1
|
Vaid V, Jindal R. Sustained release of edaravone from (2-hydroxypropyl)-β-cyclodextrin mediated tamarind kernel powder/kappa-carrageenan hydrogel: Microwave-assisted synthesis and optimization using experimental design. Int J Biol Macromol 2022; 219:246-261. [PMID: 35932803 DOI: 10.1016/j.ijbiomac.2022.07.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 11/05/2022]
Abstract
In the current study, a sustained release formulation made of natural polysaccharide tamarind kernel powder/kappa-carrageenan and (2-hydroxypropyl)-β-cyclodextrin (2-Hp-β-CD) was chosen to increase drug effectiveness. A kappa-carrageenan and tamarind kernel powder 3-D hydrogel network was synthesized with the aid of microwave irradiations. The ICs complexes were prepared using a physical mixture (PM), kneading (KM), and microwave (MW) approach and were then successfully loaded into the hydrogel. The synthesis of ICs was verified as a true IC using DSC, SEM, FTIR, 1H NMR, and 2D NMR ROESY. A study on the in vitro sustained release of EV at pH 2, 7, and 7.4 was conducted at 37 °C. The microwave (MW) method was the most effective method for preparing true ICs of EV and 2-Hp-β-CD for sustained drug release, as evidenced by the drug release data, which indicated that PM and KM displayed a burst release of the drug. Ritger-Peppas and Peppas-Sahlin were essential models for drug release. A phase solubility analysis was done to evaluate the IC's stoichiometry and complexation constant. Studies on drug release have shown that 2-Hp-β-CD was effective at causing pH-responsive sustained drug release.
Collapse
Affiliation(s)
- Vasudha Vaid
- Polymer and Nanomaterial Lab, Department of Chemistry, Dr. BR Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
| | - Rajeev Jindal
- Polymer and Nanomaterial Lab, Department of Chemistry, Dr. BR Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
| |
Collapse
|
2
|
Liu Z, Chen X, Huang Z, Shi J, Liu C, Cao S, Yan H, Lin Q. Self-assembled oleylamine grafted alginate aggregates for hydrophobic drugs loading and controlled release. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.2006652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Zhaowen Liu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
- College of Pharmacy, Gannan Medical University, Jiangxi, Ganzhou, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
| | - Xiuqiong Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
| | - Zhiqin Huang
- College of Pharmacy, Gannan Medical University, Jiangxi, Ganzhou, China
| | - Jianjun Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
| | - Chunyang Liu
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
| | - Shirui Cao
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
| | - Huiqiong Yan
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
| | - Qiang Lin
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
- Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Hainan, Haikou, China
| |
Collapse
|
3
|
Usuelli M, Germerdonk T, Cao Y, Peydayesh M, Bagnani M, Handschin S, Nyström G, Mezzenga R. Polysaccharide-reinforced amyloid fibril hydrogels and aerogels. NANOSCALE 2021; 13:12534-12545. [PMID: 34263899 DOI: 10.1039/d1nr03133c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-Lactoglobulin amyloid fibrils are bio-colloids of high interest in many fields (e.g. water purification, cell growth, drug delivery and sensing). While the mechanical properties of pure amyloid fibril gels meet the needs of some applications, mechanical fragility often hinders a wider usage basin. In this work, we present a simple and sustainable approach for reinforcing amyloid fibril hydrogels and aerogels, upon the diffusion of polysaccharides (low-acetylated Gellan Gum and κ-carrageenan) inside their mesh. The formed hybrid materials show enhanced resistance upon compression, without any loss of the exquisite surface reactivity of the amyloid fibrils. The proposed approach can pave the way for designing composite materials that are both highly functional and environmentally friendly.
Collapse
Affiliation(s)
- Mattia Usuelli
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
AgNP/Alginate Nanocomposite hydrogel for antimicrobial and antibiofilm applications. Carbohydr Polym 2020; 251:117017. [PMID: 33142578 DOI: 10.1016/j.carbpol.2020.117017] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
The synthesis and specific surface functionalization of antimicrobial silver nanoparticles (AgNPs) and their incorporation into an alginate hydrogel is described. Divalent cation-mediated ionic crosslinking was used to disperse the AgNPs throughout the gel, made possible by -COO- cross-linking sites provided by the surface-enhanced nanoparticles, inspired by the classic egg-box model crosslinking of calcium alginate. An AgNP concentration, 10-20 μg g-1 increased hygrogel elasticity, viscosity, and shear resistance by 45, 30, and 31% respectively. Cryo-TEM revealed evenly distributed AgNP assemblies of discrete AgNPs throughout the gel matrices. FTIR-ATR indicated AgNPs were involved in alginate carboxylate-Ca2+-COO-AgNP crossbridging, which was not achieved through mixing of AgNPs into preformed gels. Live/dead fluorometric assays determined a minimal bactericidal concentration of 25 μg g-1 Ag for 6 microorganisms. Anti-biofilm assays showed species-dependent cell death of 44 -61%, with limited silver ion release of 0.41% and 1.1% after 7 days for Gram positive and negative bacteria, respectively.
