1
|
El Sherkawi T, Bani Saeid A, Yeung S, Chellappan DK, Mohamad S, Kokkinis S, Sudhakar S, Singh SK, Gupta G, Paudel KR, Hansbro PM, Oliver B, De Rubis G, Dua K. Therapeutic potential of 18-β-glycyrrhetinic acid-loaded poly (lactic-co-glycolic acid) nanoparticles on cigarette smoke-induced in-vitro model of COPD. Pathol Res Pract 2024; 263:155629. [PMID: 39348749 DOI: 10.1016/j.prp.2024.155629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is strongly linked to cigarette smoke, which contains toxins that induce oxidative stress and airway inflammation, ultimately leading to premature airway epithelial cell senescence and exacerbating COPD progression. Current treatments for COPD are symptomatic and hampered by limited efficacy and severe side effects. This highlights the need to search for an optimal therapeutic candidate to address the root causes of these conditions. This study investigates the possible potential of poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles encapsulating the plant-based bioactive compound 18-β-glycyrrhetinic acid (18βGA) as a strategy to intervene in cigarette smoke extract (CSE)-induced oxidative stress, inflammation, and senescence, in vitro. We prepared 18βGA-PLGA nanoparticles, and assessed their effects on cell viability, reactive oxygen species (ROS) production, anti-senescence properties (expression of senescence-associated β galactosidase and p21 mRNA), and expression of pro-inflammatory genes (CXCL-1, IL-6, TNF-α) and inflammation-related proteins (IL-8, IL-15, RANTES, MIF). The highest non-toxic concentration of 18βGA-PLGA nanoparticles to healthy human broncho epithelial cell line BCiNS1.1 was identified as 5 µM. These nanoparticles effectively mitigated cigarette smoke-induced inflammation, reduced ROS production, protected against cellular aging, and counteracted the effects of CSE on the expression of the inflammation-related genes and proteins. This study underscores the potential of 18βGA encapsulated in PLGA nanoparticles as a promising therapeutic approach to alleviate cigarette smoke-induced oxidative stress, inflammation, and senescence. Further research is needed to explore the translational potential of these findings in clinical and in vivo settings.
Collapse
Affiliation(s)
- Tammam El Sherkawi
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ayeh Bani Saeid
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Siddiq Mohamad
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, Macquarie University, Glebe, NSW 2037, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| |
Collapse
|
2
|
Sweef O, Mahfouz R, Taşcıoğlu T, Albowaidey A, Abdelmonem M, Asfar M, Zaabout E, Corcino YL, Thomas V, Choi ES, Furuta S. Decoding LncRNA in COPD: Unveiling Prognostic and Diagnostic Power and Their Driving Role in Lung Cancer Progression. Int J Mol Sci 2024; 25:9001. [PMID: 39201688 PMCID: PMC11354875 DOI: 10.3390/ijms25169001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer represent formidable challenges in global health, characterized by intricate pathophysiological mechanisms and multifaceted disease progression. This comprehensive review integrates insights from diverse perspectives to elucidate the intricate roles of long non-coding RNAs (lncRNAs) in the pathogenesis of COPD and lung cancer, focusing on their diagnostic, prognostic, and therapeutic implications. In the context of COPD, dysregulated lncRNAs, such as NEAT1, TUG1, MALAT1, HOTAIR, and GAS5, emerge as pivotal regulators of genes involved in the disease pathogenesis and progression. Their identification, profiling, and correlation with the disease severity present promising avenues for prognostic and diagnostic applications, thereby shaping personalized disease interventions. These lncRNAs are also implicated in lung cancer, underscoring their multifaceted roles and therapeutic potential across both diseases. In the domain of lung cancer, lncRNAs play intricate modulatory roles in disease progression, offering avenues for innovative therapeutic approaches and prognostic indicators. LncRNA-mediated immune responses have been shown to drive lung cancer progression by modulating the tumor microenvironment, influencing immune cell infiltration, and altering cytokine production. Their dysregulation significantly contributes to tumor growth, metastasis, and chemo-resistance, thereby emphasizing their significance as therapeutic targets and prognostic markers. This review summarizes the transformative potential of lncRNA-based diagnostics and therapeutics for COPD and lung cancer, offering valuable insights into future research directions for clinical translation and therapeutic development.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Reda Mahfouz
- Core Laboratory, University Hospital Cleveland Medical Center, Department of Pathology, School of Medicine, Case Western Reserve University, 1100 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Clinical Pathology, Faculty of Medicine, Menofia University, Shebin-Elkom 32511, Egypt
| | - Tülin Taşcıoğlu
- Department of Molecular Biology and Genetics, Demiroglu Bilim University, Esentepe Central Campus, Besiktas, 34394 Istanbul, Turkey
| | - Ali Albowaidey
- The Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Mohamed Abdelmonem
- Department of Pathology, Transfusion Medicine Service, Stanford Healthcare, Stanford, CA 94305, USA
| | - Malek Asfar
- Department of Pathology, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Elsayed Zaabout
- Department of Therapeutics & Pharmacology, The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
| | - Yalitza Lopez Corcino
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Venetia Thomas
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Eun-Seok Choi
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, School of Medicine, Case Western Reserve University, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| |
Collapse
|
3
|
Cojocaru E, Petriș OR, Cojocaru C. Nanoparticle-Based Drug Delivery Systems in Inhaled Therapy: Improving Respiratory Medicine. Pharmaceuticals (Basel) 2024; 17:1059. [PMID: 39204164 PMCID: PMC11357421 DOI: 10.3390/ph17081059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Inhaled nanoparticle (NP) therapy poses intricate challenges in clinical and pharmacodynamic realms. Recent strides have revolutionized NP technology by enabling the incorporation of diverse molecules, thus circumventing systemic clearance mechanisms and enhancing drug effectiveness while mitigating systemic side effects. Despite the established success of systemic NP delivery in oncology and other disciplines, the exploration of inhaled NP therapies remains relatively nascent. NPs loaded with bronchodilators or anti-inflammatory agents exhibit promising potential for precise distribution throughout the bronchial tree, offering targeted treatment for respiratory diseases. This article conducts a comprehensive review of NP applications in respiratory medicine, highlighting their merits, ranging from heightened stability to exacting lung-specific delivery. It also explores cutting-edge technologies optimizing NP-loaded aerosol systems, complemented by insights gleaned from clinical trials. Furthermore, the review examines the current challenges and future prospects in NP-based therapies. By synthesizing current data and perspectives, the article underscores the transformative promise of NP-mediated drug delivery in addressing chronic conditions such as chronic obstructive pulmonary disease, a pressing global health concern ranked third in mortality rates. This overview illuminates the evolving landscape of NP inhalation therapies, presenting optimistic avenues for advancing respiratory medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Elena Cojocaru
- Morpho-Functional Sciences II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Ovidiu Rusalim Petriș
- Medical II Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Cojocaru
- Medical III Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
4
|
Vij N. Precision nanoparticles for prognosis-based early intervention of COPD-emphysema. Expert Opin Drug Deliv 2024; 21:679-681. [PMID: 38769880 DOI: 10.1080/17425247.2024.2355997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Affiliation(s)
- Neeraj Vij
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Precision Theranostics Inc, Baltimore, MD, USA
- VIJ Biotech, Baltimore, MD, USA
| |
Collapse
|
5
|
Gaydhane MK, Sharma CS, Majumdar S. Electrospun nanofibres in drug delivery: advances in controlled release strategies. RSC Adv 2023; 13:7312-7328. [PMID: 36891485 PMCID: PMC9987416 DOI: 10.1039/d2ra06023j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 03/08/2023] Open
Abstract
Emerging drug-delivery systems demand a controlled or programmable or sustained release of drug molecules to improve therapeutic efficacy and patient compliance. Such systems have been heavily investigated as they offer safe, accurate, and quality treatment for numerous diseases. Amongst newly developed drug-delivery systems, electrospun nanofibres have emerged as promising drug excipients and are coming up as promising biomaterials. The inimitable characteristics of electrospun nanofibres in terms of their high surface-to-volume ratio, high porosity, easy drug encapsulation, and programmable release make them an astounding drug-delivery vehicle.
