1
|
Kádár S, Kennedy A, Lee S, Ruiz R, Farkas A, Tőzsér P, Csicsák D, Tóth G, Sinkó B, Borbás E. Bioequivalence prediction with small-scale biphasic dissolution and simultaneous dissolution-permeation apparatus-An aripiprazole case study. Eur J Pharm Sci 2024; 198:106782. [PMID: 38697313 DOI: 10.1016/j.ejps.2024.106782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/04/2024]
Abstract
Both biphasic dissolution and simultaneous dissolution-permeation (D-P) systems have great potential to improve the in vitro-in vivo correlation compared to simple dissolution assays, but the assay conditions, and the evaluation methods still need to be refined in order to effectively use these apparatuses in drug development. Therefore, this comprehensive study aimed to compare the predictive accuracy of small-volume (16-20 mL) D-P system and small-volume (40-80 mL) biphasic dissolution apparatus in bioequivalence prediction of five aripiprazole (ARP) containing marketed drug products. Assay conditions, specifically dose dependence were studied to overcome the limitations of both small-scale systems. In case of biphasic dissolution the in vivo maximum plasma concentration (Cmax) prediction greatly improved with the dose reduction of ARP, while in case of the D-P setup the use of whole tablet gave just as accurate prediction as the scaled dose. With the dose reduction strategy both equipment was able to reach 100 % accuracy in bioequivalence prediction for Cmax ratio. In case of the in vivo area under the curve (AUC) prediction the predictive accuracy for the AUC ratio was not dependent on the dose, and both apparatus had a 100 % accuracy predicting bioequivalence based on AUC results. This paper presents for the first time that not only selected parameters of flux assays (like permeability, initial flux, AUC value) were used as an input parameter of a mechanistic model (gastrointestinal unified theory) to predict absorption rate but the whole in vitro flux profile was used. All fraction absorbed values estimated by Predictor Software fell within the ±15 % acceptance range during the comparison with the in vivo data.
Collapse
Affiliation(s)
- Szabina Kádár
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary
| | - Andrew Kennedy
- Pion Inc UK Ltd., Forest Row Business Park, Forest Row RH18 5DW, UK
| | - Samuel Lee
- Pion Inc UK Ltd., Forest Row Business Park, Forest Row RH18 5DW, UK
| | - Rebeca Ruiz
- Pion Inc UK Ltd., Forest Row Business Park, Forest Row RH18 5DW, UK
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary
| | - Petra Tőzsér
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary
| | - Dóra Csicsák
- Department of Pharmaceutical Chemistry, Semmelweis University, 9 Hőgyes Endre Street, Budapest 1092, Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, 9 Hőgyes Endre Street, Budapest 1092, Hungary
| | - Bálint Sinkó
- Pion Inc., 10 Cook Street, Billerica, MA 01821, USA.
| | - Enikő Borbás
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, 3 Műegyetem rkp, H-1111, Budapest, Hungary.
| |
Collapse
|
2
|
Salish K, So C, Jeong SH, Hou HH, Mao C. A Refined Thin-Film Model for Drug Dissolution Considering Radial Diffusion - Simulating Powder Dissolution. Pharm Res 2024; 41:947-958. [PMID: 38589647 DOI: 10.1007/s11095-024-03696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE We aim to present a refined thin-film model describing the drug particle dissolution considering radial diffusion in spherical boundary layer, and to demonstrate the ability of the model to describe the dissolution behavior of bulk drug powders. METHODS The dissolution model introduced in this study was refined from a radial diffusion-based model previously published by our laboratory (So et al. in Pharm Res. 39:907-17, 2022). The refined model was created to simulate the dissolution of bulk powders, and to account for the evolution of particle size and diffusion layer thickness during dissolution. In vitro dissolution testing, using fractionated hydrochlorothiazide powders, was employed to assess the performance of the model. RESULTS Overall, there was a good agreement between the experimental dissolution data and the predicted dissolution profiles using the proposed model across all size fractions of hydrochlorothiazide. The model over-predicted the dissolution rate when the particles became smaller. Notably, the classic Nernst-Brunner formalism led to an under-estimation of the dissolution rate. Additionally, calculation based on the equivalent particle size derived from the specific surface area substantially over-predicted the dissolution rate. CONCLUSION The study demonstrated the potential of the radial diffusion-based model to describe dissolution of drug powders. In contrast, the classic Nernst-Brunner equation could under-estimate drug dissolution rate, largely due to the underlying assumption of translational diffusion. Moreover, the study indicated that not all surfaces on a drug particle contribute to dissolution. Therefore, relying on the experimentally-determined specific surface area for predicting drug dissolution is not advisable.
Collapse
Affiliation(s)
- Karthik Salish
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Chi So
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi, 10326, Republic of Korea
| | - Hao Helen Hou
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Chen Mao
- Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
3
|
Paliwal A, Jain S, Kumar S, Wal P, Khandai M, Khandige PS, Sadananda V, Anwer MK, Gulati M, Behl T, Srivastava S. Predictive Modelling in pharmacokinetics: from in-silico simulations to personalized medicine. Expert Opin Drug Metab Toxicol 2024; 20:181-195. [PMID: 38480460 DOI: 10.1080/17425255.2024.2330666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Pharmacokinetic parameters assessment is a critical aspect of drug discovery and development, yet challenges persist due to limited training data. Despite advancements in machine learning and in-silico predictions, scarcity of data hampers accurate prediction of drug candidates' pharmacokinetic properties. AREAS COVERED The study highlights current developments in human pharmacokinetic prediction, talks about attempts to apply synthetic approaches for molecular design, and searches several databases, including Scopus, PubMed, Web of Science, and Google Scholar. The article stresses importance of rigorous analysis of machine learning model performance in assessing progress and explores molecular modeling (MM) techniques, descriptors, and mathematical approaches. Transitioning to clinical drug development, article highlights AI (Artificial Intelligence) based computer models optimizing trial design, patient selection, dosing strategies, and biomarker identification. In-silico models, including molecular interactomes and virtual patients, predict drug performance across diverse profiles, underlining the need to align model results with clinical studies for reliability. Specialized training for human specialists in navigating predictive models is deemed critical. Pharmacogenomics, integral to personalized medicine, utilizes predictive modeling to anticipate patient responses, contributing to more efficient healthcare system. Challenges in realizing potential of predictive modeling, including ethical considerations and data privacy concerns, are acknowledged. EXPERT OPINION AI models are crucial in drug development, optimizing trials, patient selection, dosing, and biomarker identification and hold promise for streamlining clinical investigations.
Collapse
Affiliation(s)
- Ajita Paliwal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Pranay Wal
- Department of Pharmacy, Pranveer Singh Institute of Technology, Pharmacy, Kanpur, India
| | - Madhusmruti Khandai
- Department of Pharmacy, Royal College of Pharmacy and Health Sciences, Berahmpur, India
| | - Prasanna Shama Khandige
- NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Manglauru, NITTE (Deemed to be University), Manglauru, India
| | - Vandana Sadananda
- AB Shetty Memorial Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, NITTE (Deemed to be University), Mangaluru, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- ARCCIM, Health, University of Technology, Sydney, Ultimo, Australia
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Shriyansh Srivastava
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| |
Collapse
|
4
|
Chiang PC, Dolton MJ, Nagapudi K, Liu J. Exploring the Use of a Kinetic pH Calculation to Correct the ACAT Model with a Single Stomach Compartment Setting: Impact of Stomach Setting on Food Effect Prediction for Basic Compounds. J Pharm Sci 2023; 112:1888-1896. [PMID: 36796637 DOI: 10.1016/j.xphs.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Advanced compartmental absorption and transit (ACAT) based computational models have become increasingly popular in the industry for predicting oral drug product performance. However, due to its complexity, some compromises have been made in practice, and the stomach is often assigned as a single compartment. Although this assignment worked generally, it may not be sufficient to reflect the complexity of the gastric environment under certain conditions. For example, this setting was found to be less accurate in estimating stomach pH and solubilization of certain drugs under food intake, which leads to a misprediction of the food effect. To overcome the above, we explored the use of a kinetic pH calculation (KpH) for the single-compartment stomach setting. Several drugs have been tested with the KpH approach and compared with the default setting of Gastroplus. In general, the Gastroplus prediction of food effect is greatly improved, suggesting this approach is effective in improving the estimation of physicochemical properties related to food effect for several basic drugs by Gastroplus.