Collapse
|
5
|
El Hariri El Nokab M, van der Wel PC. Use of solid-state NMR spectroscopy for investigating polysaccharide-based hydrogels: A review. Carbohydr Polym 2020; 240:116276. [DOI: 10.1016/j.carbpol.2020.116276] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/22/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
|
6
|
|
7
|
Singh A, Thakur S, Sharma T, Kaur M, Sahajpal NS, Aurora R, Jain SK. Harmonious Biomaterials for Development of In situ Approaches for Locoregional Delivery of Anti-cancer Drugs: Current Trends. Curr Med Chem 2019; 27:3463-3498. [PMID: 31223077 DOI: 10.2174/1573406415666190621095726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 11/22/2022]
Abstract
Locoregional drug delivery is a novel approach for the effective delivery of anti-cancer agents as it exposes the tumors to high concentration of drugs. In situ gelling systems have fetched paramount attention in the field of localized cancer chemotherapy due to their targeted delivery, ease of preparation, prolonged or sustained drug release and improved patient compliance. Numerous polymers have been investigated for their properties like swelling along with biodegradation, drug release and physicochemical properties for successful targeting of the drugs at the site of implantation. The polymers such as chitosan, Hyaluronic Acid (HA), poloxamer, Poly Glycolic Lactic Acid (PGLA) and Poly Lactic Acid (PLA) tend to form in situ hydrogels and have been exploited to develop localized delivery vehicles. These formulations are administered in the solution form and on exposure to physiological environment such as temperature, pH or ionic composition they undergo phase conversion into a hydrogel drug depot. The use of in situ gelling approach has provided prospects to increase overall survival and life quality of cancer patient by enhancing the bioavailability of drug to the site of tumor by minimizing the exposure to normal cells and alleviating systemic side effects. Because of its favorable safety profile and clinical benefits, United States Food and Drug Administration (U.S. FDA) has approved polymer based in situ systems for prolonged locoregional activity. This article discusses the rationale for developing in situ systems for targeted delivery of anti-cancer agents with special emphasis on types of polymers used to formulate the in situ system. In situ formulations for locoregional anti-cancer drug delivery that are marketed and are under clinical trials have also been discussed in detail in this article.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tushit Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Rohan Aurora
- The International School Bangalore, Karnataka, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
8
|
Madrigal JL, Shams S, Stilhano RS, Silva EA. Characterizing the encapsulation and release of lentivectors and adeno-associated vectors from degradable alginate hydrogels. Biomater Sci 2019; 7:645-656. [PMID: 30534722 DOI: 10.1039/c8bm01218k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene therapy using viral vectors has been licensed for clinical use both in the European Union and the United States. Lentivectors (LV) and adeno-associated vectors (AAV) are two promising and FDA approved gene-therapy viral vectors. Many future applications of these vectors will benefit from targeting specific regions of interest within the body. Therefore, building on the early success of these vectors may depend on finding effective delivery systems to localize therapeutic administration. Degradable alginate hydrogels have been tested as appealing delivery vehicles for the controlled delivery of vector payloads. In this study, we compare the ability of two different degradable alginate hydrogel formulations to efficiently deliver LV and AAV. We propose that release rates of viral vectors are dependent on the physical properties of both the hydrogels and vectors. Here, we demonstrate that the initial strength and degradation rate of alginate hydrogels provides levers of control for tuning LV release but do not provide control in the release of AAV. While both alginate formulations used showed sustained release of both LV and AAV, LV release was shown to be dependent on alginate hydrogel degradation, while AAV release was largely governed by diffusive mechanisms. Altogether, this study demonstrates alginate's use as a possible delivery platform for LV and, for the first time, AAV - highlighting the potential of injectable degradable alginate hydrogels to be used as a versatile delivery tool in gene therapy applications.
