (G.S.)
- Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
36
|
Jeon BJ, Kim S, Kim MS, Lee JH, Kim BS, Hwang KY. Insights into the structure of mature streptavidin C1 from Streptomyces cinnamonensis reveal the self-binding of the extension C-terminal peptide to biotin-binding sites. IUCRJ 2021; 8:168-177. [PMID: 33708394 PMCID: PMC7924230 DOI: 10.1107/s2052252520015675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
The members of the avidin protein family are well known for their high affinity towards d-biotin and their structural stability. These properties make avidins a valuable tool for various biotechnological applications. In the present study, two avidin-like biotin-binding proteins (named streptavidin C1 and C2) from Streptomyces cinnamonensis were newly identified while exploring antifungal proteins against Fusarium oxysporum f. sp. cucumerinum. Streptavidin C1 reveals a low correlation (a sequence identity of approximately 64%) with all known streptavidins, whereas streptavidin C2 shares a sequence identity of approximately 94% with other streptavidins. Here, the crystal structures of streptavidin C1 in the mature form and in complex with biotin at 2.1 and 2.5 Å resolution, respectively, were assessed. The overall structures present similar tetrameric features with D 2 symmetry to other (strept)avidin structures. Interestingly, the long C-terminal region comprises a short α-helix (C-Lid; residues 169-179) and an extension C-terminal peptide (ECP; residues 180-191) which stretches into the biotin-binding sites of the same monomer. This ECP sequence (-180VTSANPPAS188-) is a newly defined biotin-binding site, which reduces the ability to bind to (strept)avidin family proteins. The novel streptavidin C1 could help in the development of an engineered tetrameric streptavidin with reduced biotin-binding capacity as well as other biomaterial tools.
Collapse
Affiliation(s)
- Byeong Jun Jeon
- Department of Plant Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Sulhee Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Min-Seok Kim
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Ji-Ho Lee
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Beom Seok Kim
- Department of Plant Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, School of Life Sciences and Biotechnology for BK21 PLUS, Institute of Life Science and Natural Resources, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| |
Collapse
|
37
|
Wang Z, Li Z, Su T, Han X, Hou Z, Zheng Y, Liu J, Xu J, Yang J, Liu H. BirA*-protein A fusion protein based BioEnhancer amplifies western blot immunosignal. Electrophoresis 2021; 42:793-799. [PMID: 33354816 DOI: 10.1002/elps.202000167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 11/08/2022]
Abstract
Western blot (protein immunoblot) is a widely used analytical technique in molecular biology. Utilizing the specific recognizing primary antibody, proteins immobilized on various matrix are investigated by subsequent visualization steps, for example, by the horse radish peroxidase conjugated secondary antibody incubation. Methods to improve the sensitivity in protein identification or quantification are appreciated by biochemists. Herein, we report a new strategy to amplify Western blot signals by constructing a probe with proximal labeling and IgG targeting abilities. The R118G mutation attenuated the biotin-AMP binding affinity of the bacterial biotin ligase BirA*, offering a proximity-dependent labeling ability, which could be used as a signal amplifier. We built a BirA*-protein A fusion protein (BioEnhancer) that specifically binds to IgG and adds biotin tags to its proximal amine groups, enhancing the immunosignal of target proteins. In our experiments, the BioEnhancer system amplified the immunosignal by tenfold compared to the standard western blot. Additionally, our strategy could couple with other signal enhancement methods to further increase the western blot sensitivity.
