1
|
Virgili Manrique AC, Salazar J, Arranz MJ, Bagué S, Orellana R, López-Pousa A, Cerdà P, Gracia I, Majercakova K, Peiró A, Trullols L, Fernández M, Valverde S, Quintana MJ, Bell O, Artigas-Baleri A, Sebio A. Pharmacogenetic Profiling in High-Risk Soft Tissue Sarcomas Treated with Neoadjuvant Chemotherapy. J Pers Med 2022; 12:jpm12040618. [PMID: 35455734 PMCID: PMC9024670 DOI: 10.3390/jpm12040618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
Neoadjuvant chemotherapy based on anthracyclines and ifosfamide for high-risk soft tissue sarcomas (STS) of the extremities and trunk is a controversial treatment option. There are substantial interindividual differences in clinical outcomes in patients treated with neoadjuvant chemotherapy. The aim of this study was to evaluate, as biomarkers, polymorphisms in genes encoding drug-metabolizing enzymes, drug transporters, or drug targets and their association with toxicity and survival in STS patients treated with neoadjuvant chemotherapy. We analysed variants in genes involved in anthracycline metabolism (ABCB1, ABCC2, NQO1, CBR3, and SLC22A16) and in ifosfamide catabolism (ALDH1A1) in 79 treated patients. Two genes showed significant association after adjusted multivariate analysis: ABCC2 and ALDH1A1. In patients treated with anthracyclines, ABCC2 rs3740066 was associated with risk of febrile neutropenia (p = 0.031), and with decreased overall survival (OS) (p = 0.024). ABCC2 rs2273697 was associated with recurrence-free survival (RFS) (p = 0.024). In patients treated with ifosfamide, ALDH1A1 rs3764435 was associated with RFS (p = 0.046). Our pharmacogenetic study shows for the first time that variants in genes regulating the metabolism of neoadjuvant chemotherapy may be helpful to predict toxicity and survival benefit in high-risk STS treated with neoadjuvant chemotherapy. Further validation studies are needed to establish their clinical utility.
Collapse
Affiliation(s)
- Anna C. Virgili Manrique
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.M.); (A.L.-P.); (P.C.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Juliana Salazar
- Medical Translational Oncology Laboratory, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Correspondence: (J.S.); (A.S.)
| | | | - Silvia Bagué
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (S.B.); (R.O.)
| | - Ruth Orellana
- Department of Pathology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (S.B.); (R.O.)
| | - Antonio López-Pousa
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.M.); (A.L.-P.); (P.C.)
| | - Paula Cerdà
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.M.); (A.L.-P.); (P.C.)
| | - Isidre Gracia
- Orthopaedics and Trauma Surgery, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (I.G.); (A.P.); (L.T.)
| | - Katarina Majercakova
- Radiation Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Ana Peiró
- Orthopaedics and Trauma Surgery, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (I.G.); (A.P.); (L.T.)
| | - Laura Trullols
- Orthopaedics and Trauma Surgery, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (I.G.); (A.P.); (L.T.)
| | - Manuel Fernández
- Plastic and Reconstructive Surgery, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Sandra Valverde
- Radiology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - María Jesús Quintana
- Epidemiology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Olga Bell
- Medical Translational Oncology Laboratory, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Alícia Artigas-Baleri
- Genetics Department, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | - Ana Sebio
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.C.V.M.); (A.L.-P.); (P.C.)
- Correspondence: (J.S.); (A.S.)
| |
Collapse
|
2
|
Genetic Polymorphisms Affecting Cardiac Biomarker Concentrations in Children with Cancer: an Analysis from the "European Paediatric Oncology Off-patents Medicines Consortium" (EPOC) Trial. Eur J Drug Metab Pharmacokinet 2021; 45:413-422. [PMID: 31981210 DOI: 10.1007/s13318-019-00592-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND OBJECTIVES Doxorubicin plays an essential role in the treatment of paediatric cancers. Defining genotypes with a higher risk for developing anthracycline-induced cardiotoxicity could help to reduce cardiotoxicity. METHODS Data originated from a phase II study assessing the pharmacokinetics of doxorubicin in 100 children. Studied patients (0-17 years) were treated for solid tumours or leukaemia. Two cycles of doxorubicin were studied. Concentrations of natriuretic peptides proANP, BNP and NT-proBNP and cardiac troponins T and I were measured at five time points before, during and after two cycles of doxorubicin treatment. Genotypes of 17 genetic polymorphisms in genes encoding for anthracycline metabolizing enzymes and drug transporters were determined for each patient. We analysed the influence of genotypes on cardiac biomarker concentrations at different time points by a Kruskal-Wallis test. To perform a pairwise comparison significant genetic polymorphisms with more than two genotypes were analysed by a post hoc test. RESULTS The Kruskal-Wallis tests and the post hoc-tests showed a significant association for seven genetic polymorphisms (ABCB1-rs1128503, ABCB1-rs1045642, ABCC1-rs4148350, CBR3-rs8133052, NQO2-in/del, SLC22A16-rs714368 and SLC22A16-rs6907567) with the concentration of at least one biomarker at one or more time points. We could not identify any polymorphism with a consistent effect on any biomarker over the whole treatment period. CONCLUSIONS In this study of patients treated with doxorubicin for different tumour entities, seven genetic polymorphisms possibly influencing the pharmacokinetics and pharmacodynamics of doxorubicin could lead occasionally to differences in the concentration of cardiac biomarkers. Since, the role of cardiac biomarkers for monitoring anthracycline-induced cardiotoxicity has not yet been clarified, further trials with a long follow-up time are required to assess the impact of these genetic polymorphisms on chemotherapy-related cardiotoxicity. TRIAL REGISTRATION EudraCT number: 2009-011454-17.