Collapse
Affiliation(s)
- Mrunalini K Gaydhane
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| | - Saptarshi Majumdar
- Poly-Nano-Bio Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| |
Collapse
|
6
|
Kole E, Jadhav K, Sirsath N, Dudhe P, Verma RK, Chatterjee A, Naik J. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
7
|
Shahriari M, Ali Hosseini Sedigh M, Shahriari M, Stenzel M, Mahdi Zangeneh M, Zangeneh A, Mahdavi B, Asadnia M, Gholami J, Karmakar B, Veisi H. Palladium nanoparticles decorated Chitosan-Pectin modified Kaolin: It’s catalytic activity for Suzuki-Miyaura coupling reaction, reduction of the 4-nitrophenol, and treatment of lung cancer. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Forest V, Pourchez J. Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient? Adv Drug Deliv Rev 2022; 183:114173. [PMID: 35217112 DOI: 10.1016/j.addr.2022.114173] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022]
Abstract
Respiratory diseases gather a wide range of disorders which are generally difficult to treat, partly due to a poor delivery of drugs to the lung with adequate dose and minimum side effects. With the recent developments of nanotechnology, nano-delivery systems have raised interest. In this review, we detail the main types of nanocarriers that have been developed presenting their respective advantages and limitations. We also discuss the route of administration (systemic versus by inhalation), also considering technical aspects (different types of aerosol devices) with concrete examples of applications. Finally, we propose some perspectives of development in the field such as the nano-in-micro approaches, the emergence of drug vaping to generate airborne carriers in the submicron size range, the development of innovative respiratory models to assess regional aerosol deposition of nanoparticles or the application of nano-delivery to the lung in the treatment of other diseases.
Collapse
|
9
|
Alfahad AJ, Alzaydi MM, Aldossary AM, Alshehri AA, Almughem FA, Zaidan NM, Tawfik EA. Current views in chronic obstructive pulmonary disease pathogenesis and management. Saudi Pharm J 2022; 29:1361-1373. [PMID: 35002373 PMCID: PMC8720819 DOI: 10.1016/j.jsps.2021.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 01/11/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung dysfunction caused mainly by inhaling toxic particles and cigarette smoking (CS). The continuous exposure to ruinous molecules can lead to abnormal inflammatory responses, permanent damages to the respiratory system, and irreversible pathological changes. Other factors, such as genetics and aging, influence the development of COPD. In the last decade, accumulating evidence suggested that mitochondrial alteration, including mitochondrial DNA damage, increased mitochondrial reactive oxygen species (ROS), abnormal autophagy, and apoptosis, have been implicated in the pathogenesis of COPD. The alteration can also extend to epigenetics, namely DNA methylation, histone modification, and non-coding RNA. This review will discuss the recent progressions in COPD pathology, pathophysiology, and molecular pathways. More focus will be shed on mitochondrial and epigenetic variations related to COPD development and the role of nanomedicine as a potential tool for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Ahmed J Alfahad
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Mai M Alzaydi
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Ahmad M Aldossary
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Abdullah A Alshehri
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Fahad A Almughem
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Nada M Zaidan
- Center of Excellence in Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Essam A Tawfik
- National Center of Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia.,Center of Excellence in Biomedicine, Joint Centers of Excellence Program, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| |
Collapse
|
10
|
Biomacromolecule-mediated pulmonary delivery of siRNA and anti-sense oligos: challenges and possible solutions. Expert Rev Mol Med 2021; 23:e22. [PMID: 34906269 DOI: 10.1017/erm.2021.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biomacromolecules have gained much attention as biomedicine carriers in recent years due to their remarkable biophysical and biochemical properties including sustainability, non-toxicity, biocompatibility, biodegradability, long systemic circulation time and ability to target. Recent developments in a variety of biological functions of biomacromolecules and progress in the study of biological drug carriers suggest that these carriers may have advantages over carriers of synthetic materials in terms of half-life, durability, protection and manufacturing facility. Despite the full pledge advancements in the applications of biomacromolecules, its clinical use is hindered by certain factors that allow the pre-mature release of loaded cargos before reaching the target site. The delivery therapeutics are degraded by systemic nucleases, cleared by reticulo-endothelial system, cleared by pulmonary mucus cilia or engulfed by lysosome during cellular uptake that has led to the failure of clinical therapy. It clearly indicates that there is a wide range of gaps in the results of experimental work and clinical applications of biomacromolecules. This review focuses mainly on the barriers (intracellular/extracellular) and hurdles to the delivery of biomacromolecules with special emphasis on siRNA as well as the delivery of antisense oligos in multiple pulmonary diseases, particularly focusing on lung cancer. Also, the challenges posed to such delivery and possible solutions have been highlighted.