Collapse
Affiliation(s)
| | - Michael J Dolton
- Roche Products Australia Pty Ltd, Level 8, 30-34 Hickson Road, Sydney, NSW 2000 Australia
| | | | - Jia Liu
- Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
5
|
Prediction of Oral Drug Absorption in Rats from In Vitro Data. Pharm Res 2023; 40:359-373. [PMID: 35169960 DOI: 10.1007/s11095-022-03173-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE In drug discovery, rats are widely used for pharmacological and toxicological studies. We previously reported that a mechanism-based oral absorption model, the gastrointestinal unified theoretical framework (GUT framework), can appropriately predict the fraction of a dose absorbed (Fa) in humans and dogs. However, there are large species differences between humans and rats. The purpose of the present study was to evaluate the predictability of the GUT framework for rat Fa. METHOD The Fa values of 20 model drugs (a total of 39 Fa data) were predicted in a bottom-up manner. Based on the literature survey, the bile acid concentration (Cbile) and the intestinal fluid volume were set to 15 mM and 4 mL/kg, respectively, five and two times higher than in humans. LogP, pKa, molecular weight, intrinsic solubility, bile micelle partition coefficients, and Caco-2 permeability were used as input data. RESULTS The Fa values were appropriately predicted for highly soluble drugs (absolute average fold error (AAFE) = 1.65, 18 Fa data) and poorly soluble drugs (AAFE = 1.57, 21 Fa data). When the species difference in Cbile was ignored, Fa was over- and under-predicted for permeability and solubility limited cases, respectively. High Cbile in rats reduces the free fraction of drug molecules available for epithelial membrane permeation while increasing the solubility of poorly soluble drugs. CONCLUSION The Fa values in rats were appropriately predicted by the GUT framework. This result would be of great help for a better understanding of species differences and model-informed preclinical formulation development.
Collapse
|
6
|
So C, Chiang PC, Mao C. Modeling Drug Dissolution in 3-Dimensional Space. Pharm Res 2022; 39:907-917. [PMID: 35474157 DOI: 10.1007/s11095-022-03270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE The purpose of the study is to present a mathematical model capable of describing drug particle dissolution in 3-dimensional (3D) space, and to provide experimental model verification. Through this study, we also aim to elaborate limitations of the classic, 1D-based Nernst-Brunner formalism in dissolution modeling. METHODS The 3D dissolution model was derived by treating the dissolution of a spherical particle as a diffusion-driven process, and by solving Fick's 2nd law of diffusion in spherical coordinates using numerical methods. The resulting model was experimentally verified through analyzing the dissolution behavior of single succinic acid particles in un-stirred water droplet under polarized light microscopy, in combination with image segmentation techniques. RESULTS A set of working equations was developed to describe drug particle dissolution in 3D space. The predicted dissolution time and profile are in good agreement with the experimental results. The model clearly shows that the concentration gradient within the diffusion layer, in realistic 3D condition, must not be a constant value as implicated in the Nernst-Brunner formalism. The actual concentration profile is a hyperbola, and the concentration gradient at the surface of the particle can be significantly higher than the classic 1D-based dissolution model. CONCLUSION The study demonstrates that the classic, 1D-based dissolution models may lead to significant under-estimation of drug dissolution rates. In contrast, modeling dissolution in 3D space yields more reliable results. This study merits further development of comprehensive 3D drug dissolution models, by considering polydispersed particle ensemble and imposing the changes of diffusion layer thickness during dissolution.
Collapse
Affiliation(s)
- Chi So
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Po-Chang Chiang
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Chen Mao
- Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
7
|
Navas-Bachiller M, Persoons T, D'Arcy DM. Exploring bulk volume, particle size and particle motion definitions to increase the predictive ability of in vitro dissolution simulations. Eur J Pharm Sci 2022; 174:106185. [PMID: 35398291 DOI: 10.1016/j.ejps.2022.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
The definition of the local dissolution environment is central to accurate particle dissolution simulation, and is determined by the apparatus and conditions used. In the flow-through apparatus dissolution occurs in the cell, often in a low velocity environment, with the reservoir considered the relevant volume for dissolution kinetics. Dissolution simulations were conducted using a reduced-order model based on the Ranz-Marshall correlation for mass transfer from spherical particles. Using ibuprofen as a model drug, the effect of defining a local volume to simulate dynamic bulk concentration conditions in the flow-through and paddle apparatus was assessed by comparing use of a near particle volume (NPV), extending a distance of one radius from the particle surface, with a flow-through apparatus cell volume or paddle apparatus vessel volume as the relevant instantaneous volume for dissolution. The instantaneous inlet concentration to NPV or cell volume is the reservoir/vessel concentration at that simulation time point, reflecting the continuous input to the cell of more dilute solution from the reservoir (closed system). Additionally, inputting particle size distribution (PSD) instead of a median particle size (MPS) and enabling or disabling particle motion were investigated, in two media (resulting in low and high solubility) and with two fluid velocity conditions in each apparatus. The NPV predicted effects of fluid velocity differences on dissolution in the high solubility medium in the flow-through apparatus, but had no effect on predictive ability in the paddle apparatus. In both apparatuses, simulations were reasonable for the high solubility environment but underpredicted dissolution in the low solubility environment. The PSD option and disabling particle motion increased the predictive ability of the simulations in low solubility media in the flow-through apparatus. The results highlight the necessity to incorporate the local dynamic dissolution conditions in the flow-through apparatus for accurate dissolution simulation, and the challenges of defining an effective particle size for dissolution simulation and of reflecting hydrodynamic complexity in simulating dissolution in the paddle apparatus.
Collapse
Affiliation(s)
| | - Tim Persoons
- Department of Mechanical, Manufacturing & Biomedical Engineering Trinity College Dublin, Ireland.
| | - Deirdre M D'Arcy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland.
| |
Collapse
|
8
|
Zenda N, Tagami T, Ozeki T. Development of a Novel Gastric Process Simulation Model: The Successful Assessment of Bioequivalence and Bioinequivalence of a Biopharmaceutics Classification System Class II Weak Acid Drug. Biol Pharm Bull 2022; 45:364-373. [PMID: 35228402 DOI: 10.1248/bpb.b21-01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bioequivalence has been assessed using in vitro dissolution testing, such as in vivo predictive dissolution methodology. However, the assessment of bioequivalence should be performed carefully, considering the effect of the in vivo environment and according to the properties of the drug. The gastric emptying process is a key factor for the assessment of biopharmaceutics classification system class II (BCS class IIa) drugs with acidic properties since they cannot dissolve in the acidic stomach, but do dissolve in the small intestine (SI). The disintegration of a tablet in the stomach affects the distribution/dissolution in the SI due to the difference in the gastric emptying step, which in turn is a result of the varying formulation of the drugs. In this study, we used the reported dynamic pH change method and a novel gastric process simulation (GPS) model, which can compare the gastric emptying of particular-sized drug particles. The in vitro results were compared to clinical data using bioequivalent and bioinequivalent products of candesartan cilexetil. It was revealed that the dynamic pH change method was inappropriate, whereas the amount of filtered drug in GPS studies with 20 and 50 µm pore size filters could reflect the clinical results of all products. The evaluation of the gastric emptying process of drug particles less than 50 µm enabled us to assess the bioequivalence because they probably caused the difference in the distribution in the SI. This study demonstrated the utility of the GPS model for the assessment of bioequivalence of BCS class IIa drugs.
Collapse
Affiliation(s)
- Naoki Zenda
- Pharmacokinetics group, Sawai Pharmaceutical Co., Ltd
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
9
|
Cacace F, Menci M, Papi M, Piemonte V. In-Silico Prediction of Oral Drug Bioavailability: A multi-boluses approach. Med Eng Phys 2021; 98:140-150. [PMID: 34848033 DOI: 10.1016/j.medengphy.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
This work focuses on a new mathematical model able to describe in a simple manner the intestinal physiology, in order to better study drug absorption and bioavailability. The aim of our model is to overcome the limitations of physiological pharmacokinetics models of the literature, introducing a different modelling approach. The core of the new proposed model is a Discrete-Continuous Approach (DCA): a sequence of boluses travels in the investigated portion of the intestine, in counter-current with blood that flows in continuous mode. No empirical equations are implemented in this model. Simulation results show an excellent correlation between the predicted and experimental concentration profile used to validate our model. Our new approach provides a simple tool, with a good reliability, to analyze a very complex phenomenon, using only few parameters.