Collapse
Affiliation(s)
- Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Ziyang Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Xiao Han
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Yupeng Zheng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jiachen Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jun Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Jeffy Yang
- Sulich Medicine and Dentistry, Western University, London, Canada
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science, Xi'an Jiaotong University, Xi'an, P. R. China
| |
Collapse
|
38
|
Bis‐conjugation of Bioactive Molecules to Cisplatin‐like Complexes through (2,2′‐Bipyridine)‐4,4′‐Dicarboxylic Acid with Optimal Cytotoxicity Profile Provided by the Combination Ethacrynic Acid/Flurbiprofen. Chemistry 2020; 26:17525-17535. [DOI: 10.1002/chem.202003199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/01/2020] [Indexed: 12/17/2022]
|
39
|
Zhou M, Zhao HY, Zhang S, Zhang Y, Zhang X. Nickel-Catalyzed Four-Component Carbocarbonylation of Alkenes under 1 atm of CO. J Am Chem Soc 2020; 142:18191-18199. [PMID: 32985884 DOI: 10.1021/jacs.0c08708] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed carbonylation is one of the most straightforward strategies to prepare carbonyl compounds. However, compared to well-established noble-metal-catalyzed carbonylation reactions, analogue coupling via base-metal, nickel catalysis has received less attention because of the easy formation of highly toxic and unreactive Ni(CO)4 species between Ni(0) and CO. To date, the use of inexpensive and widely available carbon monoxide (CO) gas for nickel-catalyzed carbonylation reaction remains challenging, and nickel-catalyzed four-component carbonylative reaction has not been reported yet. Here, we report a highly selective nickel-catalyzed four-component carbocarbonylation of alkenes under 1 atm (1 atm) of CO gas to efficiently achieve an array of complex carbonyl compounds, including fluorinated amino acids and oligopeptides of great interest in medicinal chemistry and chemical biology. This reaction relies on a nickel-catalyzed one-pot cascade process to assemble CO, arylboronic acids, and difluoroalkyl electrophiles across the carbon-carbon double bond of alkenes, paving a new way for base-metal-catalyzed carbonylative cascade reaction.
Collapse
Affiliation(s)
- Minqi Zhou
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hai-Yang Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shu Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, West High-Tech Zone, Chengdu, Sichuan 611731, China
| | - Yanxia Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
40
|
Shen W, Zheng J, Zhou Z, Zhang D. Approaches for the synthesis of o-nitrobenzyl and coumarin linkers for use in photocleavable biomaterials and bioconjugates and their biomedical applications. Acta Biomater 2020; 115:75-91. [PMID: 32853806 DOI: 10.1016/j.actbio.2020.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022]
Abstract
Photocleavable biomaterials and bioconjugates are particularly interesting because light sources are easy to obtain and the responsiveness of materials is convenient to control. In recent years, various photocleavable biomaterials and bioconjugates have been synthesized for the control of payload release, regulation of biomolecule activity, 3D cell culture, and investigation of molecular mechanisms. Photocleavable linkers are crucial components of photocleavable biomaterials, which significantly influence the photoresponsive capabilities of materials. Photosensitive molecules, such as o-nitrobenzyls and coumarins, have been extensively developed as photocleavable linkers. In the present review, we provide comprehensive knowledge regarding the synthetic strategies of o-nitrobenzyl and coumarin derived linkers with various functional groups and their applications for the construction of photocleavable biomaterials and bioconjugates. Finally, the biomedical applications of o-nitrobenzyl and coumarin-based photocleavable biomaterials and bioconjugates will be summarized and discussed.
Collapse
|
41
|
Li Y, Li P, Li R, Xu Q. Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Raissa Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
42
|
Khang MK, Zhou J, Co CM, Li S, Tang L. A pretargeting nanoplatform for imaging and enhancing anti-inflammatory drug delivery. Bioact Mater 2020; 5:1102-1112. [PMID: 32695939 PMCID: PMC7365982 DOI: 10.1016/j.bioactmat.2020.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 01/18/2023] Open
Abstract
This work details a newly developed “sandwich” nanoplatform via neutravidin-biotin system for the detection and treatment of inflammation. First, biotinylated- and folate-conjugated optical imaging micelles targeted activated macrophages via folate/folate receptor interactions. Second, multivalent neutravidin proteins in an optimal concentration accumulated on the biotinylated macrophages. Finally, biotinylated anti-inflammatory drug-loaded micelles delivered drugs effectively at the inflammatory sites via a highly specific neutravidin-biotin affinity. Both in vitro and in vivo studies have shown that the “sandwich” pretargeting platform was able to diagnose inflammation by targeting activated macrophages as well as improve the therapeutic efficacy by amplifying the drug delivery to the inflamed tissue. The overall results support that our new pretargeting platform has the potential for inflammatory disease diagnosis and treatment. A “sandwich” nanoplatform system is developed for the improved detection and treatment of inflammation. Biotinylated- and folate-conjugated optical imaging micelles are designed to pre-target activated macrophages. Multivalent neutravidins accumulate on the biotinylated macrophages via neutravidin-biotin reactions. Biotinylated micelles can deliver drugs effectively at the inflammatory sites via specific neutravidin/biotin affinity.
