1
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
2
|
Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
3
|
Ruth JC, Spormann AM. Enzyme Electrochemistry for Industrial Energy Applications—A Perspective on Future Areas of Focus. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John C. Ruth
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alfred M. Spormann
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Mie Y, Yasutake Y, Takayama H, Tamura T. Electrochemically boosted cytochrome P450 reaction that efficiently produces 25-hydroxyvitamin D3. J Catal 2020. [DOI: 10.1016/j.jcat.2020.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Bostick CD, Mukhopadhyay S, Pecht I, Sheves M, Cahen D, Lederman D. Protein bioelectronics: a review of what we do and do not know. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:026601. [PMID: 29303117 DOI: 10.1088/1361-6633/aa85f2] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.
Collapse
Affiliation(s)
- Christopher D Bostick
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506, United States of America. Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, United States of America
| | | | | | | | | | | |
Collapse
|
6
|
Heise N, Scholz F. Assessing the effect of the lipid environment on the redox potentials of the coenzymes Q10 and Q4 using lipid monolayers made of DOPC, DMPC, TMCL, TOCL, and natural cardiolipin (nCL) on mercury. Electrochem commun 2017. [DOI: 10.1016/j.elecom.2017.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Milton RD, Minteer SD. Direct enzymatic bioelectrocatalysis: differentiating between myth and reality. J R Soc Interface 2017; 14:20170253. [PMID: 28637918 PMCID: PMC5493807 DOI: 10.1098/rsif.2017.0253] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/30/2017] [Indexed: 02/03/2023] Open
Abstract
Enzymatic bioelectrocatalysis is being increasingly exploited to better understand oxidoreductase enzymes, to develop minimalistic yet specific biosensor platforms, and to develop alternative energy conversion devices and bioelectrosynthetic devices for the production of energy and/or important chemical commodities. In some cases, these enzymes are able to electronically communicate with an appropriately designed electrode surface without the requirement of an electron mediator to shuttle electrons between the enzyme and electrode. This phenomenon has been termed direct electron transfer or direct bioelectrocatalysis. While many thorough studies have extensively investigated this fascinating feat, it is sometimes difficult to differentiate desirable enzymatic bioelectrocatalysis from electrocatalysis deriving from inactivated enzyme that may have also released its catalytic cofactor. This article will review direct bioelectrocatalysis of several oxidoreductases, with an emphasis on experiments that provide support for direct bioelectrocatalysis versus denatured enzyme or dissociated cofactor. Finally, this review will conclude with a series of proposed control experiments that could be adopted to discern successful direct electronic communication of an enzyme from its denatured counterpart.
Collapse
Affiliation(s)
- Ross D Milton
- Department of Chemistry, University of Utah, 315 S 1400 E, Room 2020, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Room 2020, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Abstract
Membrane proteins play a most important part in metabolism, signaling, cell motility, transport, development, and many other biochemical and biophysical processes which constitute fundamentals of life on the molecular level. Detailed understanding of these processes is necessary for the progress of life sciences and biomedical applications. Nanodiscs provide a new and powerful tool for a broad spectrum of biochemical and biophysical studies of membrane proteins and are commonly acknowledged as an optimal membrane mimetic system that provides control over size, composition, and specific functional modifications on the nanometer scale. In this review we attempted to combine a comprehensive list of various applications of nanodisc technology with systematic analysis of the most attractive features of this system and advantages provided by nanodiscs for structural and mechanistic studies of membrane proteins.