Collapse
Affiliation(s)
| | - Marta Menci
- Istituto per le Applicazioni del Calcolo, Consiglio Nazionale delle Ricerche, Rome, Italy.
| | - Marco Papi
- Universitá Campus Bio-Medico di Roma, Rome, Italy.
| | | |
Collapse
|
10
|
Zhang X, Sun Y, Cheng Y, Ye WL, Zhang BL, Mei QB, Zhou SY. Biopharmaceutics classification evaluation for paris saponin VII. Chin J Nat Med 2021; 18:714-720. [PMID: 32928515 DOI: 10.1016/s1875-5364(20)60010-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Indexed: 01/05/2023]
Abstract
To study the biopharmaceutics characteristics of paris saponin VII (PSVII). The solubility of PSVII was evaluated by measurement of the equilibrium solubility in different solvents and media. The permeability of PSVII was evaluated by measuring the oil/water partition coefficient (lgPapp) and determining the apparent permeability coefficient (PCapp) on a mono-layer Caco-2 cell model. The effects of p-glycoprotein and multidrug resistance related protein 2 on PSVII transport in mono-layer Caco-2 cell model were further investigated. Finally, the small intestinal absorption of PSVII was investigated in rat. In solvents of different pH, the equilibrium solubility of PSVII was quite low, and the dose number of PSVII was larger than 1. The lgPapp of PSVII was less than 0. The apparent permeability coefficient [PCapp(AP-BL)] of PSVII in mono-layer Caco-2 cell model was less than 14.96 × 10-6 cm·s-1, and the efflux ratio of PSVII in mono-layer Caco-2 cell model was less than 1. The transport rate of PSVII in mono-layer Caco-2 cell model was not affected by the inhibitors of p-glycoprotein and multidrug resistance related protein 2. After oral administration, PSVII could be detected in rat intestinal contents, but could not be detected in the small intestinal mucosa. PSVII showed low solubility and permeability, which would result in low oral bioavailability in clinic. PSVII belonged to Class IV compound in biopharmaceutics classification system.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wei-Liang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
11
|
Palombo G, Merone M, Altomare A, Gori M, Terradura C, Bacco L, Del Chierico F, Putignani L, Cicala M, Guarino MPL, Piemonte V. The impact of the intestinal microbiota and the mucosal permeability on three different antibiotic drugs. Eur J Pharm Sci 2021; 164:105869. [PMID: 34020000 DOI: 10.1016/j.ejps.2021.105869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/19/2021] [Accepted: 04/25/2021] [Indexed: 01/15/2023]
Abstract
BackgroundThe totality of bacteria, protozoa, viruses and fungi that lives in the human body is called microbiota. Human microbiota specifically colonizes the skin, the respiratory and urinary tract, the urogenital tract and the gastrointestinal system. This study focuses on the intestinal microbiota to explore the drug-microbiota relationship and, therefore, how the drug bioavailability changes in relation to the microbiota biodiversity to identify more personalized therapies, with the minimum risk of side effects. MethodsTo achieve this goal, we developed a new mathematical model with two compartments, the intestine and the blood, which takes into account the colonic mucosal permeability variation - measured by Ussing chamber system on human colonic mucosal biopsies - and the fecal microbiota composition, determined through microbiota 16S rRNA sequencing analysis. Both of the clinical parameters were evaluated in a group of Irritable Bowel Syndrome patients compared to a group of healthy controls. Key ResultsThe results show that plasma drug concentration increases as bacterial concentration decreases, while it decreases as intestinal length decreases too. ConclusionsThe study provides interesting data since in literature there are not yet mathematical models with these features, in which the importance of intestinal microbiota, the "forgotten organ", is considered both for the subject health state and in the nutrients and drugs metabolism.
Collapse
Affiliation(s)
- Giovanni Palombo
- Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti", IASI-CNR (National Research Council of Italy), Rome, Italy; SYSBIO/ISBE.IT, Centre of System Biology, Rome, Italy
| | - Mario Merone
- Computer Systems and Bioinformatics Laboratory, Department of Engineering, University Campus Bio-Medico of Rome, Italy.
| | | | - Manuele Gori
- Unit of Gastroenterology Campus Bio-Medico University, Rome, Italy; Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Monterotondo Scalo, Rome, Italy
| | - Carlotta Terradura
- Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, University Campus Bio-Medico of Rome, Italy
| | - Luca Bacco
- Computer Systems and Bioinformatics Laboratory, Department of Engineering, University Campus Bio-Medico of Rome, Italy; Istituto di Linguistica Computazionale "Antonio Zampolli" (IL-CNR), ItaliaNLP Lab, Pisa, Italy
| | - Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesú Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesú Children's Hospital, IRCCS, Rome, Italy
| | - Michele Cicala
- Unit of Gastroenterology Campus Bio-Medico University, Rome, Italy
| | | | - Vincenzo Piemonte
- Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, University Campus Bio-Medico of Rome, Italy
| |
Collapse
|
12
|
Hu C, Zhang F, Fan H. Evaluation of Drug Dissolution Rate in Co-amorphous and Co-crystal Binary Drug Delivery Systems by Thermodynamic and Kinetic Methods. AAPS PharmSciTech 2021; 22:21. [PMID: 33389277 DOI: 10.1208/s12249-020-01864-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/24/2020] [Indexed: 11/30/2022] Open
Abstract
In order to better explain and predict the dissolution characteristics of binary drug delivery systems (BDDSs), the dissolution behaviors of co-crystal (CC) and co-amorphous (CA) systems of sacubitril (SCB) and valsartan (VST) were evaluated in vitro and in vivo by thermodynamic and kinetic methods. The CCs of SCB and VST were prepared into a CA state through rotary evaporation. Solid-state properties were systematically evaluated. Herein, based on the results from previous studies of single-phase systems, we used thermodynamic methods to evaluate the increase in drug dissolution rate after BDDSs change from the crystalline to the amorphous state. After comparing the predicted and measured dissolution rate enhancement of the CC and CA systems, this paper attempts to explain the dissolution rate characteristics of the BDDSs. We then evaluated the bioavailability of two BDDSs in beagle dogs to confirm that there was no discrepancy in vivo with the results obtained in vitro. The results exhibited that there is strong intermolecular interaction between SCB and VST and good physical stability for the CA system. Compared with the CC, the bioavailability of SCB and VST in the CA system increased by 313.9% and 130.5%, respectively. The predicted dissolution rate ratio between CC and CA systems and their actual intrinsic dissolution rates differed by only a factor of 2.5, demonstrating the good correlation between the predicted and measured values. In the future, this method could be expanded to a variety of new samples and exciting drug prospects.
Collapse
|
13
|
Akiyama Y, Ito S, Fujita T, Sugano K. Prediction of negative food effect induced by bile micelle binding on oral absorption of hydrophilic cationic drugs. Eur J Pharm Sci 2020; 155:105543. [PMID: 32927073 DOI: 10.1016/j.ejps.2020.105543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
The purpose of the present study was to quantitatively predict the negative food effect induced by bile micelle binding on the oral absorption of hydrophilic cationic drugs. The intrinsic membrane permeability and bile micelle unbound fraction of 12 model drugs (7 tertiary amines, 3 quaternary ammoniums, and 2 neutral drugs) were calculated from the experimental Caco-2 permeability data (Papp) under fasted and fed conditions. From these input data, the fraction of a dose absorbed (Fa) was predicted using the gastrointestinal unified theoretical framework, a mechanism-based oral absorption model. The predicted Fa ratio (fed/fasted) was then compared with the in vivo fed/fasted area under the plasma concentration-time curve ratio (AUCr). The AUCr values of tertiary amines and neutral drugs were appropriately predicted (absolute average fold error (AAFE) = 1.19), whereas those of quaternary ammoniums were markedly underestimated (AAFE = 4.70). The Papp ratio (fed/fasted) predicted AUCr less quantitatively (AAFE = 1.30 for tertiary amines and neutral drugs). The results of the present study would lead to a better understanding of negative food effect on oral drug absorption.