Collapse
Affiliation(s)
- Min Kyung Khang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Chemistry Physics Building Room 130, Arlington, TX, 76019-0065, USA.,Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, Box 19138, Arlington, TX, 76010, USA
| | - Jun Zhou
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, Box 19138, Arlington, TX, 76010, USA
| | - Cynthia M Co
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, Box 19138, Arlington, TX, 76010, USA
| | - Shuxin Li
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, Box 19138, Arlington, TX, 76010, USA
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, Box 19138, Arlington, TX, 76010, USA
| |
Collapse
|
43
|
Vargason AM, Santhosh S, Anselmo AC. Surface Modifications for Improved Delivery and Function of Therapeutic Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001705. [PMID: 32410314 DOI: 10.1002/smll.202001705] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Live therapeutic bacteria (LTBs) hold promise to treat microbiome-related diseases. However, few approaches to improve the colonization of LTBs in the gastrointestinal tract exist, despite colonization being a prerequisite for efficacy of many LTBs. Here, a modular platform to rapidly modify the surface of LTBs to enable receptor-specific interactions with target surfaces is reported. Inspired by bacterial adhesins that facilitate colonization, synthetic adhesins (SAs) are developed for LTBs in the form of antibodies conjugated to their surface. The SA platform is nontoxic, does not alter LTB growth kinetics, and can be used with any antibody or bacterial strain combination. By improving adhesion, SA-modified bacteria demonstrate enhanced in vitro pathogen exclusion from cell monolayers. In vivo kinetics of SA-modified LTBs is tracked in the feces and intestines of treated mice, demonstrating that SA-modified bacteria alter short-term intestinal transit and improve LTB colonization and pharmacokinetics. This platform enables rapid formation of an intestinal niche, leading to an increased maximum concentration and a 20% improvement in total LTB exposure. This work is the first application of traditional pharmacokinetic analysis to design and evaluate LTB drug delivery systems and provides a platform toward controlling adhesion, colonization, and efficacy of LTBs.
Collapse
Affiliation(s)
- Ava M Vargason
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Shruti Santhosh
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| | - Aaron C Anselmo
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA
| |
Collapse
|
44
|
The five “W”s and “How” of Targeted Alpha Therapy: Why? Who? What? Where? When? and How? RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00900-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Magnoflorine inhibits human gastric cancer progression by inducing autophagy, apoptosis and cell cycle arrest by JNK activation regulated by ROS. Biomed Pharmacother 2020; 125:109118. [DOI: 10.1016/j.biopha.2019.109118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
|
46
|
Henke P, Dolanský J, Kubát P, Mosinger J. Multifunctional Photosensitizing and Biotinylated Polystyrene Nanofiber Membranes/Composites for Binding of Biologically Active Compounds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18792-18802. [PMID: 32216378 DOI: 10.1021/acsami.9b23104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A three-step postprocessing functionalization of pristine electrospun polystyrene nanofiber membranes was used for the preparation of nanostructured biotinylated materials with an externally bonded porphyrin photosensitizer. Subsequently, the material was able to strongly bind biologically active streptavidin derivatives while keeping its photosensitizing and antibacterial properties due to the generation of singlet oxygen under the exclusive control of visible light. The resulting multifunctional materials functionalized by a streptavidin-horseradish peroxidase conjugate as a model bioactive compound preserved its enzymatic activity even in the presence of a porphyrin photosensitizer with some quenching effect on the activity of the photosensitizer. Prolonged kinetics of both singlet oxygen luminescence and singlet oxygen-sensitized delayed fluorescence (SODF) were found after irradiation by visible light. The above results reflected less effective quenching of the porphyrin photosensitizer triplet state by ground state oxygen and indicated hindered oxygen transport (diffusion) due to surface functionalization. We found that SODF could be used as a valuable tool for optimizing photosensitizing efficiency as well as a tool for confirming surface functionalization. Full photosensitizing and enzyme activity could be achieved by a space separation of photosensitizers and enzyme/biomolecules in the nanofiber composites consisting of two layers. The upper layer contained a photosensitizer that generated antibacterial singlet oxygen upon irradiation by light, and the bottom layer retained enzymatic activity for biochemical reactions.