Collapse
Affiliation(s)
- Ilia G Denisov
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| | - Stephen G Sligar
- Department of Biochemistry and Department of Chemistry, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Martin LL, Kubeil C, Simonov AN, Kuznetsov VL, Corbin CJ, Auchus RJ, Conley AJ, Bond AM, Rodgers RJ. Electrochemistry of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17). Mol Cell Endocrinol 2017; 441:62-67. [PMID: 27702589 DOI: 10.1016/j.mce.2016.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 01/06/2023]
Abstract
Within the superfamily of cytochrome P450 enzymes (P450s), there is a small class which is functionally employed for steroid biosynthesis. The enzymes in this class appear to have a small active site to accommodate the steroid substrates specifically and snuggly, prior to the redox transformation or hydroxylation to form a product. Cytochrome P450c17 is one of these and is also a multi-functional P450, with two activities, the first 17α-hydroxylation of pregnenolone is followed by a subsequent 17,20-lyase transformation to dehydroepiandrosterone (DHEA) as the dominant pathways to cortisol precursors or androgens in humans, respectively. How P450c17 regulates these two redox reactions is of special interest. There is a paucity of direct electrochemical studies on steroidogenic P450s, and in this mini-review we provide an overview of these studies with P450c17. Historical consideration as to the difficulties in obtaining reliable electrochemistry due to issues of handling proteins on an electrode, together with advances in the electrochemical techniques are addressed. Recent work using Fourier transformed alternating current voltammetry is highlighted as this technique can provide both catalytic information simultaneously with the underlying redox transfer with the P450 haem.
Collapse
Affiliation(s)
- Lisandra L Martin
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia.
| | - Clemens Kubeil
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Alexandr N Simonov
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia; ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Vladimir L Kuznetsov
- Boreskov Institute of Catalysis, Prospekt Lavrentieva 5, Novosibirsk, 630090, Russia
| | - C Jo Corbin
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan J Conley
- School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Alan M Bond
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia; ARC Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Raymond J Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
10
|
Holtmann D, Hollmann F. The Oxygen Dilemma: A Severe Challenge for the Application of Monooxygenases? Chembiochem 2016; 17:1391-8. [PMID: 27194219 PMCID: PMC5096067 DOI: 10.1002/cbic.201600176] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/12/2022]
Abstract
Monooxygenases are promising catalysts because they in principle enable the organic chemist to perform highly selective oxyfunctionalisation reactions that are otherwise difficult to achieve. For this, monooxygenases require reducing equivalents, to allow reductive activation of molecular oxygen at the enzymes' active sites. However, these reducing equivalents are often delivered to O2 either directly or via a reduced intermediate (uncoupling), yielding hazardous reactive oxygen species and wasting valuable reducing equivalents. The oxygen dilemma arises from monooxygenases' dependency on O2 and the undesired uncoupling reaction. With this contribution we hope to generate a general awareness of the oxygen dilemma and to discuss its nature and some promising solutions.
Collapse
Affiliation(s)
- Dirk Holtmann
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628BL, Delft, The Netherlands.
| |
Collapse
|
11
|
Bavishi K, Laursen T, Martinez KL, Møller BL, Della Pia EA. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase. Sci Rep 2016; 6:29459. [PMID: 27386958 PMCID: PMC4937447 DOI: 10.1038/srep29459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 05/18/2016] [Indexed: 11/15/2022] Open
Abstract
Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially valuable compounds. In this report, full length CYP79A1, CYP71E1 and POR of the dhurrin pathway in Sorghum bicolor were reconstituted individually in nanoscale lipid patches, "nanodiscs", and directly immobilized on unmodified gold electrodes. Cyclic voltammograms of CYP79A1 and CYP71E1 revealed reversible redox peaks with average midpoint potentials of 80 ± 5 mV and 72 ± 5 mV vs. Ag/AgCl, respectively. POR yielded two pairs of redox peaks with midpoint potentials of 90 ± 5 mV and -300 ± 10 mV, respectively. The average heterogeneous electron transfer rate constant was calculated to be ~1.5 s(-1). POR was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions. It is also a prelude for driving plant P450 systems electronically for simplified and cost-effective screening of potential substrates/inhibitors and fabrication of nano-bioreactors for synthesis of high value natural products.