Collapse
Affiliation(s)
- Yoshiyuki Akiyama
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | - Soichiro Ito
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
14
|
Matsumura N, Ono A, Akiyama Y, Fujita T, Sugano K. Bottom-Up Physiologically Based Oral Absorption Modeling of Free Weak Base Drugs. Pharmaceutics 2020; 12:E844. [PMID: 32899235 PMCID: PMC7558956 DOI: 10.3390/pharmaceutics12090844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we systematically evaluated "bottom-up" physiologically based oral absorption modeling, focusing on free weak base drugs. The gastrointestinal unified theoretical framework (the GUT framework) was employed as a simple and transparent model. The oral absorption of poorly soluble free weak base drugs is affected by gastric pH. Alternation of bulk and solid surface pH by dissolving drug substances was considered in the model. Simple physicochemical properties such as pKa, the intrinsic solubility, and the bile micelle partition coefficient were used as input parameters. The fraction of a dose absorbed (Fa) in vivo was obtained by reanalyzing the pharmacokinetic data in the literature (15 drugs, a total of 85 Fa data). The AUC ratio with/without a gastric acid-reducing agent (AUCr) was collected from the literature (22 data). When gastric dissolution was neglected, Fa was underestimated (absolute average fold error (AAFE) = 1.85, average fold error (AFE) = 0.64). By considering gastric dissolution, predictability was improved (AAFE = 1.40, AFE = 1.04). AUCr was also appropriately predicted (AAFE = 1.54, AFE = 1.04). The Fa values of several drugs were slightly overestimated (less than 1.7-fold), probably due to neglecting particle growth in the small intestine. This modeling strategy will be of great importance for drug discovery and development.
Collapse
Affiliation(s)
- Naoya Matsumura
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Asami Ono
- Laboratory for Chemistry, Manufacturing, and Control, Pharmaceuticals Production & Technology Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan;
| | - Yoshiyuki Akiyama
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan;
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan;
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan;
| |
Collapse
|
15
|
Exploring Multicompartment Plug Flow–Based Model Approach in Biopharmaceutics: Impact of Stomach Setting and the Estimation of the Fraction Absorbed of Orally Administered Basic Drugs. J Pharm Sci 2020; 109:1261-1269. [DOI: 10.1016/j.xphs.2019.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 11/23/2022]
|
16
|
Kalaria DR, Parker K, Reynolds GK, Laru J. An industrial approach towards solid dosage development for first-in-human studies: Application of predictive science and lean principles. Drug Discov Today 2020; 25:505-518. [DOI: 10.1016/j.drudis.2019.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 01/24/2023]
|
17
|
Matsumura N, Hayashi S, Akiyama Y, Ono A, Funaki S, Tamura N, Kimoto T, Jiko M, Haruna Y, Sarashina A, Ishida M, Nishiyama K, Fushimi M, Kojima Y, Yoneda K, Nakanishi M, Kim S, Fujita T, Sugano K. Prediction Characteristics of Oral Absorption Simulation Software Evaluated Using Structurally Diverse Low-Solubility Drugs. J Pharm Sci 2019; 109:1403-1416. [PMID: 31863733 DOI: 10.1016/j.xphs.2019.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
The purpose of the present study was to characterize current biopharmaceutics modeling and simulation software regarding the prediction of the fraction of a dose absorbed (Fa) in humans. As commercial software products, GastroPlus™ and Simcyp® were used. In addition, the gastrointestinal unified theoretical framework, a simple and publicly accessible model, was used as a benchmark. The Fa prediction characteristics for a total of 96 clinical Fa data of 27 model drugs were systematically evaluated using the default settings of each software product. The molecular weight, dissociation constant, octanol-water partition coefficient, solubility in biorelevant media, dose, and particle size of model drugs were used as input data. Although the same input parameters were used, GastroPlus™, Simcyp®, and the gastrointestinal unified theoretical framework showed different Fa prediction characteristics depending on the rate-limiting steps of oral drug absorption. The results of the present study would be of great help for the overall progression of physiologically based absorption models.
Collapse
Affiliation(s)
- Naoya Matsumura
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan.
| | - Shun Hayashi
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka 554-0022, Japan
| | - Yoshiyuki Akiyama
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Asami Ono
- Laboratory for Chemistry, Manufacturing and Control Pharmaceuticals Research Center, Asahi Kasei Pharma Corporation, 632-1 Mifuku, Izunokuni, Shizuoka 410-2321, Japan
| | - Satoko Funaki
- Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Naomi Tamura
- Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd., 3-1-1, Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takahiro Kimoto
- Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Maiko Jiko
- Medical Analysis Research Department, Towa Pharmaceutical Co., Ltd., 134 Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Yuka Haruna
- Medical Analysis Research Department, Towa Pharmaceutical Co., Ltd., 134 Chudoji Minami-machi, Shimogyo-ku, Kyoto 600-8813, Japan
| | - Akiko Sarashina
- Clinical PK/PD Department, Nippon Boehringer Ingelheim Co., Ltd., 6-7-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiro Ishida
- Clinical PK/PD Department, Nippon Boehringer Ingelheim Co., Ltd., 6-7-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kotaro Nishiyama
- Pharmacokinetics and Non-Clinical Safety Department, Nippon Boehringer Ingelheim Co., Ltd., 6-7-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masahiro Fushimi
- Biological Research Department, Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Yukiko Kojima
- Biological Research Department, Sawai Pharmaceutical Co., Ltd., 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Kazuhiro Yoneda
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Misato Nakanishi
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Soonih Kim
- Minase Research Institute, Ono Pharmaceutical Co., Ltd., 3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Laboratory, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
18
|
Stewart AM, Grass ME. Practical Approach to Modeling the Impact of Amorphous Drug Nanoparticles on the Oral Absorption of Poorly Soluble Drugs. Mol Pharm 2019; 17:180-189. [PMID: 31743032 DOI: 10.1021/acs.molpharmaceut.9b00889] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recently published studies have proposed that amorphous drug nanoparticles in gastrointestinal fluids may be beneficial for the absorption of poorly soluble compounds. Nanosized drug particles are known to provide rapid dissolution rates and, in some instances, a slight increase in solubility. However, in recent studies, the differences observed in vivo could not be explained solely by these attributes. Given the high dose and very low aqueous solubility of the study compounds, rapid equilibration to the drug-saturated solubility in gastrointestinal fluid would occur independent of the presence of nanoparticles. Alternatively, it has been proposed that drug nanoparticles (ca. ≤ 200 to 300 nm) may provide a "shuttle" for drug across the unstirred water layer (UWL) adjacent to the intestinal epithelium, particularly for low solubility/lipophilic compounds where absorption may be largely UWL-limited. This transport mechanism would result in a higher unbound drug concentration at the surface of the epithelium for absorption. This study evaluates this mechanism using a simple modification of the effective permeability to account for the effect of drug nanoparticles diffusing across the UWL. The modification can be made using inputs for solubility and nanoparticle size. The permeability modification was evaluated using three published case studies for amorphous formulations of itraconazole, anacetrapib, and enzalutamide, where the formation of amorphous drug nanoparticles upon dissolution resulted in improved drug absorption. Absorption modeling was performed using GastroPlus to assess the impact of the nanomodified permeability method on the accuracy of model prediction compared to in vivo data. Simulation results were compared to those for baseline simulations using an unmodified effective permeability. The results show good agreement using the nanomodified permeability, which described the data better than the standard baseline predictions. The nanomodified permeability method can be a suitable, fit-for-purpose in silico approach for evaluating or predicting oral absorption of poorly soluble, UWL-limited drugs from formulations that produce a significant number of amorphous drug nanoparticles.
Collapse
|
19
|
Dahlgren D, Lennernäs H. Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches. Pharmaceutics 2019; 11:pharmaceutics11080411. [PMID: 31412551 PMCID: PMC6723276 DOI: 10.3390/pharmaceutics11080411] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
The main objective of this review is to discuss recent advancements in the overall investigation and in vivo prediction of drug absorption. The intestinal permeability of an orally administered drug (given the value Peff) has been widely used to determine the rate and extent of the drug’s intestinal absorption (Fabs) in humans. Preclinical gastrointestinal (GI) absorption models are currently in demand for the pharmaceutical development of novel dosage forms and new drug products. However, there is a strong need to improve our understanding of the interplay between pharmaceutical, biopharmaceutical, biochemical, and physiological factors when predicting Fabs and bioavailability. Currently, our knowledge of GI secretion, GI motility, and regional intestinal permeability, in both healthy subjects and patients with GI diseases, is limited by the relative inaccessibility of some intestinal segments of the human GI tract. In particular, our understanding of the complex and highly dynamic physiology of the region from the mid-jejunum to the sigmoid colon could be significantly improved. One approach to the assessment of intestinal permeability is to use animal models that allow these intestinal regions to be investigated in detail and then to compare the results with those from simple human permeability models such as cell cultures. Investigation of intestinal drug permeation processes is a crucial biopharmaceutical step in the development of oral pharmaceutical products. The determination of the intestinal Peff for a specific drug is dependent on the technique, model, and conditions applied, and is influenced by multiple interactions between the drug molecule and the biological membranes.