Collapse
|
11
|
Vij N. Prognosis-Based Early Intervention Strategies to Resolve Exacerbation and Progressive Lung Function Decline in Cystic Fibrosis. J Pers Med 2021; 11:jpm11020096. [PMID: 33546140 PMCID: PMC7913194 DOI: 10.3390/jpm11020096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by a mutation(s) in the CF transmembrane regulator (CFTR), where progressive decline in lung function due to recurring exacerbations is a major cause of mortality. The initiation of chronic obstructive lung disease in CF involves inflammation and exacerbations, leading to mucus obstruction and lung function decline. Even though clinical management of CF lung disease has prolonged survival, exacerbation and age-related lung function decline remain a challenge for controlling the progressive lung disease. The key to the resolution of progressive lung disease is prognosis-based early therapeutic intervention; thus, the development of novel diagnostics and prognostic biomarkers for predicting exacerbation and lung function decline will allow optimal management of the lung disease. Hence, the development of real-time lung function diagnostics such as forced oscillation technique (FOT), impulse oscillometry system (IOS), and electrical impedance tomography (EIT), and novel prognosis-based intervention strategies for controlling the progression of chronic obstructive lung disease will fulfill a significant unmet need for CF patients. Early detection of CF lung inflammation and exacerbations with the timely resolution will not only prolong survival and reduce mortality but also improve quality of life while reducing significant health care costs due to recurring hospitalizations.
Collapse
Affiliation(s)
- Neeraj Vij
- Precision Theranostics Inc., Baltimore, MD 21202, USA; or or ; Tel.: +1-240-623-0757
- VIJ Biotech, Baltimore, MD 21202, USA
- Department of Pediatrics & Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
12
|
Synthesis and Evaluation of Airway-Targeted PLGA-PEG Nanoparticles for Drug Delivery in Obstructive Lung Diseases. Methods Mol Biol 2021; 2118:147-154. [PMID: 32152977 DOI: 10.1007/978-1-0716-0319-2_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic airway inflammation is a hallmark of chronic obstructive airway diseases, including chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), and asthma. Airway inflammation and mucus obstruction present major challenges to drug or gene delivery and therapeutic efficacy of nano-based carriers in these chronic obstructive airway conditions. To achieve targeted drug delivery of NPs to the diseased cells, NPs need to bypass the obstructive airway and circumvent the airway's defense mechanisms. Although there has been increasing interest and significant progress in development of NPs for targeting cancer, relatively little progress has been made towards designing novel systems for targeted treatment of chronic inflammatory and obstructive airway conditions. Hence, we describe here methods for preparing drug loaded multifunctional nanoparticles for targeted delivery to specific airway cell types in obstructive lung diseases. The formulations and methods for selective drug delivery in the treatment of chronic airway conditions such as COPD, CF, and asthma have been evaluated using a variety of preclinical models by our laboratory and currently ongoing further clinical development for translation from bench to bedside.
Collapse
|
13
|
Zhong W, Zhang X, Zeng Y, Lin D, Wu J. Recent applications and strategies in nanotechnology for lung diseases. NANO RESEARCH 2021; 14:2067-2089. [PMID: 33456721 PMCID: PMC7796694 DOI: 10.1007/s12274-020-3180-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 05/14/2023]
Abstract
Lung diseases, including COVID-19 and lung cancers, is a huge threat to human health. However, for the treatment and diagnosis of various lung diseases, such as pneumonia, asthma, cancer, and pulmonary tuberculosis, are becoming increasingly challenging. Currently, several types of treatments and/or diagnostic methods are used to treat lung diseases; however, the occurrence of adverse reactions to chemotherapy, drug-resistant bacteria, side effects that can be significantly toxic, and poor drug delivery necessitates the development of more promising treatments. Nanotechnology, as an emerging technology, has been extensively studied in medicine. Several studies have shown that nano-delivery systems can significantly enhance the targeting of drug delivery. When compared to traditional delivery methods, several nanoparticle delivery strategies are used to improve the detection methods and drug treatment efficacy. Transporting nanoparticles to the lungs, loading appropriate therapeutic drugs, and the incorporation of intelligent functions to overcome various lung barriers have broad prospects as they can aid in locating target tissues and can enhance the therapeutic effect while minimizing systemic side effects. In addition, as a new and highly contagious respiratory infection disease, COVID-19 is spreading worldwide. However, there is no specific drug for COVID-19. Clinical trials are being conducted in several countries to develop antiviral drugs or vaccines. In recent years, nanotechnology has provided a feasible platform for improving the diagnosis and treatment of diseases, nanotechnology-based strategies may have broad prospects in the diagnosis and treatment of COVID-19. This article reviews the latest developments in nanotechnology drug delivery strategies in the lungs in recent years and studies the clinical application value of nanomedicine in the drug delivery strategy pertaining to the lung.
Collapse
Affiliation(s)
- Wenhao Zhong
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Yunxin Zeng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Dongjun Lin
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
| | - Jun Wu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107 China
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006 China
| |
Collapse
|
14
|
Passi M, Shahid S, Chockalingam S, Sundar IK, Packirisamy G. Conventional and Nanotechnology Based Approaches to Combat Chronic Obstructive Pulmonary Disease: Implications for Chronic Airway Diseases. Int J Nanomedicine 2020; 15:3803-3826. [PMID: 32547029 PMCID: PMC7266405 DOI: 10.2147/ijn.s242516] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent obstructive lung disease worldwide characterized by decline in lung function. It is associated with airway obstruction, oxidative stress, chronic inflammation, mucus hypersecretion, and enhanced autophagy and cellular senescence. Cigarette smoke being the major risk factor, other secondary risk factors such as the exposure to air pollutants, occupational exposure to gases and fumes in developing countries, also contribute to the pathogenesis of COPD. Conventional therapeutic strategies of COPD are based on anti-oxidant and anti-inflammatory drugs. However, traditional anti-oxidant pharmacological therapies are commonly used to alleviate the impact of COPD as they have many associated repercussions such as low diffusion rate and inappropriate drug pharmacokinetics. Recent advances in nanotechnology and stem cell research have shed new light on the current treatment of chronic airway disease. This review is focused on some of the anti-oxidant therapies currently used in the treatment and management of COPD with more emphasis on the recent advances in nanotechnology-based therapeutics including stem cell and gene therapy approaches for the treatment of chronic airway disease such as COPD and asthma.