Collapse
Affiliation(s)
- Justin L Madrigal
- Department of Biomedical Engineering, University of California, Davis, CA, USA.
| | | | | | | |
Collapse
|
9
|
Nie J, Pei B, Wang Z, Hu Q. Construction of ordered structure in polysaccharide hydrogel: A review. Carbohydr Polym 2018; 205:225-235. [PMID: 30446099 DOI: 10.1016/j.carbpol.2018.10.033] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022]
Abstract
Hydrogels are three-dimensional, hydrophilic, polymeric networks, held together by a variety of physical or chemical crosslinks. Among the numerous polymers that can be employed to fabricate hydrogel, polysaccharides have attracted enormous attention due to their peculiar properties that make them suitable for various applications. Compared with homogeneous hydrogels, hydrogels with ordered structures on various length scales are endowed with excellent properties and promising applications in materials science. In the present review, a wide range of techniques were introduced and discussed, which had been utilized to construct ordered hierarchical structures in polysaccharide hydrogels. These techniques focused on the construction of multi-layered and orientated structure, which are two typical and very important forms of hierarchical structure.
Collapse
Affiliation(s)
- Jingyi Nie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Boying Pei
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Biomedical Macromolecules, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
10
|
Salehi Dashtebayaz MS, Nourbakhsh MS. Interpenetrating networks hydrogels based on hyaluronic acid for drug delivery and tissue engineering. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1455680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Mohammad Sadegh Nourbakhsh
- Materials and Metallurgical Engineering, Central Administration of Semnan University, Semnan University, Semnan, Iran (the Islamic Republic of)
| |
Collapse
|
11
|
Kulkarni AD, Joshi AA, Patil CL, Amale PD, Patel HM, Surana SJ, Belgamwar VS, Chaudhari KS, Pardeshi CV. Xyloglucan: A functional biomacromolecule for drug delivery applications. Int J Biol Macromol 2017. [DOI: 10.1016/j.ijbiomac.2017.06.088] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Ramburrun P, Kumar P, Choonara YE, du Toit LC, Pillay V. Design and characterization of neurodurable gellan-xanthan pH-responsive hydrogels for controlled drug delivery. Expert Opin Drug Deliv 2016; 14:291-306. [DOI: 10.1080/17425247.2017.1266331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Elviri L, Bergonzi C, Bianchera A, Bettini R. Mapping insulin non-covalent interactions with natural polysaccharides by hydrogen/deuterium exchange mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2323-2330. [PMID: 27495851 DOI: 10.1002/rcm.7708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/01/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Drug development efforts involving therapeutic peptides or proteins strongly lead optimization of drug delivery, drug stability, solubility and functionality. The key feature of controlled drug delivery is the use of biocompatible polymers able to interact via non-covalent bonds with an active principle through multiple functional groups. Here amide hydrogen/deuterium exchange (HDX) mass spectrometry was employed to localize insulin dynamics induced by interactions with three natural polysaccharides, i.e. chitosan (CH), sodium alginate (ALG) and chondroitin sulfate (CS). METHODS LTQ-Orbitap continuous-labelling mass spectra were collected by diluting insulin stock solution (10 mM in 0.1% formic acid) to a final concentration of 0.1 mM in D2 O containing 1 mM deuterated ammonium acetate (final pH .6) (insulin:polysaccharide ratio 1:2, w/w). For peptide mapping, deuterated samples were quenched after 0.5, 30, 60, 120 minutes exchange by adding HCl (pH ) and digested with pepsin before LC-MS/MS analysis. RESULTS Differences in the insulin backbone dynamics in the presence of the three polysaccharides were highlighted by monitoring peptic peptides at different time points. No significant differences were observed in the presence of CH, whereas the negatively charged ALG and CS were able to induce significant conformational variations at the B-chain level resulting in more protection against H/D exchange. The A-chain interacted only with CS reducing the protein mobility on a long time scale (120 min). HDX data evidenced heterogeneous insulin dynamics in the presence of ALG and CS. CONCLUSIONS The studies reported here demonstrated the capabilities of mass spectrometry techniques and HDX methods to obtain useful information toward the flexibility and the behavior of native insulin in the presence of natural polysaccharides, and could provide insights to study the behavior of pharmaceutical formulations. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lisa Elviri
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy.