Collapse
Affiliation(s)
- Krutika Bavishi
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
| | - Tomas Laursen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- Joint BioEnergy Institute, Feedstocks Division, Emeryville, CA 94608, USA
| | - Karen L. Martinez
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- Bio-Nanotechnology Laboratory, Department of Chemistry & Nano-Science Center, Universitetparken 5, DK-2100, University of Copenhagen, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- VILLUM Research Center for Plant Plasticity, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
- Center for Synthetic Biology ‘bioSYNergy’, Thorvaldsensvej 40, DK-1871 Frederiksberg C, University of Copenhagen, Denmark
| | - Eduardo Antonio Della Pia
- Bio-Nanotechnology Laboratory, Department of Chemistry & Nano-Science Center, Universitetparken 5, DK-2100, University of Copenhagen, Denmark
| |
Collapse
|
12
|
Mie Y, Ikegami M, Komatsu Y. Nanoporous Structure of Gold Electrode Fabricated by Anodization and Its Efficacy for Direct Electrochemistry of Human Cytochrome P450. CHEM LETT 2016. [DOI: 10.1246/cl.160164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Masiki Ikegami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
13
|
Bano K, Rusling JF. Electrochemiluminescence Arrays for Studies of Metabolite-related Toxicity. ELECTROANAL 2016; 28:2636-2643. [PMID: 28592918 DOI: 10.1002/elan.201600207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article reviews recent progress from our laboratory in electrochemiluminescence (ECL) arrays designed for screening toxicity-related chemistry of chemical and drug candidates. Cytochrome P450s and metabolic bioconjugation enzymes convert lipophilic chemicals in our bodies by oxidation and bioconjugation that can lead to toxic metabolites. DNA can be used as an easily measurable toxicity-related endpoint, targeting DNA oxidation and addcut formation with metabolites. ECL using guanosines in the DNA strands as co-reactants have been used in high throughput arrays utilizing DNA-enzyme films fabricated layer-by-layer. This review describes approaches developed to provide new high throughput ECL arrays to aid in toxicity assessment for drug and chemical product development.
Collapse
Affiliation(s)
- Kiran Bano
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.,Department of Surgery and Neag Cancer Center, University of Connecticut Health Center, Farmington, CT 06032, USA.,Institute of Material Science, University of Connecticut, Storrs, CT 06269, USA.,School of Chemistry, NationalUniversity of Ireland at Galway, Ireland
| |
Collapse
|
14
|
Bostick CD, Flora DR, Gannett PM, Tracy TS, Lederman D. Nanoscale electron transport measurements of immobilized cytochrome P450 proteins. NANOTECHNOLOGY 2015; 26:155102. [PMID: 25804257 PMCID: PMC4791957 DOI: 10.1088/0957-4484/26/15/155102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport (ETp) depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of ETp processes in the enzyme, in addition to occupying the active site.
Collapse
Affiliation(s)
- Christopher D. Bostick
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506-9530, USA
| | - Darcy R. Flora
- College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter M. Gannett
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506-9530, USA
| | - Timothy S. Tracy
- College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - David Lederman
- Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506-6315, USA
- Address correspondence to
| |
Collapse
|
15
|
Rusling JF, Wasalathanthri DP, Schenkman JB. Thin multicomponent films for functional enzyme devices and bioreactor particles. SOFT MATTER 2014; 10:8145-8156. [PMID: 25209428 PMCID: PMC4183705 DOI: 10.1039/c4sm01679c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Complex functional films containing enzymes and other biomolecules are easily fabricated in nm-scale thicknesses by using layer-by-layer (LbL) methodologies first popularized by Lvov and Decher. In this review, we highlight the high level functional capabilities possible with LbL films of biomolecules based on our own research experiences. We first describe the basics of enzyme film fabrication by LbL alternate electrostatic adsorption, then discuss how to make functional enzyme-polyion films of remarkably high stability. Focusing on cytochrome P450s, we discuss films developed to electrochemically activate the natural catalytic cycle of these key metabolic enzymes. We then describe multifunctional, multicomponent DNA/enzyme/polyion films on arrays and particle surfaces for high throughput metabolic toxicity screening using electrochemiluminescence and LC-MS/MS. Using multicomponent LbL films, complex functionality for bioanalytical and biochemical purposes can be achieved that is difficult or impossible using conventional approaches.