Collapse
Affiliation(s)
- Mehak Passi
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Sadia Shahid
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | | | - Isaac Kirubakaran Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14623, USA
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.,Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
15
|
Li CW, Li LL, Chen S, Zhang JX, Lu WL. Antioxidant Nanotherapies for the Treatment of Inflammatory Diseases. Front Bioeng Biotechnol 2020; 8:200. [PMID: 32258013 PMCID: PMC7093330 DOI: 10.3389/fbioe.2020.00200] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are essential in regulating various physiological functions. However, overproduction of ROS is implicated in the pathogenesis of various inflammatory diseases. Antioxidant therapy has thus represented an effective strategy for the treatment of oxidative stress relevant inflammatory diseases. Conventional anti-oxidative agents showed limited in vivo effects owing to their non-specific distribution and low retention in disease sites. Over the past decades, significant achievements have been made in the development of antioxidant nanotherapies that exhibit multiple advantages such as excellent pharmacokinetics, stable anti-oxidative activity, and intrinsic ROS-scavenging properties. This review provides a comprehensive overview on recent advances in antioxidant nanotherapies, including ROS-scavenging inorganic nanoparticles, organic nanoparticles with intrinsic antioxidant activity, and drug-loaded anti-oxidant nanoparticles. We highlight the biomedical applications of antioxidant nanotherapies in the treatment of different inflammatory diseases, with an emphasis on inflammatory bowel disease, cardiovascular disease, and brain diseases. Current challenges and future perspectives to promote clinical translation of antioxidant nanotherapies are also briefly discussed.
Collapse
Affiliation(s)
- Chen-Wen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Lan-Lan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China.,Department of Chemistry, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Xiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wan-Liang Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Cazzola M, Cavalli F, Usmani OS, Rogliani P. Advances in pulmonary drug delivery devices for the treatment of chronic obstructive pulmonary disease. Expert Opin Drug Deliv 2020; 17:635-646. [DOI: 10.1080/17425247.2020.1739021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesco Cavalli
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Omar S. Usmani
- Imperial College London and Royal Brompton Hospital, Airways Disease Section, National Heart and Lung Institute (NHLI), London, UK
| | - Paola Rogliani
- Department of Experimental Medicine, Unit of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
17
|
Singh AP, Biswas A, Shukla A, Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct Target Ther 2019; 4:33. [PMID: 31637012 PMCID: PMC6799838 DOI: 10.1038/s41392-019-0068-3] [Citation(s) in RCA: 267] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
The application of nanomedicines is increasing rapidly with the promise of targeted and efficient drug delivery. Nanomedicines address the shortcomings of conventional therapy, as evidenced by several preclinical and clinical investigations indicating site-specific drug delivery, reduced side effects, and better treatment outcome. The development of suitable and biocompatible drug delivery vehicles is a prerequisite that has been successfully achieved by using simple and functionalized liposomes, nanoparticles, hydrogels, micelles, dendrimers, and mesoporous particles. A variety of drug delivery vehicles have been established for the targeted and controlled delivery of therapeutic agents in a wide range of chronic diseases, such as diabetes, cancer, atherosclerosis, myocardial ischemia, asthma, pulmonary tuberculosis, Parkinson's disease, and Alzheimer's disease. After successful outcomes in preclinical and clinical trials, many of these drugs have been marketed for human use, such as Abraxane®, Caelyx®, Mepact®, Myocet®, Emend®, and Rapamune®. Apart from drugs/compounds, novel therapeutic agents, such as peptides, nucleic acids (DNA and RNA), and genes have also shown potential to be used as nanomedicines for the treatment of several chronic ailments. However, a large number of extensive clinical trials are still needed to ensure the short-term and long-term effects of nanomedicines in humans. This review discusses the advantages of various drug delivery vehicles for better understanding of their utility in terms of current medical needs. Furthermore, the application of a wide range of nanomedicines is also described in the context of major chronic diseases.
Collapse
Affiliation(s)
- Akhand Pratap Singh
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Arpan Biswas
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Aparna Shukla
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi, 221005 India
| |
Collapse
|
18
|
Price P, Leonard J. A proposal for creating a taxonomy of chemical interactions using concepts from the aggregate exposure and adverse outcome pathways. CURRENT OPINION IN TOXICOLOGY 2019; 16:58-66. [PMID: 33354636 DOI: 10.1016/j.cotox.2019.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, there is no single taxonomy for organizing data on the various types of chemical interactions that may affect risks from combined exposures. A taxonomy of chemical interactions is proposed that is based on a combination of the aggregate exposure pathways (AEPs) and adverse outcome pathways (AOPs) (AEP-AOP framework). The AEP-AOP framework organizes data on the causal events that ocur over the entire source-exposure-response continuum of a chemical's release. The proposed taxonomy uses this framework in two ways. First, four top-level categories are established based on the location in the continuum where a chemical interaction occurs. Second, each top-level category has two or more subcategories that are based on concepts taken from AEPs and AOPs. The categories and subcategories are potentially useful in developing standardized definitions for interaction terms and improving our understanding of the impacts of chemical interactions on risk to human health and the environment.
Collapse
Affiliation(s)
- Paul Price
- National Exposure Research Lab, ORD, U.S. Environmental Protection Agency, 109 TW Alexander Drive, RTP, NC, 27711 USA
| | - Jeremy Leonard
- Oak Ridge Institute for Science and Education, Environmental Media Assessment Group, National Center for Environmental Assessment, U.S. Environmental Protection Agency, 109 TW Alexander Drive, RTP, NC, 27711 USA
| |
Collapse
|
19
|
Doroudian M, MacLoughlin R, Poynton F, Prina-Mello A, Donnelly SC. Nanotechnology based therapeutics for lung disease. Thorax 2019; 74:965-976. [PMID: 31285360 DOI: 10.1136/thoraxjnl-2019-213037] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 11/03/2022]
Abstract
Nanomedicine is a multidisciplinary research field with an integration of traditional sciences such as chemistry, physics, biology and materials science. The application of nanomedicine for lung diseases as a relatively new area of interdisciplinary science has grown rapidly over the last 10 years. Promising research outcomes suggest that nanomedicine will revolutionise the practice of medicine, through the development of new approaches in therapeutic agent delivery, vaccine development and nanotechnology-based medical detections. Nano-based approaches in the diagnosis and treatment of lung diseases will, in the not too distant future, change the way we practise medicine. This review will focus on the current trends and developments in the clinical translation of nanomedicine for lung diseases, such as in the areas of lung cancer, cystic fibrosis, asthma, bacterial infections and COPD.