| | - Carlo Bergonzi
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Annalisa Bianchera
- Interdepartmental Centre Biopharmanet-Tec, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | - Ruggero Bettini
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| |
Collapse
|
14
|
Marianecci C, Petralito S, Rinaldi F, Hanieh PN, Carafa M. Some recent advances on liposomal and niosomal vesicular carriers. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Kawano Y, Sasatsu M, Mizutani A, Hirose K, Hanawa T, Onishi H. Preparation and Evaluation of Stomatitis Film Using Xyloglucan Containing Loperamide. Chem Pharm Bull (Tokyo) 2016; 64:564-9. [PMID: 26960400 DOI: 10.1248/cpb.c15-00926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stomatitis induced by radiation therapy or cancer chemotherapy is a factor in sleep disorders and/or eating disorders, markedly decreasing patient quality of life. In recent years, disintegrating oral films that are easy to handle have been developed; therefore, we focused on the formulation of these films. We prepared an adhesive film for the oral cavity using xyloglucan (Xylo), which is a water-soluble macromolecule. We used loperamide, which has been reported to relieve pain caused by stomatitis effectively, as a model drug in this study. Films were prepared from Xylo solutions (3% (w/w)) and hypromellose (HPMC) solutions (1% (w/w)). Xylo and HPMC solutions were mixed at ratios of 1 : 1, 2 : 1, or 3 : 1 for each film, and films 2×2 cm weighing 3 g were prepared and dried at 37°C for 24 h. Physicochemical properties such as strength, adhesiveness, disintegration behavior, and dissolution of loperamide from films were evaluated. Films prepared from Xylo solution alone had sufficient strength and mucosal adhesion. On the other hand, films prepared from a mixture of Xylo and HPMC were inferior to those made from Xylo, but showed sufficient strength and mucosal adhesion and were flexible and easy to handle. The films prepared in this study are useful as adhesion films in the oral cavity.
Collapse
Affiliation(s)
- Yayoi Kawano
- Faculty of Pharmaceutical Science, Tokyo University of Science
| | | | | | | | | | | |
Collapse
|
16
|
Huang Z, Xie X, Mukerabigwi JF, Wang C, Wang S, Xiao W, Huang X, Cao Y. PTX encapsulated by an XG–DOX conjugate for combination therapy against multi-drug resistance. RSC Adv 2016. [DOI: 10.1039/c6ra20437f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new type of targeted dual drug delivery system was designed and possesses outstanding advantages over ordinary systems, proving effective against MDR cancer cells.
Collapse
Affiliation(s)
- Zhuli Huang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Xuan Xie
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Jean Felix Mukerabigwi
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Chang Wang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Shufang Wang
- Blood Transfusion Department
- The General Hospital of the People’s Liberation Army
- Beijing 100853
- China
| | - Wang Xiao
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Xueying Huang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| | - Yu Cao
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education)
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- P. R. China
| |
Collapse
|
17
|
Luo S, Gu Y, Zhang Y, Guo P, Mukerabigwi JF, Liu M, Lei S, Cao Y, He H, Huang X. Precise Ratiometric Control of Dual Drugs through a Single Macromolecule for Combination Therapy. Mol Pharm 2015; 12:2318-27. [DOI: 10.1021/mp500867g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shiying Luo
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Gu
- Prenatal
Diagnosis Center, Lianyungang Maternal and Child Hospital, Lianyungang, 222002, P. R. China
| | - Yuannian Zhang
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Pei Guo
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jean Felix Mukerabigwi
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Min Liu
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shaojun Lei
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Cao
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongxuan He
- Key
Laboratory of Animal Ecology and Conservation Biology, Institute of
Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xueying Huang
- Key
Laboratory of Pesticide and Chemical Biology (Ministry of Education),
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
18
|
Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int 2015; 2015:948040. [PMID: 26124844 PMCID: PMC4466497 DOI: 10.1155/2015/948040] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/14/2014] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
Collapse
|
19
|
Robust and versatile pectin-based drug delivery systems. Int J Pharm 2015; 479:265-76. [DOI: 10.1016/j.ijpharm.2014.12.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/01/2014] [Accepted: 12/19/2014] [Indexed: 12/15/2022]
|
20
|
Bothiraja C, Kumbhar V, Pawar A, Shaikh K, Kamble R. Development of floating in situ gelling system as an efficient anti-ulcer formulation: in vitro and in vivo studies. RSC Adv 2015. [DOI: 10.1039/c5ra01575h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the present work was to design gellan gum and calcium carbonate based floating in situ gel as an efficient anti-ulcer formulation using andrographolide (AG) as a model drug.