Collapse
Affiliation(s)
- James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | | | | |
Collapse
|
16
|
Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Appl Microbiol Biotechnol 2014; 98:6185-203. [PMID: 24848420 DOI: 10.1007/s00253-014-5767-7] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023]
Abstract
Cytochromes P450 (CYPs) belong to the superfamily of heme b containing monooxygenases with currently more than 21,000 members. These enzymes accept a vast range of organic molecules and catalyze diverse reactions. These extraordinary capabilities of CYP systems that are unmet by other enzymes make them attractive for biotechnology. However, the complexity of these systems due to the need of electron transfer from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) via redox partner proteins for the initial hydroxylation step limits a broader technical implementation of CYP enzymes. There have been several reviews during the past years tackling the potential CYPs for synthetic application. The aim of this review is to give a critical overview about possibilities and chances for application of these interesting catalysts as well as to discuss drawbacks and problems related to their use. Solutions to overcome these limitations will be demonstrated, and several selected examples of successful CYP applications under industrial conditions will be reviewed.
Collapse
Affiliation(s)
- Rita Bernhardt
- Institute of Biochemistry, Saarland University, 66123, Saarbrücken, Germany,
| | | |
Collapse
|
17
|
p-Aminothiophenol modification on gold surface improves stability for electrochemically driven cytochrome P450 microsome activity. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.10.170] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Jett JE, Lederman D, Wollenberg LA, Li D, Flora DR, Bostick CD, Tracy TS, Gannett PM. Measurement of electron transfer through cytochrome P450 protein on nanopillars and the effect of bound substrates. J Am Chem Soc 2013; 135:3834-40. [PMID: 23427827 PMCID: PMC3876957 DOI: 10.1021/ja309104g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron transfer in cytochrome P450 enzymes is a fundamental process for activity. It is difficult to measure electron transfer in these enzymes because under the conditions typically used they exist in a variety of states. Using nanotechnology-based techniques, gold conducting nanopillars were constructed in an indexed array. The P450 enzyme CYP2C9 was attached to each of these nanopillars, and conductivity measurements made using conducting probe atomic force microscopy under constant force conditions. The conductivity measurements were made on CYP2C9 alone and with bound substrates, a bound substrate-effector pair, and a bound inhibitor. Fitting of the data with the Poole-Frenkel model indicates a correlation between the barrier height for electron transfer and the ease of CYP2C9-mediated metabolism of the bound substrates, though the spin state of iron is not well correlated. The approach described here should have broad application to the measurement of electron transfer in P450 enzymes and other metalloenzymes.
Collapse
Affiliation(s)
- John E. Jett
- West Virginia University, Basic Pharmaceutical Sciences, Morgantown, WV 26506-9530
| | - David Lederman
- West Virginia University, Department of Physics, Morgantown, WV 26506-6315
| | - Lance A. Wollenberg
- West Virginia University, Basic Pharmaceutical Sciences, Morgantown, WV 26506-9530
| | - Debin Li
- West Virginia University, Department of Physics, Morgantown, WV 26506-6315
| | - Darcy R. Flora
- University of Minnesota, College of Pharmacy, Minneapolis, MN, 55455
| | | | - Timothy S. Tracy
- University of Kentucky, College of Pharmacy, Lexington, KY 40536
| | - Peter M. Gannett
- West Virginia University, Basic Pharmaceutical Sciences, Morgantown, WV 26506-9530
| |
Collapse
|
19
|
Schneider E, Clark DS. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosens Bioelectron 2013; 39:1-13. [DOI: 10.1016/j.bios.2012.05.043] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 11/29/2022]
|
20
|
|
21
|
Krishnan S, Schenkman JB, Rusling JF. Bioelectronic delivery of electrons to cytochrome P450 enzymes. J Phys Chem B 2011; 115:8371-80. [PMID: 21591685 DOI: 10.1021/jp201235m] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450s (cyt P450s) are the major oxidative enzymes in human oxidative metabolism of drugs and xenobiotic chemicals. In nature, the iron heme cyt P450s utilize oxygen and electrons delivered from NADPH by a reductase enzyme to oxidize substrates stereo- and regioselectively. Significant research has been directed toward achieving these events electrochemically. This Feature Article discusses the direct electrochemistry of cyt P450s in thin films and the utilization of such films for electrochemically driven biocatalysis. Maintaining and confirming structural integrity and catalytic activity of cyt P450s in films is an essential feature of these efforts. We highlight here our efforts to elucidate the influence of iron heme spin state and secondary structure of human cyt P450s on voltammetric and biocatalytic properties, using methodologies to quantitatively describe the dynamics of these processes in thin films. We also describe the first cyt P450/reductase films that accurately mimic the natural biocatalytic pathway and show how they can be used with voltammetry to elucidate key mechanistic features. Such bioelectronic cyt P450 systems have high value for future drug development, toxicity screening, fundamental investigations, and chemical synthesis systems.