Collapse
Affiliation(s)
- David Dahlgren
- Department of Pharmacy, Uppsala University, Box 580 SE-751 23 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University, Box 580 SE-751 23 Uppsala, Sweden.
| |
Collapse
|
20
|
Li J, Li LB, Nessah N, Huang Y, Hidalgo C, Owen A, Hidalgo IJ. Simultaneous Analysis of Dissolution and Permeation Profiles of Nanosized and Microsized Formulations of Indomethacin Using the In Vitro Dissolution Absorption System 2. J Pharm Sci 2019; 108:2334-2340. [DOI: 10.1016/j.xphs.2019.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/19/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
|
21
|
Akiyama Y, Kimoto T, Mukumoto H, Miyake S, Ito S, Taniguchi T, Nomura Y, Matsumura N, Fujita T, Sugano K. Prediction Accuracy of Mechanism-Based Oral Absorption Model for Dogs. J Pharm Sci 2019; 108:2728-2736. [PMID: 30905705 DOI: 10.1016/j.xphs.2019.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
The purpose of the present study was to evaluate the prediction accuracy of a mechanism-based oral absorption model for the fraction of a dose absorbed (Fa) in dogs, focusing on poorly soluble drugs. As an open mechanism-based model, the gastrointestinal unified theoretical framework was used in this study. The prediction accuracy of the gastrointestinal unified theoretical framework was evaluated using Fa data in dogs (63 data sets for marketed drugs and proprietary compounds). For neutral compounds, Fa was accurately predicted, suggesting that the physiological parameters of dogs were appropriate except for gastrointestinal pH. An extensive literature survey on the small intestinal pH of dogs was then conducted. The result suggested that the pH value ranged between 6.5 and 7.5, with the midst value of 7.0, but there was a great variation among the literature. To confirm the appropriateness of this pH value, the Fa of free acid compounds was predicted by setting the small intestinal pH to 6.5, 7.0, and 7.5. The proportions of compounds with <2-fold error were 57%, 90%, and 76%, respectively. The results of the present study would enable an appropriate use of a mechanism-based model for drug discovery and development.
Collapse
Affiliation(s)
- Yoshiyuki Akiyama
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan.
| | - Takahiro Kimoto
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Hanae Mukumoto
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shuji Miyake
- Product Development Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Soichiro Ito
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Toshio Taniguchi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Yukihiro Nomura
- Drug Metabolism & Pharmacokinetics Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Naoya Matsumura
- Early Stage Oral Formulation Research & Development, Pharmaceutical Research & Development, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kiyohiko Sugano
- Molecular Pharmaceutics Lab., College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
22
|
Chae JS, Chae BR, Shin DJ, Goo YT, Lee ES, Yoon HY, Kim CH, Choi YW. Tablet Formulation of a Polymeric Solid Dispersion Containing Amorphous Alkalinized Telmisartan. AAPS PharmSciTech 2018; 19:2990-2999. [PMID: 30043191 DOI: 10.1208/s12249-018-1124-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022] Open
Abstract
To overcome the poor dissolution of telmisartan (TMS) at weak acidic pH, amorphous alkalinized TMS (AAT) was prepared by introducing sodium hydroxide as a selective alkalizer. AAT-containing polymeric solid dispersions were prepared by a solvent evaporation method; these solid dispersions were AAT-PEG, AAT-PVP, AAT-POL, and AAT-SOL for the polymers of PEG 6000, PVP K30, Poloxamer 407, and Soluplus, respectively. The characteristics of the different formulations were observed by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. To compare the supersaturation behavior, a dissolution test was performed at 37 ± 0.5 °C either in 900 ml (plain condition) or 500 ml (limited condition) of pH 6.8-simulated intestinal fluid used as a medium. AAT-SOL exhibited enhanced dissolution, indicating the probability of extended supersaturation in the limited condition. AAT-SOL was further formulated into a tablet by introducing other excipients, Vivapur 105 and Croscarmellose, as a binder and superdisintegrant, respectively, using a direct compression method. The selected AAT-SOL tablet was superior to Micardis (the reference product) in the aspect of supersaturation maintenance during dissolution in the limited condition, suggesting that it is a promising candidate for practical development that can replace the commercial product in the future.
Collapse
|
23
|
Matsumura N, Yamaura Y, Katagi J, Ono S, Kim S, Yamashita S, Sugano K. Evaluation of Using Dogs to Predict Fraction of Oral Dose Absorbed in Humans for Poorly Water-Soluble Drugs. J Pharm Sci 2018; 107:2489-2496. [DOI: 10.1016/j.xphs.2018.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/16/2018] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
|
24
|
Ozaki S. Population Balance Model for Simulation of the Supersaturation-Precipitation Behavior of Drugs in Supersaturable Solid Forms. J Pharm Sci 2018; 108:260-267. [PMID: 30092242 DOI: 10.1016/j.xphs.2018.07.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/27/2018] [Indexed: 01/21/2023]
Abstract
We developed a simulation method to describe in vitro drug concentration-time profiles under supersaturated conditions. In a nonsink dissolution test of carbamazepine polymorphic form III (CBZIII), a model supersaturable solid, the concentration of carbamazepine reached a supersaturated state against its dihydrate form (CBZDH). After a certain period, de-supersaturation due to the precipitation of CBZDH was observed. In the simulation of this typical dissolution-precipitation profile, the precipitation process of CBZDH was simulated by a population balance model in which the rates of primary/secondary nucleation and growth of CBZDH were considered. Six rate constants in the precipitation model were determined from de-supersaturation profiles in unseeded isothermal crystallization experiments of CBZDH. The dissolution process of CBZIII was modeled on the basis of its dissolution profile under a sink condition. The simulated concentration versus time curves satisfactorily reproduced the characteristics of dissolution, supersaturation, and precipitation behavior of the model drug. The presented method will enable rational design of formulations and accurate prediction of the oral absorbability of drugs in supersaturable solid forms.
Collapse
Affiliation(s)
- Shunsuke Ozaki
- Analytical Research, Pharmaceutical Science and Technology Core Function Units, Medicine Development Center, Eisai Co. Ltd., Kamisu, Ibaraki 314-0255, Japan.
| |
Collapse
|
25
|
Cabrera-Pérez MÁ, Pham-The H. Computational modeling of human oral bioavailability: what will be next? Expert Opin Drug Discov 2018; 13:509-521. [PMID: 29663836 DOI: 10.1080/17460441.2018.1463988] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The oral route is the most convenient way of administrating drugs. Therefore, accurate determination of oral bioavailability is paramount during drug discovery and development. Quantitative structure-property relationship (QSPR), rule-of-thumb (RoT) and physiologically based-pharmacokinetic (PBPK) approaches are promising alternatives to the early oral bioavailability prediction. Areas covered: The authors give insight into the factors affecting bioavailability, the fundamental theoretical framework and the practical aspects of computational methods for predicting this property. They also give their perspectives on future computational models for estimating oral bioavailability. Expert opinion: Oral bioavailability is a multi-factorial pharmacokinetic property with its accurate prediction challenging. For RoT and QSPR modeling, the reliability of datasets, the significance of molecular descriptor families and the diversity of chemometric tools used are important factors that define model predictability and interpretability. Likewise, for PBPK modeling the integrity of the pharmacokinetic data, the number of input parameters, the complexity of statistical analysis and the software packages used are relevant factors in bioavailability prediction. Although these approaches have been utilized independently, the tendency to use hybrid QSPR-PBPK approaches together with the exploration of ensemble and deep-learning systems for QSPR modeling of oral bioavailability has opened new avenues for development promising tools for oral bioavailability prediction.