Collapse
Affiliation(s)
- C. Bothiraja
- Department of Pharmaceutics
- Bharati Vidyapeeth University
- Poona College of Pharmacy
- Pune 411038
- India
| | - Vijay Kumbhar
- Department of Pharmaceutics
- Sharadchandra Pawar College of Pharmacy
- Pune 412409
- India
| | - Atmaram Pawar
- Department of Pharmaceutics
- Bharati Vidyapeeth University
- Poona College of Pharmacy
- Pune 411038
- India
| | | | - Ravindra Kamble
- Department of Pharmaceutics
- Bharati Vidyapeeth University
- Poona College of Pharmacy
- Pune 411038
- India
| |
Collapse
|
21
|
Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2014.12.001] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53:12320-64. [PMID: 25294565 DOI: 10.1002/anie.201403036] [Citation(s) in RCA: 744] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 12/18/2022]
Abstract
In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
Collapse
Affiliation(s)
- Tianmeng Sun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | | | | | | | | | | |
Collapse
|
23
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Maßgeschneiderte Nanopartikel für den Wirkstofftransport in der Krebstherapie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403036] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
|
25
|
Seibel J, Jördening HJ, Buchholz K. Extending synthetic routes for oligosaccharides by enzyme, substrate and reaction engineering. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 120:163-93. [PMID: 20182930 DOI: 10.1007/10_2009_54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The integration of all relevant tools for bioreaction engineering has been a recent challenge. This approach should notably favor the production of oligo- and polysaccharides, which is highly complex due to the requirements of regio- and stereoselectivity. Oligosaccharides (OS) and polysaccharides (PS) have found many interests in the fields of food, pharmaceuticals, and cosmetics due to different specific properties. Food, sweeteners, and food ingredients represent important sectors where OS are used in major amounts. Increasing attention has been devoted to the sophisticated roles of OS and glycosylated compounds, at cell or membrane surfaces, and their function, e.g., in infection and cancer proliferation. The challenge for synthesis is obvious, and convenient approaches using cheap and readily available substrates and enzymes will be discussed. We report on new routes for the synthesis of oligosaccharides (OS), with emphasis on enzymatic reactions, since they offer unique properties, proceeding highly regio- and stereoselective in water solution, and providing for high yields in general.
Collapse
Affiliation(s)
- Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany,
| | | | | |
Collapse
|
26
|
Manconi M, Nácher A, Merino V, Merino-Sanjuan M, Manca ML, Mura C, Mura S, Fadda AM, Diez-Sales O. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate-chitosan microcomplexation. AAPS PharmSciTech 2013; 14:485-96. [PMID: 23471836 DOI: 10.1208/s12249-013-9926-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/12/2013] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to develop a new delivery system capable of improving bioavailability and controlling release of hydrophilic drugs. Metformin-loaded liposomes were prepared and to improve their stability surface was coated with chitosan cross-linked with the biocompatible β-glycerolphosphate. X-ray diffraction, differential scanning calorimetry, as well as rheological analysis were performed to investigate interactions between chitosan and β-glycerolphosphate molecules. The entrapment of liposomes into the chitosan-β-glycerolphosphate network was assessed by scanning electron microscopy and transmission electron microscopy. Swelling and mucoadhesive properties as well as drug release were evaluated in vitro while the drug oral bioavailability was evaluated in vivo on Wistar rats. Results clearly showed that, compared to control, the proposed microcomplexes led to a 2.5-fold increase of metformin T(max) with a 40% augmentation of the AUC/D value.
Collapse
|
27
|
Mkedder I, Travelet C, Durand-Terrasson A, Halila S, Dubreuil F, Borsali R. Preparation and enzymatic hydrolysis of nanoparticles made from single xyloglucan polysaccharide chain. Carbohydr Polym 2013; 94:934-9. [DOI: 10.1016/j.carbpol.2013.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/05/2012] [Accepted: 02/01/2013] [Indexed: 11/16/2022]
|
28
|
Abstract
Polysaccharides have been used in various biomedical applications due to availability and biocompatibility. In particular, polysaccharides have gained increasing interest in the development of functional nanomedicines as a component to provide a stealth function, improve interactions with target tissues or enable environment-responsive drug release. This review discusses recent advances in nanomedicine engineering based on polysaccharides with a specific emphasis on the rationale, applications and the remaining challenges.