Collapse
Affiliation(s)
- Sadagopan Krishnan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | | | | |
Collapse
|
22
|
Fantuzzi A, Mak LH, Capria E, Dodhia V, Panicco P, Collins S, Gilardi G. A New Standardized Electrochemical Array for Drug Metabolic Profiling with Human Cytochromes P450. Anal Chem 2011; 83:3831-9. [DOI: 10.1021/ac200309q] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Fantuzzi
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Lok Hang Mak
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Ennio Capria
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Vikash Dodhia
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Paola Panicco
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom
| | - Stephen Collins
- NanoBioDesign Ltd., Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom
| | - Gianfranco Gilardi
- Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy
| |
Collapse
|
23
|
Panicco P, Dodhia VR, Fantuzzi A, Gilardi G. Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450. Anal Chem 2011; 83:2179-86. [PMID: 21348440 DOI: 10.1021/ac200119b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
"Personalized medicine" is a new concept in health care, one aspect of which defines the specificity and dosage of drugs according to effectiveness and safety for each patient. Dosage strongly depends from the rate of metabolism which is primarily regulated by the activity of cytochrome P450. In addition to the need for a genetic characterization of the patients, there is also the necessity to determine the drug-clearance properties of the polymorphic P450 enzyme. To address this issue, human P450 2D6 and 2C9 were engineered and covalently linked to an electrode surface allowing fast, accurate, and reliable measurements of the kinetic parameters of these phase-1 drug metabolizing polymorphic enzymes. In particular, the catalytic activity of P450 2C9 on the electrode surface was found to be improved when expressed from a gene-fusion with flavodoxin from Desulfovibrio vulgaris (2C9/FLD). The results are validated using marker drugs for these enzymes, bufuralol for 2D6, and warfarin for 2C9/FLD. The platform is able to measure the same small differences in K(M), and it allows a fast and reproducible mean to generated the product identified by HPLC from which the k(cat) is calculated.
Collapse
Affiliation(s)
- Paola Panicco
- Division of Molecular Biosciences, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
24
|
Krishnan S, Wasalathanthri D, Zhao L, Schenkman JB, Rusling JF. Efficient bioelectronic actuation of the natural catalytic pathway of human metabolic cytochrome P450s. J Am Chem Soc 2011; 133:1459-65. [PMID: 21214177 PMCID: PMC3033457 DOI: 10.1021/ja108637s] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome (cyt) P450s comprise the enzyme superfamily responsible for human oxidative metabolism of a majority of drugs and xenobiotics. Electronic delivery of electrons to cyt P450s could be used to drive the natural catalytic cycle for fundamental investigations, stereo- and regioselective synthesis, and biosensors. We describe herein 30 nm nanometer-thick films on electrodes featuring excess human cyt P450s and cyt P450 reductase (CPR) microsomes that efficiently mimic the natural catalytic pathway for the first time. Redox potentials, electron-transfer rates, CO-binding, and substrate conversion rates confirmed that electrons are delivered from the electrode to CPR, which transfers them to cyt P450. The film system enabled electrochemical probing of the interaction between cyt P450 and CPR for the first time. Agreement of film voltammetry data with theoretical simulations supports a pathway featuring a key equilibrium redox reaction in the natural catalytic pathway between reduced CPR and cyt P450 occurring within a CPR-cyt P450 complex uniquely poised for substrate conversion.