Collapse
Affiliation(s)
- Miguel Ángel Cabrera-Pérez
- a Unit of Modeling and Experimental Biopharmaceutics , Chemical Bioactive Center, Central University of Las Villas , Santa Clara , Cuba.,b Department of Pharmacy and Pharmaceutical Technology , University of Valencia , Burjassot , Spain.,c Department of Engineering, Area of Pharmacy and Pharmaceutical Technology , Miguel Hernández University , Alicante , Spain
| | - Hai Pham-The
- d Department of Pharmaceutical Chemistry , Hanoi University of Pharmacy , Hanoi , Vietnam
| |
Collapse
|
26
|
Ando H, Hatakeyama H, Sato H, Hisaka A, Suzuki H. Determinants of Intestinal Availability for P-glycoprotein Substrate Drugs Estimated by Extensive Simulation With Mathematical Absorption Models. J Pharm Sci 2017; 106:2771-2779. [DOI: 10.1016/j.xphs.2017.04.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 11/15/2022]
|
27
|
Matsui K, Tsume Y, Takeuchi S, Searls A, Amidon GL. Utilization of Gastrointestinal Simulator, an in Vivo Predictive Dissolution Methodology, Coupled with Computational Approach To Forecast Oral Absorption of Dipyridamole. Mol Pharm 2017; 14:1181-1189. [DOI: 10.1021/acs.molpharmaceut.6b01063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kazuki Matsui
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
- Drug
Metabolism and Pharmacokinetics, Research Center, Mochida Pharmaceutical Company Limited, 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Yasuhiro Tsume
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Susumu Takeuchi
- Pharmacokinetics
Group, Sawai Pharmaceutical Company Limited, 5-2-30, Miyahara, Yodogawa-ku, Osaka 532-0003, Japan
| | - Amanda Searls
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| | - Gordon L. Amidon
- College
of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109-1065, United States
| |
Collapse
|
28
|
Yamashita S, Fukunishi A, Higashino H, Kataoka M, Wada K. Design of supersaturable formulation of telmisartan with pH modifier: in vitro study on dissolution and precipitation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0310-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Sugano K. Theoretical Investigation of Dissolution Test Criteria for Waiver of Clinical Bioequivalence Study. J Pharm Sci 2016; 105:1947-1951. [PMID: 27238491 DOI: 10.1016/j.xphs.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Kiyohiko Sugano
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
30
|
Sjögren E, Thörn H, Tannergren C. In Silico Modeling of Gastrointestinal Drug Absorption: Predictive Performance of Three Physiologically Based Absorption Models. Mol Pharm 2016; 13:1763-78. [PMID: 26926043 DOI: 10.1021/acs.molpharmaceut.5b00861] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gastrointestinal (GI) drug absorption is a complex process determined by formulation, physicochemical and biopharmaceutical factors, and GI physiology. Physiologically based in silico absorption models have emerged as a widely used and promising supplement to traditional in vitro assays and preclinical in vivo studies. However, there remains a lack of comparative studies between different models. The aim of this study was to explore the strengths and limitations of the in silico absorption models Simcyp 13.1, GastroPlus 8.0, and GI-Sim 4.1, with respect to their performance in predicting human intestinal drug absorption. This was achieved by adopting an a priori modeling approach and using well-defined input data for 12 drugs associated with incomplete GI absorption and related challenges in predicting the extent of absorption. This approach better mimics the real situation during formulation development where predictive in silico models would be beneficial. Plasma concentration-time profiles for 44 oral drug administrations were calculated by convolution of model-predicted absorption-time profiles and reported pharmacokinetic parameters. Model performance was evaluated by comparing the predicted plasma concentration-time profiles, Cmax, tmax, and exposure (AUC) with observations from clinical studies. The overall prediction accuracies for AUC, given as the absolute average fold error (AAFE) values, were 2.2, 1.6, and 1.3 for Simcyp, GastroPlus, and GI-Sim, respectively. The corresponding AAFE values for Cmax were 2.2, 1.6, and 1.3, respectively, and those for tmax were 1.7, 1.5, and 1.4, respectively. Simcyp was associated with underprediction of AUC and Cmax; the accuracy decreased with decreasing predicted fabs. A tendency for underprediction was also observed for GastroPlus, but there was no correlation with predicted fabs. There were no obvious trends for over- or underprediction for GI-Sim. The models performed similarly in capturing dependencies on dose and particle size. In conclusion, it was shown that all three software packages are useful to guide formulation development. However, as a consequence of the high fraction of inaccurate predictions (prediction error >2-fold) and the clear trend toward decreased accuracy with decreased predicted fabs observed with Simcyp, the results indicate that GI-Sim and GastroPlus perform better than Simcyp in predicting the intestinal absorption of the incompletely absorbed drugs when a higher degree of accuracy is needed. In addition, this study suggests that modeling and simulation research groups should perform systematic model evaluations using their own input data to maximize confidence in model performance and output.
Collapse
Affiliation(s)
- Erik Sjögren
- Department of Pharmacy, Uppsala University , Box 580, S-751 23 Uppsala, Sweden
| | - Helena Thörn
- Pharmaceutical Technology and Development, AstraZeneca R&D Gothenburg , SE-43183 Mölndal, Sweden
| | - Christer Tannergren
- Pharmaceutical Technology and Development, AstraZeneca R&D Gothenburg , SE-43183 Mölndal, Sweden
| |
Collapse
|
31
|
Sugano K, Terada K. Rate- and Extent-Limiting Factors of Oral Drug Absorption: Theory and Applications. J Pharm Sci 2015; 104:2777-88. [DOI: 10.1002/jps.24391] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/23/2015] [Accepted: 01/23/2015] [Indexed: 11/11/2022]
|
32
|
Sjögren E, Dahlgren D, Roos C, Lennernäs H. Human in Vivo Regional Intestinal Permeability: Quantitation Using Site-Specific Drug Absorption Data. Mol Pharm 2015; 12:2026-39. [DOI: 10.1021/mp500834v] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Erik Sjögren
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| | - David Dahlgren
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Carl Roos
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Biopharmaceutic
Research Group, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
33
|
Xia B, Yang Z, Zhou H, Lukacova V, Zhu W, Milewski M, Kesisoglou F. Development of a Novel Oral Cavity Compartmental Absorption and Transit Model for Sublingual Administration: Illustration with Zolpidem. AAPS JOURNAL 2015; 17:631-42. [PMID: 25716146 DOI: 10.1208/s12248-015-9727-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/29/2015] [Indexed: 11/30/2022]
Abstract
Intraoral (IO) delivery is an alternative administration route to deliver a drug substance via the mouth that provides several advantages over conventional oral dosage forms. The purpose of this work was to develop and evaluate a novel, physiologically based oral cavity model for projection and mechanistic analysis of the clinical pharmacokinetics of intraoral formulations. The GastroPlus™ Oral Cavity Compartmental Absorption and Transit (OCCAT™) model was used to simulate the plasma concentration versus time profiles and the fraction and rate of intraoral drug transit/absorption for Intermezzo® sublingual tablets (zolpidem tartrate). The model was evaluated by the goodness-of-fit between simulated and observed concentrations and the deviation of key PK parameters (e.g., C max, T max, and AUC). In addition, a sensitivity analysis was conducted to demonstrate the interplay and impact of key modeling parameters on the fraction absorbed via oral mucosa (F a_IO). The OCCAT™ model captured the observed pharmacokinetics for Intermezzo® sublingual tablets (R (2) > 0.9). The predicted deviations (%) for C max, AUC0-inf, AUC0-20 min, and T max were 5.7, 28.0, 11.8, and 28.6%, respectively, indicating good prediction accuracy. The model also estimated ~18% of total drug was absorbed via the IO route. Furthermore, the sensitivity analysis indicated that the F a_IO was not only associated with drug diffusivity and unbound fraction in epithelium tissue (f ut) but also depended on the physicochemical properties of compounds for IO delivery (e.g., solubility and logD pH = 7.4). The novel physiologically based IO absorption OCCAT™ model showed satisfactory performance and will be helpful to guide development of future intraoral formulations.