Collapse
Affiliation(s)
- Petr Henke
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Jiří Dolanský
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Husinec-Řež 1001, Czech Republic
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Jiří Mosinger
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague 2, Czech Republic
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68, Husinec-Řež 1001, Czech Republic
| |
Collapse
|
47
|
Shi H, Imberti C, Huang H, Hands-Portman I, Sadler PJ. Biotinylated photoactive Pt(iv) anticancer complexes. Chem Commun (Camb) 2020; 56:2320-2323. [PMID: 31990000 DOI: 10.1039/c9cc07845b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Novel biotinylated diazido-Pt(iv) complexes exhibit high visible light photocytotoxicity while being stable in the dark. Photocytotoxicity and cellular accumulation of all-trans-[Pt(py)2(N3)2(biotin)(OH)] (2a) were enhanced significantly when bound to avidin; irradiation induced dramatic cellular morphological changes in human ovarian cancer cells treated with 2a.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | | | | | | | | |
Collapse
|
48
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
49
|
Rondon A, Degoul F. Antibody Pretargeting Based on Bioorthogonal Click Chemistry for Cancer Imaging and Targeted Radionuclide Therapy. Bioconjug Chem 2020; 31:159-173. [PMID: 31855602 DOI: 10.1021/acs.bioconjchem.9b00761] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioorthogonal click chemistry-employing antibody-conjugated trans-cyclooctenes (TCO) and tetrazine (Tz)-based radioligands able to covalently bind in vivo-appeared recently as a potential alternative to circumvent the hematotoxicity induced by radioimmunotherapy of solid tumors. This Review focuses on the recent advances concerning TCO/Tz pretargeting in both cancer imaging and targeted-radionuclide therapy for prospective clinical transfer. We exhaustively identified 25 PubMed publications reporting preclinical imaging and 5 therapy studies with full mAbs as targeting vectors, since its first application in 2010. The fast, safe, modulable, and specific TCO/Tz pretargeting showed high potential as a theranostic tool to get more personalized and precise cancer care. The recent optimizations reported here highlighted a possible first clinical evaluation of IEDDA pretargeting in the coming years.
Collapse
Affiliation(s)
- Aurélie Rondon
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| | - Françoise Degoul
- Université Clermont Auvergne , Imagerie Moléculaire et Stratégies Théranostiques , BP 184, F-63005 Clermont-Ferrand , France.,Inserm, U 1240 , F-63000 Clermont-Ferrand , France.,Centre Jean Perrin , F-63011 Clermont-Ferrand , France
| |
Collapse
|
50
|
Zhu X, Ding R, Wang Z, Wang Y, Guo X, Song Z, Wang Z, Dong M. Recent advances in synthesis and biosensors of two-dimensional MoS 2. NANOTECHNOLOGY 2019; 30:502004. [PMID: 31505472 DOI: 10.1088/1361-6528/ab42fe] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have attracted tremendous research interests due to their exciting optical properties, large surface area, intercalatable morphologies and excellent electrochemically catalytic activity. Acting as the most typical member in TMDCs family, layer-dependent molybdenum disulfide (MoS2) with particular direct bandgap of 1.8 eV in monolayer has been widely applied in various biosensors with high sensitivity and selectivity. In this review, the preparation methods of MoS2, together with MoS2-based biosensors for detecting cells and biomolecules (such as glucose, DNA and antigens) would be summarized. In addition, the current challenges and future perspectives are outlined for the applications of biosensors based on 2D MoS2.
Collapse
Affiliation(s)
- Xiaona Zhu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|