Collapse
Affiliation(s)
- Mohammad Doroudian
- Department of Medicine, Tallaght University Hospital, Dublin 24 & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Galway, Ireland.,School of Pharmacy, Royal College of Surgeons, Dublin, Ireland.,School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | - Fergus Poynton
- Department of Medicine, Tallaght University Hospital, Dublin 24 & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- CRANN Institute and AMBER Centre, University of Dublin Trinity College, Dublin, Ireland.,Department of Medicine, Laboratory for Biological Characterization of Advanced Materials (LBCAM), Trinity College Dublin, Dublin, Ireland.,Nanomedicine Group, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - Seamas C Donnelly
- Department of Medicine, Tallaght University Hospital, Dublin 24 & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Alhajj N, Zakaria Z, Naharudin I, Ahsan F, Li W, Wong TW. Critical physicochemical attributes of chitosan nanoparticles admixed lactose-PEG 3000 microparticles in pulmonary inhalation. Asian J Pharm Sci 2019; 15:374-384. [PMID: 32636955 PMCID: PMC7327774 DOI: 10.1016/j.ajps.2019.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 11/15/2022] Open
Abstract
Chitosan nanoparticles are exhalation prone and agglomerative to pulmonary inhalation. Blending nanoparticles with lactose microparticles (∼5 µm) could mutually reduce their agglomeration through surface adsorption phenomenon. The chitosan nanoparticles of varying size, size distribution, zeta potential, crystallinity, shape and surface roughness were prepared by spray drying technique as a function of chitosan, surfactant and processing conditions. Lactose-polyethylene glycol 3000 (PEG3000) microparticles were similarly prepared. The chitosan nanoparticles, physically blended with fine lactose-PEG3000 microparticles, exhibited a comparable inhalation performance with the commercial dry powder inhaler products (fine particle fraction between 20% and 30%). Cascade impactor analysis indicated that the aerosolization and inhalation performance of chitosan nanoparticles was promoted by their higher zeta potential and circularity, and larger size attributes of which led to reduced inter-nanoparticulate aggregation and favored nanoparticles interacting with lactose-PEG3000 micropaticles that aided their delivery into deep and peripheral lungs.
Collapse
Affiliation(s)
- Nasser Alhajj
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia.,Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia
| | - Zabliza Zakaria
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia.,Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia
| | - Idanawati Naharudin
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia.,Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo 79106, USA
| | - Wenji Li
- Department of Integrated Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISE, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia.,Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia
| |
Collapse
|
21
|
Faraj J, Bodas M, Pehote G, Swanson D, Sharma A, Vij N. Novel cystamine-core dendrimer-formulation rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection by augmenting autophagy. Expert Opin Drug Deliv 2019; 16:177-186. [PMID: 30732491 DOI: 10.1080/17425247.2019.1575807] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) is challenged with pathophysiological barriers for effective airway drug-delivery. Hence, we standardized the therapeutic efficacy of the novel dendrimer-based autophagy-inducing anti-oxidant drug, cysteamine. RESEARCH DESIGN AND METHODS Human primary-CF epithelial-cells, CFBE41o-cells were used to standardize the efficacy of the dendrimer-cystamine in correcting impaired-autophagy, rescuing ΔF508-CFTR and Pseudomonas-aeruginosa (Pa) infection. RESULTS We first designed a novel cystamine-core dendrimer formulation (G4-CYS) that significantly increases membrane-ΔF508CFTR expression in CFBE41o-cells (p < 0.05) by forming its reduced-form cysteamine, in vivo. Additionally, G4-CYS treatment corrects ΔF508-CFTR-mediated impaired-autophagy as observed by a significant decrease (p < 0.05) in Ub-LC3-positive aggresome-bodies. Next, we verified that in non-permeabilized CFBE41o-cells, G4-CYS significantly (p < 0.05) induces ΔF508-CFTR's forward-trafficking to the plasma membrane. Furthermore, cysteamine's known antibacterial and anti-biofilm properties against Pa were enhanced as our findings demonstrate that both G4-CYS and its control DAB-core dendrimer, G4-DAB, exhibited significant (p < 0.05) bactericidal-activity against Pa. We also found that both G4-CYS and G4-DAB exhibit marked mucolytic-activity against porcine-mucus (p < 0.05). Finally, we demonstrate that G4-CYS not only corrects the autophagy-impairment by rescuing ΔF508-CFTR in CFBE41o-cells but also corrects the intrinsic phagocytosis defect (p < 0.05). CONCLUSIONS Overall, our data demonstrates the efficacy of novel cystamine-dendrimer formulation in rescuing ΔF508-CFTR to the plasma membrane and inhibiting Pa bacterial-infection by augmenting autophagy.
Collapse
Affiliation(s)
- Janine Faraj
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA
| | - Manish Bodas
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA.,b Department of Pediatrics and Pulmonary Medicine , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.,c Department of Medicine , University of Oklahoma , Oklahoma City , OK , USA
| | - Garrett Pehote
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA
| | - Doug Swanson
- d Department of Chemistry and Biochemistry , Central Michigan University , Mount Pleasant , MI , USA
| | - Ajit Sharma
- d Department of Chemistry and Biochemistry , Central Michigan University , Mount Pleasant , MI , USA
| | - Neeraj Vij
- a College of Medicine , Central Michigan University , Mt Pleasant , MI , USA.,b Department of Pediatrics and Pulmonary Medicine , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.,e 4Dx Limited , Los Angeles , CA , USA.,f VIJ Biotech LLC , Baltimore , MD , USA
| |
Collapse
|
22
|
Bodas M, Vij N. Adapting Proteostasis and Autophagy for Controlling the Pathogenesis of Cystic Fibrosis Lung Disease. Front Pharmacol 2019; 10:20. [PMID: 30774592 PMCID: PMC6367269 DOI: 10.3389/fphar.2019.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Cystic fibrosis (CF), a fatal genetic disorder predominant in the Caucasian population, is caused by mutations in the cystic fibrosis transmembrane conductance regulator (Cftr) gene. The most common mutation is the deletion of phenylalanine from the position-508 (F508del-CFTR), resulting in a misfolded-CFTR protein, which is unable to fold, traffic and retain its plasma membrane (PM) localization. The resulting CFTR dysfunction, dysregulates variety of key cellular mechanisms such as chloride ion transport, airway surface liquid (ASL) homeostasis, mucociliary-clearance, inflammatory-oxidative signaling, and proteostasis that includes ubiquitin-proteasome system (UPS) and autophagy. A collective dysregulation of these key homoeostatic mechanisms contributes to the development of chronic obstructive cystic fibrosis lung disease, instead of the classical belief focused exclusively on ion-transport defect. Hence, therapeutic intervention(s) aimed at rescuing chronic CF lung disease needs to correct underlying defect that mediates homeostatic dysfunctions and not just chloride ion transport. Since targeting all the myriad defects individually could be quite challenging, it will be prudent to identify a process which controls almost all disease-promoting processes in the CF airways including underlying CFTR dysfunction. There is emerging experimental and clinical evidence that supports the notion that impaired cellular proteostasis and autophagy plays a central role in regulating pathogenesis of chronic CF lung disease. Thus, correcting the underlying proteostasis and autophagy defect in controlling CF pulmonary disease, primarily via correcting the protein processing defect of F508del-CFTR protein has emerged as a novel intervention strategy. Hence, we discuss here both the rationale and significant therapeutic utility of emerging proteostasis and autophagy modulating drugs/compounds in controlling chronic CF lung disease, where targeted delivery is a critical factor-influencing efficacy.