Collapse
|
29
|
Bain MK, Bhowmick B, Maity D, Mondal D, Mollick MMR, Rana D, Chattopadhyay D. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel. Int J Biol Macromol 2012; 51:831-6. [DOI: 10.1016/j.ijbiomac.2012.07.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/19/2012] [Accepted: 07/29/2012] [Indexed: 02/08/2023]
|
30
|
Ajazuddin, Alexander A, Khan J, Giri TK, Tripathi DK, Saraf S, Saraf S. Advancement in stimuli triggered in situ gelling delivery for local and systemic route. Expert Opin Drug Deliv 2012; 9:1573-92. [PMID: 23075325 DOI: 10.1517/17425247.2013.734806] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Current research efforts focused on the design and evaluation of drug delivery systems that are easy to administer require decreased administration frequency, and provide sustained drug release in order to increase clinical efficacy and compliance of the patients. The gel forming smart polymeric formulations offer numerous applications resemble sustained and prolonged action in contrast to conventional drug delivery systems. AREAS COVERED Article summarizes type of bioactive, sol-gel triggering factors, dose, rationales, and polymers involved in gelation with respect to their route of administration. A lot of work has been done with smart polymeric gelling system taking the advantage of stimuli (temperature and pH) triggered sol-gel phase-transition in the administered area that have great prospective in biomedical and pharmaceutical applications, particularly in target-specific controlled drug delivery systems. EXPERT OPINION Although the principle of gelation is so attractive, key issues remain to be solved which include (i) variability of the drug release, (ii) avoidance of burst release in case of depot formulation, and (iii) issues related to toxicity. Unfortunately, till now area concerning the detailed processes of the gelling formation is still not much explored. Despite this proclamation, many efforts are made in industry and institutions to improve concerned approaches. New materials and approaches enter the preclinical and clinical phases and one can be sure that this strategy will gain further clinical importance within the next years. Thus, this review article will assuredly serve as an informative tool for the innovators working in the concern area.
Collapse
Affiliation(s)
- Ajazuddin
- Rungta College of Pharmaceutical Sciences and Research, C.G., 490024, India
| | | | | | | | | | | | | |
Collapse
|
31
|
Ghadban A, Albertin L, Rinaudo M, Heyraud A. Biohybrid Glycopolymer Capable of Ionotropic Gelation. Biomacromolecules 2012; 13:3108-19. [DOI: 10.1021/bm300925j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ali Ghadban
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS; affiliated with Université Joseph Fourier and
member of the Institut de Chimie Moléculaire de Grenoble),
BP53, 38041 Grenoble, France
| | - Luca Albertin
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS; affiliated with Université Joseph Fourier and
member of the Institut de Chimie Moléculaire de Grenoble),
BP53, 38041 Grenoble, France
| | - Marguerite Rinaudo
- European Synchrotron Radiation Facility, BP 220, 6 Rue Jules Horowitz, 38043,
Grenoble, France
| | - Alain Heyraud
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS; affiliated with Université Joseph Fourier and
member of the Institut de Chimie Moléculaire de Grenoble),
BP53, 38041 Grenoble, France
| |
Collapse
|
32
|
Neibert K, Gopishetty V, Grigoryev A, Tokarev I, Al-Hajaj N, Vorstenbosch J, Philip A, Minko S, Maysinger D. Wound-healing with mechanically robust and biodegradable hydrogel fibers loaded with silver nanoparticles. Adv Healthc Mater 2012. [PMID: 23184797 DOI: 10.1002/adhm.201200075] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The objective of this study is to provide a novel synthetic approach for the manufacture of wound-healing materials using covalently cross-linked alginate fibers loaded with silver nanoparticles. Alginate fibers are prepared by wet-spinning in a CaCl(2) precipitation bath. Using this same approach, calcium cross-links in alginate fibers are replaced by chemical cross-links that involve hydroxyl groups for subsequent cross-linking by glutaraldehyde. The cross-linked fibers become highly swollen in aqueous solution due to the presence of carboxyl functional groups, and retain their mechanical stability in physiological fluids owing to the stabilized network of covalent bonds. Alginate fibers can then be loaded with silver ions via the ion-exchange reaction. Silver ions are reduced to yield 11 nm silver nanoparticles incorporated in the polymer gel. This method provides a convenient platform to incorporate silver nanoparticles into alginate fibers in controlled concentrations while retaining the mechanical and swelling properties of the alginate fibers. Our study suggests that the silver nanoparticles loaded fibers may be easily applied in a wound healing paradigm and promote the repair process though the promotion of fibroblast migration to the wound area, reduction of the inflammatory phase, and the increased epidermal thickness in the repaired wound area, thereby improving the overall quality and speed of healing.
Collapse
Affiliation(s)
- Kevin Neibert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hyaluronic acid methacrylate derivatives and calcium alginate interpenetrated hydrogel networks for biomedical applications: physico-chemical characterization and protein release. Colloid Polym Sci 2012. [DOI: 10.1007/s00396-012-2735-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Affiliation(s)
- Tina Vermonden
- Department of Pharmaceutics, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands.