Collapse
|
3
|
Sallustio BC, Boddy AV. Is there scope for better individualisation of anthracycline cancer chemotherapy? Br J Clin Pharmacol 2020; 87:295-305. [PMID: 33118175 DOI: 10.1111/bcp.14628] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/13/2020] [Accepted: 10/17/2020] [Indexed: 12/11/2022] Open
Abstract
Anthracyclines are used to treat solid and haematological cancers, particularly breast cancers, lymphomas and childhood cancers. Myelosuppression and cardiotoxicity are the primary toxicities that limit treatment duration and/or intensity. Cardiotoxicity, particularly heart failure, is a leading cause of morbidity and mortality in cancer survivors. Cumulative anthracycline dose is a significant predictor of cardiotoxicity risk, suggesting a role for anthracycline pharmacokinetic variability. Population pharmacokinetic modelling in children has shown that doxorubicin clearance in the very young is significantly lower than in older children, potentially contributing to their higher risk of cardiotoxicity. A model of doxorubicin clearance based on body surface area and age offers a patient-centred dose-adjustment strategy that may replace the current disparate initial-dose selection tools, providing a rational way to compensate for pharmacokinetic variability in children aged <7 years. Population pharmacokinetic models in adults have not adequately addressed older ages, obesity, hepatic and renal dysfunction, and potential drug-drug interactions to enable clinical application. Although candidate gene and genome-wide association studies have investigated relationships between genetic variability and anthracycline pharmacokinetics or clinical outcomes, there have been few clinically significant reproducible associations. Precision-dosing of anthracyclines is currently hindered by lack of clinically useful pharmacokinetic targets and models that predict cumulative anthracycline exposures. Combined with known risk factors for cardiotoxicity, the use of advanced echocardiography and biomarkers, future validated pharmacokinetic targets and predictive models could facilitate anthracycline precision dosing that truly maximises efficacy and provides individualised early intervention with cardioprotective therapies in patients at risk of cardiotoxicity.
Collapse
Affiliation(s)
- Benedetta C Sallustio
- Department of Clinical Pharmacology, Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville South, SA, Australia.,Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Alan V Boddy
- School of Pharmacy and Medical Sciences and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
4
|
Al-Mahayri ZN, Patrinos GP, Ali BR. Toxicity and Pharmacogenomic Biomarkers in Breast Cancer Chemotherapy. Front Pharmacol 2020; 11:445. [PMID: 32351390 PMCID: PMC7174767 DOI: 10.3389/fphar.2020.00445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/20/2020] [Indexed: 02/05/2023] Open
Abstract
Breast cancer (BC) is one of the most prevalent types of cancer worldwide with high morbidity and mortality rates. Treatment modalities include systemic therapy, in which chemotherapy is a major component in many cases. Several chemotherapeutic agents are used in combinations or as single agents with many adverse events occurring in variable frequencies. These events can be a significant barrier in completing the treatment regimens. Germline genomic variants are thought of as potential determinants in chemotherapy response and the development of side effects. Some pharmacogenomic studies were designed to explore germline variants that can be used as biomarkers for predicting developing toxicity or adverse events during chemotherapy in BC. In this review, we reassess and summarize the major findings of pharmacogenomic studies of chemotherapy toxicity during BC management. In addition, deficiencies hampering utilizing these findings and the potential targets of future research are emphasized. Main insufficiencies in toxicity pharmacogenomics studies originate from study design, sample limitations, heterogeneity of selected genes, variants, and toxicity definitions. With the advent of high throughput genotyping techniques, researchers are expected to explore the identified as well as the potential genetic biomarkers of toxicity and efficacy to improve BC management. However, to achieve this, the limitations of previous work should be evaluated and avoided to reach more conclusive and translatable evidence for personalizing BC chemotherapy.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.,Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
5
|