Collapse
Affiliation(s)
- Manish Bodas
- Department of Medicine, University of Oklahoma, Oklahoma City, OK, United States
| | - Neeraj Vij
- Department of Pediatric Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- 4Dx Limited, Los Angeles, CA, United States
- VIJ Biotech LLC, Baltimore, MD, United States
| |
Collapse
|
23
|
da Silva AL, Cruz FF, Rocco PRM, Morales MM. New perspectives in nanotherapeutics for chronic respiratory diseases. Biophys Rev 2017; 9:793-803. [PMID: 28914424 PMCID: PMC5662054 DOI: 10.1007/s12551-017-0319-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
According to the World Health Organization (WHO), hundreds of millions of people of all ages and in all countries suffer from chronic respiratory diseases, with particular negative consequences such as poor health-related quality of life, impaired work productivity, and limitations in the activities of daily living. Chronic obstructive pulmonary disease, asthma, occupational lung diseases (such as silicosis), cystic fibrosis, and pulmonary arterial hypertension are the most common of these diseases, and none of them are curable with current therapies. The advent of nanotechnology holds great therapeutic promise for respiratory conditions, because non-viral vectors are able to overcome the mucus and lung remodeling barriers, increasing pharmacologic and therapeutic potency. It has been demonstrated that the extent of pulmonary nanoparticle uptake depends not only on the physical and chemical features of nanoparticles themselves, but also on the health status of the organism; thus, the huge diversity in nanotechnology could revolutionize medicine, but safety assessment is a challenging task. Within this context, the present review discusses some of the major new perspectives in nanotherapeutics for lung disease and highlights some of the most recent studies in the field.
Collapse
Affiliation(s)
- Adriana Lopes da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo Marcos Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
24
|
Brockman SM, Bodas M, Silverberg D, Sharma A, Vij N. Dendrimer-based selective autophagy-induction rescues ΔF508-CFTR and inhibits Pseudomonas aeruginosa infection in cystic fibrosis. PLoS One 2017; 12:e0184793. [PMID: 28902888 PMCID: PMC5597233 DOI: 10.1371/journal.pone.0184793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/31/2017] [Indexed: 12/11/2022] Open
Abstract
Background Cystic Fibrosis (CF) is a genetic disorder caused by mutation(s) in the CF-transmembrane conductance regulator (Cftr) gene. The most common mutation, ΔF508, leads to accumulation of defective-CFTR protein in aggresome-bodies. Additionally, Pseudomonas aeruginosa (Pa), a common CF pathogen, exacerbates obstructive CF lung pathology. In the present study, we aimed to develop and test a novel strategy to improve the bioavailability and potentially achieve targeted drug delivery of cysteamine, a potent autophagy-inducing drug with anti-bacterial properties, by developing a dendrimer (PAMAM-DEN)-based cysteamine analogue. Results We first evaluated the effect of dendrimer-based cysteamine analogue (PAMAM-DENCYS) on the intrinsic autophagy response in IB3-1 cells and observed a significant reduction in Ub-RFP and LC3-GFP co-localization (aggresome-bodies) by PAMAM-DENCYS treatment as compared to plain dendrimer (PAMAM-DEN) control. Next, we observed that PAMAM-DENCYS treatment shows a modest rescue of ΔF508-CFTR as the C-form. Moreover, immunofluorescence microscopy of HEK-293 cells transfected with ΔF508-CFTR-GFP showed that PAMAM-DENCYS is able to rescue the misfolded-ΔF508-CFTR from aggresome-bodies by inducing its trafficking to the plasma membrane. We further verified these results by flow cytometry and observed significant (p<0.05; PAMAM-DEN vs. PAMAM-DENCYS) rescue of membrane-ΔF508-CFTR with PAMAM-DENCYS treatment using non-permeabilized IB3-1 cells immunostained for CFTR. Finally, we assessed the autophagy-mediated bacterial clearance potential of PAMAM-DENCYS by treating IB3-1 cells infected with PA01-GFP, and observed a significant (p<0.01; PAMAM-DEN vs. PAMAM-DENCYS) decrease in intracellular bacterial counts by immunofluorescence microscopy and flow cytometry. Also, PAMAM-DENCYS treatment significantly inhibits the growth of PA01-GFP bacteria and demonstrates potent mucolytic properties. Conclusions We demonstrate here the efficacy of dendrimer-based autophagy-induction in preventing sequestration of ΔF508-CFTR to aggresome-bodies while promoting its trafficking to the plasma membrane. Moreover, PAMAM-DENCYS decreases Pa infection and growth, while showing mucolytic properties, suggesting its potential in rescuing Pa-induced ΔF508-CF lung disease that warrants further investigation in CF murine model.
Collapse
Affiliation(s)
- Scott Mackenzie Brockman
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - David Silverberg
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ajit Sharma
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
- Department of Pediatric Respiratory Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Vij N. Nano-based rescue of dysfunctional autophagy in chronic obstructive lung diseases. Expert Opin Drug Deliv 2016; 14:483-489. [PMID: 27561233 DOI: 10.1080/17425247.2016.1223040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION ΔF508-CFTR (cystic fibrosis transmembrane conductance regulator) is a common CF-mutation that is known to induce oxidative-inflammatory stress through activation of reactive oxygen species (ROS), which induces autophagy-impairment resulting in accumulation of CFTR in aggresome-bodies. Cysteamine, the reduced form of cystamine, is a FDA-approved drug that has anti-oxidant, anti-bacterial, and mucolytic properties. This drug has been shown in a recent clinical trial to decrease lung inflammation and improve lung function in CF patients by potentially restoring autophagy and allowing CFTR to be trafficked to the cell membrane. Areas covered: The delivery of cysteamine to airway epithelia of chronic subjects prerequisite the need for a delivery system to allow rescue of dysfunctional autophagy. Expert opinion: We anticipate based on our ongoing studies that PLGA-PEG- or Dendrimer-mediated cysteamine delivery could allow sustained airway delivery over standard cysteamine tablets or delay release capsules that are currently used for systemic treatment. In addition, proposed nano-based autophagy induction strategy can also allow rescue of cigarette smoke (CS) induced acquired-CFTR dysfunction seen in chronic obstructive pulmonary disease (COPD)-emphysema subjects. The CS induced acquired-CFTR dysfunction involves CFTR-accumulation in aggresome-bodies that can be rescued by an autophagy-inducing antioxidant drug, cysteamine. Moreover, chronic CS-exposure generates ROS that induces overall protein-misfolding and aggregation of ubiquitinated-proteins as aggresome-bodies via autophagy-impairment that can be also be resolved by treatment with autophagy-inducing antioxidant drug, cysteamine.