| | | | | |
Collapse
|
35
|
Chikar JA, Hendricks JL, Richardson-Burns SM, Raphael Y, Pfingst BE, Martin DC. The use of a dual PEDOT and RGD-functionalized alginate hydrogel coating to provide sustained drug delivery and improved cochlear implant function. Biomaterials 2011; 33:1982-90. [PMID: 22182748 DOI: 10.1016/j.biomaterials.2011.11.052] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 11/20/2011] [Indexed: 11/30/2022]
Abstract
Cochlear implants provide hearing by electrically stimulating the auditory nerve. Implant function can be hindered by device design variables, including electrode size and electrode-to-nerve distance, and cochlear environment variables, including the degeneration of the auditory nerve following hair cell loss. We have developed a dual-component cochlear implant coating to improve both the electrical function of the implant and the biological stability of the inner ear, thereby facilitating the long-term perception of sound through a cochlear implant. This coating is a combination of an arginine-glycine-aspartic acid (RGD)-functionalized alginate hydrogel and the conducting polymer poly(3, 4-ethylenedioxythiophene) (PEDOT). Both in vitro and in vivo assays on the effects of these electrode coatings demonstrated improvements in device performance. We found that the coating reduced electrode impedance, improved charge delivery, and locally released significant levels of a trophic factor into cochlear fluids. This coating is non-cytotoxic, clinically relevant, and has the potential to significantly improve the cochlear implant user's experience.
Collapse
Affiliation(s)
- Jennifer A Chikar
- Neuroscience Program, University of Michigan, 4137 Undergraduate Research Bldg, 204 Washtenaw Ave., Ann Arbor, MI 48109-2215, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Cao Y, Chen D, Zhao P, Liu L, Huang X, Qi C, Liu Y, He H, Wang Q, Liu Y, Chen S. Intracellular Delivery of Mitomycin C with Targeted Polysaccharide Conjugates Against Multidrug Resistance. Ann Biomed Eng 2011; 39:2456-65. [DOI: 10.1007/s10439-011-0333-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 05/17/2011] [Indexed: 11/27/2022]
|
37
|
Kang HK, Kimura A, Kim D. Bioengineering of Leuconostoc mesenteroides glucansucrases that gives selected bond formation for glucan synthesis and/or acceptor-product synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4148-4155. [PMID: 21391600 DOI: 10.1021/jf104629g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The variations in glucosidic linkage specificity observed in products of different glucansucrases appear to be based on relatively small differences in amino acid sequences in their sugar-binding acceptor subsites. Various amino acid mutations near active sites of DSRBCB4 dextransucrase from Leuconostoc mesenteroides B-1299CB4 were constructed. A triple amino acid mutation (S642N/E643N/V644S) immediately next to the catalytic D641 (putative transition state stabilizing residue) converted DSRBCB4 enzyme from the synthesis of mainly α-(1→6) dextran to the synthesis of α-(1→6) glucan containing branches of α-(1→3) and α-(1→4) glucosidic linkages. The subsequent introduction of mutation V532P/V535I, located next to the catalytic D530 (nucleophile), resulted in the synthesis of an α-glucan containing increased branched α-(1→4) glucosidic linkages (approximately 11%). The results indicate that mutagenesis can guide glucansucrase toward the synthesis of various oligosaccharides or novel polysaccharides with completely altered linkages without compromising high transglycosylation activity and efficiency.
Collapse
Affiliation(s)
- Hee Kyoung Kang
- Research Institute for Catalysis and School of Biological Sciences and Technology, Chonnam National University, Gwang-Ju, Korea
| | | | | |
Collapse
|
38
|
Itoh K, Hatakeyama T, Shimoyama T, Miyazaki S, D’Emanuele A, Attwood D. In situgelling formulation based on methylcellulose/pectin system for oral-sustained drug delivery to dysphagic patients. Drug Dev Ind Pharm 2011; 37:790-7. [DOI: 10.3109/03639045.2010.541465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Sezer AD, Kazak H, Öner ET, Akbuğa J. Levan-based nanocarrier system for peptide and protein drug delivery: Optimization and influence of experimental parameters on the nanoparticle characteristics. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.11.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Oliveira JT, Reis RL. Polysaccharide-based materials for cartilage tissue engineering applications. J Tissue Eng Regen Med 2010; 5:421-36. [DOI: 10.1002/term.335] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/18/2010] [Indexed: 12/12/2022]
|
41
|
|
42
|
Sosne G, Qiu P, Kurpakus-Wheater M, Matthew H. Thymosin β4 and corneal wound healing: visions of the future. Ann N Y Acad Sci 2010; 1194:190-8. [PMID: 20536468 DOI: 10.1111/j.1749-6632.2010.05472.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gabriel Sosne
- Department of Ophthalmology and Anatomy, Wayne State University School of Medicine, Kresge Eye Institute, Detroit, Michigan, USA.