Li R, Xu T, Wang H, Wu N, Liu F, Jia X, Mi J, Lv J, Gao H. Dysregulation of the miR-325-3p/DPAGT1 axis supports HBV-positive HCC chemoresistance. Biochem Biophys Res Commun 2019; 519:358-365. [PMID: 31519321 DOI: 10.1016/j.bbrc.2019.08.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Chemotherapeutic resistance in hepatitis B virus (HBV)-positive hepatocellular carcinoma (HCC) patients is an unfortunate side effect of standard chemotherapy. This situation necessitates a better understanding of the molecular pathways underlying HBV + HCC chemoresistance in order to aid the development of novel chemotherapeutic targets. METHODS We generated two doxorubicin (DOX)-resistant HBV + HCC sublines HepG2.2.15 and Huh7-1.3. qRT-PCR was used to evaluate dysregulation in hexosamine pathway genes in chemosensitive and chemoresistant HBV + HCC cell lines in vitro. Western blots, luciferase reporter assays, and in vivo xenograft tumor studies were conducted to reveal the role of the miRNA-325-3p/DPAGT1 axis in HBV + HCC chemoresistance. RESULTS The hexosamine pathway gene dolichyl-phosphate N-acetylglucosamine phosphotransferase 1 (DPAGT1) was found to be upregulated in both DOX-resistant cell lines. Enhancing DPAGT1 activity significantly improved the survival of DOX-resistant cells. Silencing or pharmacological inhibition of DPAGT1 inhibited xenograft tumor growth under DOX-treated conditions. DPAGT1 upregulation was associated with higher levels of stemness-related markers and ATP-binding cassette (ABC) drug efflux transporters in DOX-resistant cell lines. miR-325-3p was found to negatively modulate DPAGT1 expression and phenocopied the effects of DPAGT1 silencing in vitro and in vivo. In HBV + HCC patients treated with transarterial chemoembolization (TACE), high and low levels of tumor DPAGT1 and miR-325-3p expression, respectively, were associated with a poor chemotherapeutic response. CONCLUSIONS Our findings provide novel insights into the role of miR-325-3p/DPAGT1 axis dysregulation in supporting HBV + HCC chemoresistance.
Collapse
Affiliation(s)
- Rui Li
- Department of Immunology, Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui, China
| | - Tao Xu
- Department of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongtao Wang
- Department of Immunology, Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui, China
| | - Nan Wu
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, China
| | - Fei Liu
- Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, Department of Respiration, First Affiliated Hospital, Bengbu Medical College, China
| | - Xianjie Jia
- Department of Epidemiology, School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Mi
- Department of Epidemiology, School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Jingzhu Lv
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, Bengbu, Anhui, China.
| | - Huaiquan Gao
- Department of Epidemiology, School of Public Health, Bengbu Medical College, Bengbu, Anhui, China.
| |
Collapse
|
6
|
Wittenburg LA, Weishaar K, Ramirez D, Gustafson DL. Doxorubicin area under the curve is an important predictor of neutropenia in dogs with naturally occurring cancers. Vet Comp Oncol 2019; 17:147-154. [PMID: 30638304 DOI: 10.1111/vco.12455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/30/2022]
Abstract
Doxorubicin (DOX) area-under-the-curve (AUC) was calculated for 40 dogs with spontaneously occurring cancers using a previously validated limited-sampling approach. All dogs were administered a dose of 30 mg/m2 by intravenous infusion and serum samples were collected at 5, 45 and 60 minutes post-infusion. DOX and its major metabolite, doxorubicinol (doxol), were quantified in serum samples using high-performance liquid chromatography tandem-mass spectrometry. Wide interpatient variability was observed in the predicted DOX AUC with a coefficient of variation of 34%. A significant relationship was found between DOX AUC and absolute white blood cell count (P = 0.003), absolute neutrophil count (ANC; P = 0.002) and surviving fraction of neutrophils (P = 0.03) approximately 1 week after dosing (nadir). No changes in other hematologic parameters (red blood cells, platelets, lymphocytes, haemoglobin) were found to correlate with DOX AUC. The absolute dose (mg) and the dose per unit body weight (mg/kg) were not significantly correlated with nadir ANC. No relationships were found between maximum serum doxol concentration and myelosuppression. Baseline ANC was also significantly correlated to nadir ANC and a model was constructed using baseline ANC and DOX AUC that significantly described the nadir ANC. These findings demonstrate the important relationship between systemic DOX exposure and degree of neutropenia in dogs, and suggest a potential for individualized, pharmacokinetically-guided DOX dosing in dogs.