Collapse
Affiliation(s)
- Neeraj Vij
- a College of Medicine , Central Michigan University , Mount Pleasant , MI , USA.,b Department of Pediatric Respiratory Sciences , The Johns Hopkins School of Medicine , Baltimore , MD , USA
| |
Collapse
|
26
|
Cywinska MA, Bystrzejewski M, Poplawska M, Kosmider A, Zdanowski R, Lewicki S, Fijalek Z, Ostrowska A, Bamburowicz M, Cieszanowski A, Grudzinski IP. Internalization and cytotoxicity effects of carbon-encapsulated iron nanoparticles in murine endothelial cells: Studies on internal dosages due to loaded mass agglomerates. Toxicol In Vitro 2016; 34:229-236. [DOI: 10.1016/j.tiv.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 04/18/2016] [Accepted: 04/19/2016] [Indexed: 10/21/2022]
|
27
|
Vij N, Min T, Bodas M, Gorde A, Roy I. Neutrophil targeted nano-drug delivery system for chronic obstructive lung diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2415-2427. [PMID: 27381067 DOI: 10.1016/j.nano.2016.06.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/13/2023]
Abstract
The success of drug delivery to target airway cell(s) remains a significant challenge due to the limited ability of nanoparticle (NP) systems to circumvent protective airway-defense mechanisms. The size, density, surface and physical-chemical properties of nanoparticles are the key features that determine their ability to navigate across the airway-barrier. We evaluated here the efficacy of a PEGylated immuno-conjugated PLGA-nanoparticle (PINP) to overcome this challenge and selectively deliver drug to specific inflammatory cells (neutrophils). We first characterized the size, shape, surface-properties and neutrophil targeting using dynamic laser scattering, transmission electron microscopy and flow cytometry. Next, we assessed the efficacy of neutrophil-targeted PINPs in transporting through the airway followed by specific binding and release of drug to neutrophils. Finally, our results demonstrate the efficacy of PINP mediated non-steroidal anti-inflammatory drug-(ibuprofen) delivery to neutrophils in murine models of obstructive lung diseases, based on its ability to control neutrophilic-inflammation and resulting lung disease.
Collapse
Affiliation(s)
- Neeraj Vij
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD; College of Medicine, Central Michigan University, Mt Pleasant, MI.
| | - Taehong Min
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD; Genentech, 1 DNA Way, San Francisco, CA
| | - Manish Bodas
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD; College of Medicine, Central Michigan University, Mt Pleasant, MI
| | - Aakruti Gorde
- Department of Pediatric Respiratory Science, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Indrajit Roy
- Department of Chemistry, State University of New York, Buffalo, NY
| |
Collapse
|
28
|
Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra SS, Mohapatra S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv Transl Res 2015; 3:352-63. [PMID: 23936754 DOI: 10.1007/s13346-013-0132-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Theranostic nanoparticles with both therapeutic and imaging abilities have the promise to revolutionize diagnosis, therapy, and prognosis. Early and accurate detection along with swift treatment are the most important steps in the successful treatment of any disease. Over the last decade, a variety of nanotechnology-based platforms have been created in the hope of improving the treatment and diagnosis of a wide variety of diseases. However, significant hurdles still remain before theranostic nanoparticles can bring clinical solutions to the fight against chronic respiratory diseases. Some fundamental issues such as long-term toxicity, a precise understanding of the accumulation, degradation and clearance of these particles, and the correlation between basic physicochemical properties of these nanoparticles and their in vivo behavior have to be fully understood before they can be used clinically. To date, very little theranostic nanoparticle research has focused on the treatment and diagnosis of chronic respiratory illnesses. Nanomedicine approaches incorporating these theranostic nanoparticles could potentially be translated into clinical advances to improve diagnosis and treatment of these chronic respiratory diseases and enhance quality of life for the patients.
Collapse
Affiliation(s)
- M Howell
- Molecular Medicine Department, University of South Florida, 12901 Bruce B Downs Blvd, MDC 7, Tampa 33612 FL, USA
| | | | | | | | | | | |
Collapse
|
29
|
Zhou H, Gunsten SP, Zhegalova NG, Bloch S, Achilefu S, Christopher Holley J, Schweppe D, Akers W, Brody SL, Eades WC, Berezin MY. Visualization of pulmonary clearance mechanisms via noninvasive optical imaging validated by near-infrared flow cytometry. Cytometry A 2015; 87:419-27. [PMID: 25808737 DOI: 10.1002/cyto.a.22658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 02/05/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022]
Abstract
In vivo optical imaging with near-infrared (NIR) probes is an established method of diagnostics in preclinical and clinical studies. However, the specificities of these probes are difficult to validate ex vivo due to the lack of NIR flow cytometry. To address this limitation, we modified a flow cytometer to include an additional NIR channel using a 752 nm laser line. The flow cytometry system was tested using NIR microspheres and cell lines labeled with a combination of visible range and NIR fluorescent dyes. The approach was verified in vivo in mice evaluated for immune response in lungs after intratracheal delivery of the NIR contrast agent. Flow cytometry of cells obtained from the lung bronchoalveolar lavage demonstrated that the NIR dye was taken up by pulmonary macrophages as early as 4-h post-injection. This combination of optical imaging with NIR flow cytometry extends the capability of imaging and enables complementation of in vivo imaging with cell-specific studies.