| | | | | | | |
Collapse
|
43
|
Itoh K, Tsuruya R, Shimoyama T, Watanabe H, Miyazaki S, D'Emanuele A, Attwood D. In situ gelling xyloglucan/alginate liquid formulation for oral sustained drug delivery to dysphagic patients. Drug Dev Ind Pharm 2010; 36:449-55. [DOI: 10.3109/03639040903244480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Boudou T, Crouzier T, Ren K, Blin G, Picart C. Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:441-67. [PMID: 20217734 DOI: 10.1002/adma.200901327] [Citation(s) in RCA: 511] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The design of advanced functional materials with nanometer- and micrometer-scale control over their properties is of considerable interest for both fundamental and applied studies because of the many potential applications for these materials in the fields of biomedical materials, tissue engineering, and regenerative medicine. The layer-by-layer deposition technique introduced in the early 1990s by Decher, Moehwald, and Lvov is a versatile technique, which has attracted an increasing number of researchers in recent years due to its wide range of advantages for biomedical applications: ease of preparation under "mild" conditions compatible with physiological media, capability of incorporating bioactive molecules, extra-cellular matrix components and biopolymers in the films, tunable mechanical properties, and spatio-temporal control over film organization. The last few years have seen a significant increase in reports exploring the possibilities offered by diffusing molecules into films to control their internal structures or design "reservoirs," as well as control their mechanical properties. Such properties, associated with the chemical properties of films, are particularly important for designing biomedical devices that contain bioactive molecules. In this review, we highlight recent work on designing and controlling film properties at the nanometer and micrometer scales with a view to developing new biomaterial coatings, tissue engineered constructs that could mimic in vivo cellular microenvironments, and stem cell "niches."
Collapse
Affiliation(s)
- Thomas Boudou
- Grenoble-INP, LMGP-MINATEC, CNRS UMR 5628 3, Parvis Louis Néel, 38016 Grenoble, France
| | | | | | | | | |
Collapse
|
45
|
Galler KM, D'Souza RN, Hartgerink JD. Biomaterials and their potential applications for dental tissue engineering. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01207f] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
|
47
|
Cao Y, Gu Y, Ma H, Bai J, Liu L, Zhao P, He H. Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide-doxorubicin conjugate loaded doxorubicin. Int J Biol Macromol 2009; 46:245-9. [PMID: 19958788 DOI: 10.1016/j.ijbiomac.2009.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/29/2022]
Abstract
Xyloglucan was grafted with the doxorubicin (DOX) and galactosamine, a terminal moiety that can be used to target polymeric conjugates to liver hepatocytes. The content of the DOX was over 5% (wt) in the conjugate. The polymeric drug assisted to form nanoparticle drug delivery systems (nanoDDSs) with an average size of 142 nm in diameter when combined with an excess amount of deprotonated doxorubicin in an aqueous phase. A loading content of doxorubicin is as high as 23.8% in the nanoDDS. In an in vitro cytotoxicity experiment, the novel nanoDDS has similar cytotoxicity as free DOX against HepG2 cells. In contrast, for the incubation with HeLa cells of the novel nanoDDS, there was no significant cytotoxicity change. In a human tumor xenograft nude mouse model, the novel nanoDDS generated higher therapeutic effect than non-targeted doxorubicin nanoparticles or free doxorubicin. Together, these results suggest that novel nanoDDS, which has improved transfection efficiency and hepatocyte specificity, may be useful for tumor therapy.
Collapse
Affiliation(s)
- Yu Cao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152# Luoyu Road, Wuhan, Hubei 430079, PR China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Cao Y, Ikeda I. Antioxidant activity and antitumor activity (in vitro) of xyloglucan selenious ester and surfated xyloglucan. Int J Biol Macromol 2009; 45:231-5. [DOI: 10.1016/j.ijbiomac.2009.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
|
49
|
Mishra A, Malhotra AV. Tamarind xyloglucan: a polysaccharide with versatile application potential. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b911150f] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Hellmuth H, Wittrock S, Kralj S, Dijkhuizen L, Hofer B, Seibel J. Engineering the Glucansucrase GTFR Enzyme Reaction and Glycosidic Bond Specificity: Toward Tailor-Made Polymer and Oligosaccharide Products. Biochemistry 2008; 47:6678-84. [DOI: 10.1021/bi800563r] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hendrik Hellmuth
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sabine Wittrock
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Slavko Kralj
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Bernd Hofer
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Jürgen Seibel
- Department of Carbohydrate Technology, University of Braunschweig, Braunschweig, Germany, Division of Structural Biology and Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany, and Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, and Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|