Collapse
Affiliation(s)
- Binfeng Xia
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc., West Point, Pennsylvania, 19486, USA,
| | | | | | | | | | | | | |
Collapse
|
34
|
Ando H, Hisaka A, Suzuki H. A New Physiologically Based Pharmacokinetic Model for the Prediction of Gastrointestinal Drug Absorption: Translocation Model. Drug Metab Dispos 2015; 43:590-602. [DOI: 10.1124/dmd.114.060038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Jones HM, Chen Y, Gibson C, Heimbach T, Parrott N, Peters SA, Snoeys J, Upreti VV, Zheng M, Hall SD. Physiologically based pharmacokinetic modeling in drug discovery and development: A pharmaceutical industry perspective. Clin Pharmacol Ther 2015; 97:247-62. [DOI: 10.1002/cpt.37] [Citation(s) in RCA: 323] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/14/2014] [Indexed: 12/16/2022]
Affiliation(s)
- HM Jones
- Pfizer Worldwide Research & Development; Cambridge Massachusetts USA
| | - Y Chen
- Genentech; South San Francisco California USA
| | - C Gibson
- Merck Research Laboratories; West Point Pennsylvania USA
| | - T Heimbach
- Novartis Institutes for Biomedical Research; East Hanover New Jersey USA
| | - N Parrott
- F. Hoffmann-La Roche Ltd; Basel Switzerland
| | - SA Peters
- Astrazeneca Research & Development; Mölndal Sweden
| | - J Snoeys
- Janssen Research & Development; Beerse Belgium
| | | | - M Zheng
- Bristol Myers Squibb Company; Pennington New Jersey USA
| | - SD Hall
- Eli Lily & Company; Indianapolis Indiana USA
| |
Collapse
|
36
|
Higuchi M, Yoshihashi Y, Tarada K, Sugano K. Minimum rotation speed to prevent coning phenomena in compendium paddle dissolution apparatus. Eur J Pharm Sci 2014; 65:74-8. [PMID: 25240320 DOI: 10.1016/j.ejps.2014.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 11/19/2022]
Abstract
The purpose of the present study was to investigate the applicability of the Zwietering equation to coning phenomena which often occur during dissolution testing. The minimum rotation speed at which coning phenomena disappeared (no coning rpm, NCrpm) was experimentally determined for various particle and fluid properties in a compendium paddle apparatus with a round-bottom unbaffled vessel. The particle size, relative density and kinematic viscosity exponents in the Zwietering equation were optimized for NCrpm. The particle size and relative density exponents were found to be similar with those for the general tank configurations of cylindrical flat-bottom baffled vessels. However, the kinematic viscosity exponent was significantly different. The equation obtained in this study showed sufficient accuracy (r(2)=0.98, average error=12rpm) to estimate the occurrence of coning. The Zwietering equation was found to be applicable to the coning phenomena in the compendium paddle apparatus.
Collapse
Affiliation(s)
- Mizuki Higuchi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Yasuo Yoshihashi
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Katsuhide Tarada
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan
| | - Kiyohiko Sugano
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
37
|
Ono A, Sugano K. Application of the BCS biowaiver approach to assessing bioequivalence of orally disintegrating tablets with immediate release formulations. Eur J Pharm Sci 2014; 64:37-43. [DOI: 10.1016/j.ejps.2014.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/15/2014] [Accepted: 08/12/2014] [Indexed: 12/01/2022]
|
38
|
Novick S, Shen Y, Yang H, Peterson J, LeBlond D, Altan S. Dissolution Curve Comparisons Through theF2Parameter, a Bayesian Extension of thef2Statistic. J Biopharm Stat 2014; 25:351-71. [DOI: 10.1080/10543406.2014.971175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Morrison JS, Nophsker MJ, Haskell RJ. A Combination Turbidity and Supernatant Microplate Assay to Rank‐Order the Supersaturation Limits of Early Drug Candidates. J Pharm Sci 2014; 103:3022-32. [DOI: 10.1002/jps.24090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 05/02/2014] [Accepted: 06/23/2014] [Indexed: 11/11/2022]
|
40
|
Chu J, Cheng YL, Rao AV, Nouraei M, Zarate-Muñoz S, Acosta EJ. Lecithin-linker formulations for self-emulsifying delivery of nutraceuticals. Int J Pharm 2014; 471:92-102. [PMID: 24810240 DOI: 10.1016/j.ijpharm.2014.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/24/2014] [Accepted: 05/02/2014] [Indexed: 01/12/2023]
Abstract
Lecithin-linker microemulsions are formulations produced with soybean lecithin in combination with a highly lipophilic (lipophilic linker) and highly hydrophilic (hydrophilic linkers) surfactant-like additives. In this work, lecithin-linker systems were formulated to produce self-emulsifying delivery systems for β-carotene and β-sitosterol. The concentration of the lipophilic linker, sorbitan monooleate, was adjusted to minimize the formation of liquid crystals. The concentration of hydrophilic linkers, decaglyceryl caprylate/caprate and PEG-6-caprylic/capric glycerides, was gradually increased (scanned) until single phase clear microemulsions were obtained. For these scans, the oil (ethyl caprate) to water ratio was set to 1. The single phase, clear microemulsions were diluted with fed-state simulated intestinal fluid (FeSSIF) and produced stable emulsions, with drop sizes close to 200 nm. Using pseudo-ternary phase diagrams to evaluate the process of dilution of microemulsion preconcentrates (mixtures of oil, lecithin and linkers with little or no water) with FeSSIF, it was determined that self-emulsifying systems are obtained when the early stages of the dilution produce single phase microemulsions. If liquid crystals or multiple phase systems are obtained during those early stages, then the emulsification yields unstable emulsions with large drop sizes. An in vitro permeability study conducted using a Flow-Thru Dialyzer revealed that stable emulsions with drop sizes of 150-300 nm produce large and irreversible permeation of β-carotene to sheep intestine. On the other hand, unstable emulsions produced without the linker combination separated in the dialyzer chamber.
Collapse
Affiliation(s)
- Jacquelene Chu
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Room 131, Toronto, Ontario M5S 3E5, Canada
| | - Yu-Ling Cheng
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Room 131, Toronto, Ontario M5S 3E5, Canada
| | - A Venketeshwer Rao
- University of Toronto, Department of Nutritional Sciences, 150 College Street, Room 315, Toronto, Ontario M5S 3E2, Canada
| | - Mehdi Nouraei
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Room 131, Toronto, Ontario M5S 3E5, Canada
| | - Silvia Zarate-Muñoz
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Room 131, Toronto, Ontario M5S 3E5, Canada
| | - Edgar J Acosta
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Room 131, Toronto, Ontario M5S 3E5, Canada.
| |
Collapse
|
41
|
Lefebvre DE, Venema K, Gombau L, Valerio LG, Raju J, Bondy GS, Bouwmeester H, Singh RP, Clippinger AJ, Collnot EM, Mehta R, Stone V. Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology 2014; 9:523-42. [PMID: 25119418 DOI: 10.3109/17435390.2014.948091] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered metal/mineral, lipid and biochemical macromolecule nanomaterials (NMs) have potential applications in food. Methodologies for the assessment of NM digestion and bioavailability in the gastrointestinal tract are nascent and require refinement. A working group was tasked by the International Life Sciences Institute NanoRelease Food Additive project to review existing models of the gastrointestinal tract in health and disease, and the utility of these models for the assessment of the uptake of NMs intended for food. Gastrointestinal digestion and absorption could be addressed in a tiered approach using in silico computational models, in vitro non-cellular fluid systems and in vitro cell culture models, after which the necessity of ex vivo organ culture and in vivo animal studies can be considered. Examples of NM quantification in gastrointestinal tract fluids and tissues are emerging; however, few standardized analytical techniques are available. Coupling of these techniques to gastrointestinal models, along with further standardization, will further strengthen methodologies for risk assessment.
Collapse
Affiliation(s)
- David E Lefebvre
- Regulatory Toxicology Research Division, Food Directorate, Health Canada , Ottawa , Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li R, Bi YA, Lai Y, Sugano K, Steyn SJ, Trapa PE, Di L. Permeability comparison between hepatocyte and low efflux MDCKII cell monolayer. AAPS JOURNAL 2014; 16:802-9. [PMID: 24854896 DOI: 10.1208/s12248-014-9616-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/07/2014] [Indexed: 01/04/2023]
Abstract
Determination of passive permeability is not only important for predicting oral absorption and brain penetration, but also for accurately predicting hepatic clearance. High throughput (HT) measurement of passive permeability across hepatocyte cell membrane is technically more challenging than using monolayer cell-based permeability assays. In this study, we evaluated if the HT Madin-Darby canine kidney II-low efflux (MDCKII-LE) cell monolayer permeability assay can be used as a surrogate to predict the passive permeability of hepatocytes. Apparent passive permeability of MDCKII-LE is well correlated to passive diffusion clearance of human and rat hepatocytes, suggesting that the HT MDCKII-LE assay can be used as a surrogate to estimate the passive permeability of hepatocytes. In addition, lipophilicity (Log D determined at pH 7.4) was also found to be well correlated with both MDCKII-LE and hepatocyte permeability for most compounds, hence it may serve as another permeability surrogate.