Collapse
Affiliation(s)
- Haiying Zhou
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Peng H, Liu X, Wang G, Li M, Bratlie KM, Cochran E, Wang Q. Polymeric multifunctional nanomaterials for theranostics. J Mater Chem B 2015; 3:6856-6870. [DOI: 10.1039/c5tb00617a] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Various applications of polymeric multifunctional nanomaterials for theranostics.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
- Department of Pharmaceutics
| | - Xiaoying Liu
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing
- China
| | - Guangtian Wang
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing
- China
| | - Minghui Li
- Department of Pharmaceutics
- Daqing Campus
- Harbin Medical University
- Daqing
- China
| | - Kaitlin M. Bratlie
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
- Depatrment of Materials Science and Engineering
| | - Eric Cochran
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
| | - Qun Wang
- Department of Chemical and Biological Engineering
- Iowa State University
- Ames
- USA
| |
Collapse
|
31
|
Novel drug targets for asthma and COPD: lessons learned from in vitro and in vivo models. Pulm Pharmacol Ther 2014; 29:181-98. [PMID: 24929072 DOI: 10.1016/j.pupt.2014.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/20/2014] [Accepted: 05/31/2014] [Indexed: 12/28/2022]
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are highly prevalent respiratory diseases characterized by airway inflammation, airway obstruction and airway hyperresponsiveness. Whilst current therapies, such as β-agonists and glucocorticoids, may be effective at reducing symptoms, they do not reduce disease progression. Thus, there is a need to identify new therapeutic targets. In this review, we summarize the potential of novel targets or tools, including anti-inflammatories, phosphodiesterase inhibitors, kinase inhibitors, transient receptor potential channels, vitamin D and protease inhibitors, for the treatment of asthma and COPD.
Collapse
|
32
|
Grudzinski IP, Bystrzejewski M, Cywinska MA, Kosmider A, Poplawska M, Cieszanowski A, Fijalek Z, Ostrowska A, Parzonko A. Assessing carbon-encapsulated iron nanoparticles cytotoxicity in Lewis lung carcinoma cells. J Appl Toxicol 2013; 34:380-94. [PMID: 24474239 DOI: 10.1002/jat.2947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 11/06/2022]
Abstract
Carbon-encapsulated iron nanoparticles (CEINs) have been considered as attractive candidates for several biomedical applications. In the present study, we synthesized CEINs (the mean diameter 40-80 nm) using a carbon arc route, and the as-synthesized CEINs were characterized (scanning and transmission electron microscopy, dynamic light scattering, turbidimetry, Zeta potential) and further tested as raw and purified nanomaterials containing the carbon surface modified with acidic groups. For cytotoxicity evaluation, we applied a battery of different methods (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, calcein AM/propidium iodide, annexin V/propidium iodide, JC-1, cell cycle assay, Zeta potential, TEM and inductively coupled plasma mass spectrometry) to address the strategic cytotoxic endpoints of Lewis lung carcinoma cells due to CEIN (0.0001-100 µg ml(-1) ) exposures in vitro. Our studies evidence that incubation of Lewis lung carcinoma cells with CEINs is accompanied in substantial changes of zeta potential in cells and these effects may result in different internalization profiles. The results show that CEINs increased the mitochondrial and cell membrane cytotoxicity; however, the raw CEIN material (Fe@C/Fe) produced higher toxicities than the rest of the CEINs studied to data. The study showed that non-modified CEINs (Fe@C/Fe and Fe@C) elevated some pro-apoptotic events to a greater extent compared to that of the surface-modified CEINs (Fe@C-COOH and Fe@C-(CH2 )2 COOH). They also diminished the mitochondrial membrane potentials. In contrast to non-modified CEINs, the surface-functionalized nanoparticles caused the concentration- and time-dependent arrest of the S phase in cells. Taken all together, our results shed new light on the rational design of CEINs, as their geometry, hydrodynamic and, in particular, surface characteristics are important features in selecting CEINs as future nanomaterials for nanomedicine applications.
Collapse
Affiliation(s)
- Ireneusz P Grudzinski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Warsaw, ul. S. Banacha 1, 02-097, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vij N. Synthesis and evaluation of airway targeted PLGA nanoparticles for drug delivery in obstructive lung diseases. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 906:303-10. [PMID: 22791443 DOI: 10.1007/978-1-61779-953-2_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic airway inflammation is a hallmark of chronic obstructive airway diseases, including asthma, COPD (chronic obstructive pulmonary disease), and CF (cystic fibrosis). It is also a major challenge in delivery and therapeutic efficacy of nano-based delivery systems in these chronic airway conditions as nanoparticle (NP) need to bypass airways defense mechanisms as we recently discussed. NPs which are capable of overcoming airways defense mechanisms should allow targeted drug delivery to disease cells. Over the last decade there has been increasing interest in development of targeted NPs for cancer but relatively little effort on designing novel systems for treating chronic inflammatory and obstructive airway conditions. Here we describe methods for preparing drug loaded multifunctional nanoparticles for targeted delivery to specific cell types in airways. The formulations and methods for selective drug delivery, discussed here are currently under preclinical development in our laboratory for treating chronic airway conditions such as COPD, CF, and asthma.
Collapse
Affiliation(s)
- Neeraj Vij
- Department of Pediatrics, Pulmonary Medicine & Institute of NanoBiotechnology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
34
|
Camoretti-Mercado B, Karrar E, Nuñez L, Bowman MAH. S100A12 and the Airway Smooth Muscle: Beyond Inflammation and Constriction. ACTA ACUST UNITED AC 2012; 3. [PMID: 25984393 PMCID: PMC4431649 DOI: 10.4172/2155-6121.s1-007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Airway inflammation, lung remodeling, and Airway Hyperresponsiveness (AHR) are major features of asthma and Chronic Obstructive Pulmonary Disease (COPD). The inflammatory response to allergens, air pollutants, and other insults is likely to play a key role in promoting structural changes in the lung including the overabundance of Airway Smooth Muscle (ASM) seen in asthmatics. These alterations or remodeling could, in turn, impact the immunmodulatory actions of the ASM, the ASM's contractile properties, and the development of AHR. New evidences suggest that airway inflammation and AHR are not tightly related to each other and that the structural component of the airway, mainly the ASM, is a chief driver of AHR. Members of the S100/calgranulins family have been implicated in the regulation of inflammation and cell apoptosis in various systems. S100A12 is highly expressed in neutrophils and is one of the most abundant proteins in the lungs of patients with asthma or COPD. Studies with genetic engineered mice with smooth muscle cell-targeted expression of human S100A12 revealed that S100A12 reduces airway smooth muscle amounts and dampens airway inflammation and airway hyperreactivity in a model of allergic lung inflammation. Thus, targeting airway smooth muscle for instance through delivery of pro-apoptotic S100A12 could represent an attractive means to promote ASM apoptosis and to reduce ASM abundance in asthmatics.
Collapse
Affiliation(s)
| | - Eltayeb Karrar
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, USA
| | - Luis Nuñez
- Department of Medicine, Section of Pulmonary and Critical Care, University of Chicago, USA ; BioTarget, USA
| | | |
Collapse
|