Collapse
|
25
|
Sadeghi SJ, Fantuzzi A, Gilardi G. Breakthrough in P450 bioelectrochemistry and future perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:237-48. [DOI: 10.1016/j.bbapap.2010.07.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/04/2010] [Indexed: 11/25/2022]
|
26
|
Fantuzzi A, Capria E, Mak LH, Dodhia VR, Sadeghi SJ, Collins S, Somers G, Huq E, Gilardi G. An Electrochemical Microfluidic Platform for Human P450 Drug Metabolism Profiling. Anal Chem 2010; 82:10222-7. [DOI: 10.1021/ac102480k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Fantuzzi
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Ennio Capria
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Lok Hang Mak
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Vikash R Dodhia
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Sheila J. Sadeghi
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Stephen Collins
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Graham Somers
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Ejaz Huq
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| | - Gianfranco Gilardi
- Division of Molecular Biosciences, Imperial College London, Biochemistry Building, South Kensington, London, SW7 2AY, United Kingdom, Department of Human and Animal Biology, University of Torino, Via Accademia Albertina 13, Torino, Italy, NanoBioDesign Ltd, Woodstock House, Winch Road, Kent Science Park, Sittingbourne, Kent, ME9 8EF, United Kingdom, GlaxoSmithKline, PO Box 97, Stevenage SG1 2NY, United Kingdom, and Micro and Nanotechnology Centre, Rutherford Appleton Laboratory, Chilton, Didcot,
| |
Collapse
|
27
|
Hollmann F, Arends I, Buehler K. Biocatalytic Redox Reactions for Organic Synthesis: Nonconventional Regeneration Methods. ChemCatChem 2010. [DOI: 10.1002/cctc.201000069] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Mie Y, Ikegami M, Komatsu Y. Gold sputtered electrode surfaces enhance direct electron transfer reactions of human cytochrome P450s. Electrochem commun 2010. [DOI: 10.1016/j.elecom.2010.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Mie Y, Suzuki M, Komatsu Y. Electrochemically Driven Drug Metabolism by Membranes Containing Human Cytochrome P450. J Am Chem Soc 2009; 131:6646-7. [DOI: 10.1021/ja809364r] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yasuhiro Mie
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Sapporo 062-8517, Japan
| | - Masaaki Suzuki
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Sapporo 062-8517, Japan
| | - Yasuo Komatsu
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Sapporo 062-8517, Japan
| |
Collapse
|
30
|
Modulating the coupling efficiency of human cytochrome P450 CYP3A4 at electrode surfaces through protein engineering. Electrochem commun 2008. [DOI: 10.1016/j.elecom.2008.09.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
31
|
Nair SP, Gratzl M. Effects of sampling rate on the interpretation of cellular transport measurements. Anal Chem 2008; 80:7684-9. [PMID: 18781816 DOI: 10.1021/ac800842m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical sensing techniques are increasingly used to study biological processes by monitoring concentration changes of the molecule of interest close to cells. The measured concentration is the result of cellular transport across the cell membrane and diffusion of the released molecules from the cells to the sensing electrode. The objective of such experiments is to understand the cellular processes underlying the observed changes in concentration. Thus, the influence of mass transport on the measured concentration trace has to be removed. This is done by deconvolution of the impulse response function of diffusion from the concentration data. We have recently observed that measuring concentration at a sampling rate that satisfies the Nyquist criterion for the observed concentration dynamics may not be sufficient to correctly reconstruct cellular flux. This is because the impulse response function of diffusion also has to be represented with sufficient temporal resolution. We discuss this problem here using the example of monitoring drug efflux from a monolayer of cancer cells with microvoltammetry, and chloride secretion from an epithelial cell monolayer monitored with an ion-selective electrode.
Collapse
Affiliation(s)
- Sumitha P Nair
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
32
|
Léger C, Bertrand P. Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies. Chem Rev 2008; 108:2379-438. [DOI: 10.1021/cr0680742] [Citation(s) in RCA: 594] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Comparing the electronic properties and docking calculations of heme derivatives on CYP2B4. J Mol Model 2008; 14:537-45. [DOI: 10.1007/s00894-008-0294-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 02/21/2008] [Indexed: 11/25/2022]
|