Collapse
Affiliation(s)
- Rui Li
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc., 610 Main Street, Cambridge, Massachusetts, 02139, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Patel N, Polak S, Jamei M, Rostami-Hodjegan A, Turner DB. Quantitative prediction of formulation-specific food effects and their population variability from in vitro data with the physiologically-based ADAM model: a case study using the BCS/BDDCS Class II drug nifedipine. Eur J Pharm Sci 2013; 57:240-9. [PMID: 24060671 DOI: 10.1016/j.ejps.2013.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 01/15/2023]
Abstract
Quantitative prediction of food effects (FE) upon drug pharmacokinetics, including population variability, in advance of human trials may help with trial design by optimising the number of subjects and sampling times when a clinical study is warranted or by negating the need for conduct of clinical studies. Classification and rule-based systems such as the BCS and BDDCS and statistical QSARs are widely used to anticipate the nature of FE in early drug development. However, their qualitative rather than quantitative nature makes them less appropriate for assessing the magnitude of FE. Moreover, these approaches are based upon drug properties alone and are not appropriate for estimating potential formulation-specific FE on modified or controlled release products. In contrast, physiologically-based mechanistic models can consider the scope and interplay of a range of physiological changes after food intake and, in combination with appropriate in vitro drug- and formulation-specific data, can make quantitative predictions of formulation-specific FE including the inter-individual variability of such effects. Herein the Advanced Dissolution, Absorption and Metabolism (ADAM) model is applied to the prediction of formulation-specific FE for BCS/BDDCS Class II drug and CYP3A4 substrate nifedipine using as far as possible only in vitro data. Predicted plasma concentration profiles of all three studied formulations under fasted and fed states are within 2-fold of clinically observed profiles. The % prediction error (%PE) in fed-to-fasted ratio of Cmax and AUC were less than 5% for all formulations except for the Cmax of Nifedicron (%PE=-29.6%). This successful case study should help to improve confidence in the use of mechanistic physiologically-based models coupled with in vitro data for the anticipation of FE in advance of in vivo studies. However, it is acknowledged that further studies with drugs/formulations exhibiting a wide range of properties are required to further validate this methodology.
Collapse
Affiliation(s)
- Nikunjkumar Patel
- Simcyp (a Certara Company) Limited, Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK.
| | - Sebastian Polak
- Simcyp (a Certara Company) Limited, Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK; Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Masoud Jamei
- Simcyp (a Certara Company) Limited, Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK
| | - Amin Rostami-Hodjegan
- Simcyp (a Certara Company) Limited, Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK; Centre for Applied Pharmaceutical Research, Manchester Pharmacy School, The University of Manchester, UK
| | - David B Turner
- Simcyp (a Certara Company) Limited, Blades Enterprise Centre, John Street, Sheffield S2 4SU, UK
| |
Collapse
|
45
|
Kostewicz ES, Aarons L, Bergstrand M, Bolger MB, Galetin A, Hatley O, Jamei M, Lloyd R, Pepin X, Rostami-Hodjegan A, Sjögren E, Tannergren C, Turner DB, Wagner C, Weitschies W, Dressman J. PBPK models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci 2013; 57:300-21. [PMID: 24060672 DOI: 10.1016/j.ejps.2013.09.008] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 02/07/2023]
Abstract
Drug absorption from the gastrointestinal (GI) tract is a highly complex process dependent upon numerous factors including the physicochemical properties of the drug, characteristics of the formulation and interplay with the underlying physiological properties of the GI tract. The ability to accurately predict oral drug absorption during drug product development is becoming more relevant given the current challenges facing the pharmaceutical industry. Physiologically-based pharmacokinetic (PBPK) modeling provides an approach that enables the plasma concentration-time profiles to be predicted from preclinical in vitro and in vivo data and can thus provide a valuable resource to support decisions at various stages of the drug development process. Whilst there have been quite a few successes with PBPK models identifying key issues in the development of new drugs in vivo, there are still many aspects that need to be addressed in order to maximize the utility of the PBPK models to predict drug absorption, including improving our understanding of conditions in the lower small intestine and colon, taking the influence of disease on GI physiology into account and further exploring the reasons behind population variability. Importantly, there is also a need to create more appropriate in vitro models for testing dosage form performance and to streamline data input from these into the PBPK models. As part of the Oral Biopharmaceutical Tools (OrBiTo) project, this review provides a summary of the current status of PBPK models available. The current challenges in PBPK set-ups for oral drug absorption including the composition of GI luminal contents, transit and hydrodynamics, permeability and intestinal wall metabolism are discussed in detail. Further, the challenges regarding the appropriate integration of results from in vitro models, such as consideration of appropriate integration/estimation of solubility and the complexity of the in vitro release and precipitation data, are also highlighted as important steps to advancing the application of PBPK models in drug development. It is expected that the "innovative" integration of in vitro data from more appropriate in vitro models and the enhancement of the GI physiology component of PBPK models, arising from the OrBiTo project, will lead to a significant enhancement in the ability of PBPK models to successfully predict oral drug absorption and advance their role in preclinical and clinical development, as well as for regulatory applications.
Collapse
Affiliation(s)
- Edmund S Kostewicz
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany.
| | - Leon Aarons
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, United Kingdom
| | - Martin Bergstrand
- Pharmacometrics Research Group, Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, United Kingdom
| | - Oliver Hatley
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, United Kingdom
| | - Masoud Jamei
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom
| | - Richard Lloyd
- Department of Drug Metabolism and Pharmacokinetics, GlaxoSmithKline, Ware, Hertfordshire, United Kingdom
| | - Xavier Pepin
- Department of Biopharmaceutics, Pharmaceutical Sciences R&D, Sanofi, Vitry sur Seine Cedex, France
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, The University of Manchester, United Kingdom; Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Christer Tannergren
- Medicines Evaluation CVGI, Pharmaceutical Development, AstraZeneca R&D Mölndal, Sweden
| | - David B Turner
- Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, United Kingdom
| | - Christian Wagner
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| | - Werner Weitschies
- Department of Biopharmaceutics, University of Greifswald, Greifswald, Germany
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
46
|
Jones H, Rowland-Yeo K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2013; 2:e63. [PMID: 23945604 PMCID: PMC3828005 DOI: 10.1038/psp.2013.41] [Citation(s) in RCA: 361] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/14/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Hm Jones
- Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide R&D, Cambridge, Massachusetts, USA
| | | |
Collapse
|
47
|
Ozaki S, Kushida I, Yamashita T, Hasebe T, Shirai O, Kano K. Inhibition of Crystal Nucleation and Growth by Water-Soluble Polymers and its Impact on the Supersaturation Profiles of Amorphous Drugs. J Pharm Sci 2013; 102:2273-81. [PMID: 23658029 DOI: 10.1002/jps.23588] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Shunsuke Ozaki
- Physical Chemistry, Analytical Research Laboratories, Eisai Product Creation Systems, Eisai Company Ltd., Tsukuba, Ibaraki 300-2635, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Sjögren E, Westergren J, Grant I, Hanisch G, Lindfors L, Lennernäs H, Abrahamsson B, Tannergren C. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: Application of the mechanistic absorption model GI-Sim. Eur J Pharm Sci 2013; 49:679-98. [DOI: 10.1016/j.ejps.2013.05.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/24/2013] [Accepted: 05/14/2013] [Indexed: 01/28/2023]
|
49
|
Ilevbare GA, Liu H, Edgar KJ, Taylor LS. Impact of Polymers on Crystal Growth Rate of Structurally Diverse Compounds from Aqueous Solution. Mol Pharm 2013; 10:2381-93. [DOI: 10.1021/mp400029v] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Grace A. Ilevbare
- Department of Industrial and
Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haoyu Liu
- Department of Sustainable Biomaterials,
College of Natural Resources and Environment, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Department of Sustainable Biomaterials,
College of Natural Resources and Environment, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lynne S. Taylor
- Department of Industrial and
Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
50
|
Jones HM, Mayawala K, Poulin P. Dose selection based on physiologically based pharmacokinetic (PBPK) approaches. AAPS JOURNAL 2012; 15:377-87. [PMID: 23269526 DOI: 10.1208/s12248-012-9446-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 11/28/2012] [Indexed: 12/13/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are built using differential equations to describe the physiology/anatomy of different biological systems. Readily available in vitro and in vivo preclinical data can be incorporated into these models to not only estimate pharmacokinetic (PK) parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties. They provide a mechanistic framework to understand and extrapolate PK and dose across in vitro and in vivo systems and across different species, populations and disease states. Using small molecule and large molecule examples from the literature and our own company, we have shown how PBPK techniques can be utilised for human PK and dose prediction. Such approaches have the potential to increase efficiency, reduce the need for animal studies, replace clinical trials and increase PK understanding. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however some limitations need to be addressed to realise its application and utility more broadly.
Collapse
Affiliation(s)
- Hannah M Jones
- Systems Modelling and Simulation Group, Department of Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide R&D, 35 Cambridgepark Drive, Cambridge, MA 02140, USA.
| | | | | |
Collapse
|