Collapse
Affiliation(s)
- Luke A Wittenburg
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Kristen Weishaar
- Flint Animal Cancer Center, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado
| | - Dominique Ramirez
- Flint Animal Cancer Center, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado
| | - Daniel L Gustafson
- Flint Animal Cancer Center, College of Veterinary Medicine and Biological Sciences, Colorado State University, Fort Collins, Colorado.,Comprehensive Cancer Center, University of Colorado Comprehensive Cancer Center, Aurora, Colorado
| |
Collapse
|
7
|
He H, Liu C, Wu Y, Zhang X, Fan J, Cao Y. A Multiscale Physiologically-Based Pharmacokinetic Model for Doxorubicin to Explore its Mechanisms of Cytotoxicity and Cardiotoxicity in Human Physiological Contexts. Pharm Res 2018; 35:174. [PMID: 29987398 DOI: 10.1007/s11095-018-2456-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/02/2018] [Indexed: 01/23/2023]
Abstract
PURPOSE The mechanisms underlying doxorubicin cytotoxicity and cardiotoxicity were broadly explored but remain incompletely understood. A multiscale physiologically-based pharmacokinetic (PBPK) model was developed to assess doxorubicin dispositions at levels of system, tissue interstitial, cell, and cellular organelles. This model was adopted to explore the mechanisms-of-action/toxicity of doxorubicin in humans. METHODS The PBPK model was developed by analyzing data from mice and the model was verified by scaling up to predict doxorubicin multiscale dispositions in rats and humans. The multiscale dispositions of doxorubicin in human heart and tumors were explicitly simulated to elucidate the potential mechanisms of its cytotoxicity and cardiotoxicity. RESULTS The developed PBPK model was able to adequately describe doxorubicin dispositions in mice, rats and humans. In humans, prolonged infusion, a dosing regimen with less cardiotoxicity, was predicted with substantially reduced free doxorubicin concentrations at human heart interstitium, which were lower than the concentrations associated with oxidative stress. However, prolonged infusion did not reduce doxorubicin-DNA adduct at tumor nucleus, consistent with clinical observations that prolonged infusion did not compromise anti-tumor effect, indicating that one primary anti-tumor mechanism was DNA torsion. CONCLUSIONS A multiscale PBPK model for doxorubicin was developed and further applied to explore its cytotoxic and cardiotoxic mechanisms.
Collapse
Affiliation(s)
- Hua He
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.,Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, USA
| | - Xinyuan Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Jianghong Fan
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
| |
Collapse
|
8
|
Dubbelboer IR, Lilienberg E, Sjögren E, Lennernäs H. A Model-Based Approach To Assessing the Importance of Intracellular Binding Sites in Doxorubicin Disposition. Mol Pharm 2017; 14:686-698. [PMID: 28182434 DOI: 10.1021/acs.molpharmaceut.6b00974] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Doxorubicin is an anticancer agent, which binds reversibly to topoisomerase I and II, intercalates to DNA base pairs, and generates free radicals. Doxorubicin has a high tissue:plasma partition coefficient and high intracellular binding to the nucleus and other subcellular compartments. The metabolite doxorubicinol has an extensive tissue distribution. This porcine study investigated whether the traditional implementation of tissue binding, described by the tissue:plasma partition coefficient (Kp,t), could be used to appropriately analyze and/or simulate tissue doxorubicin and doxorubicinol concentrations in healthy pigs, when applying a physiologically based pharmacokinetic (PBPK) model approach, or whether intracellular binding is required in the semi-PBPK model. Two semi-PBPK models were developed and evaluated using doxorubicin and doxorubicinol concentrations in healthy pig blood, bile, and urine and kidney and liver tissues. In the generic semi-PBPK model, tissue binding was described using the conventional Kp,t approach. In the binding-specific semi-PBPK model, tissue binding was described using intracellular binding sites. The best semi-PBPK model was validated against a second data set of healthy pig blood and bile concentrations. Both models could be used for analysis and simulations of biliary and urinary excretion of doxorubicin and doxorubicinol and plasma doxorubicinol concentrations in pigs, but the binding-specific model was better at describing plasma doxorubicin concentrations. Porcine tissue concentrations were 400- to 1250-fold better captured by the binding-specific model. This model adequately predicted plasma doxorubicin concentration-time and biliary doxorubicin excretion profiles against the validation data set. The semi-PBPK models applied were similarly effective for analysis of plasma concentrations and biliary and urinary excretion of doxorubicin and doxorubicinol in healthy pigs. Inclusion of intracellular binding in the doxorubicin semi-PBPK models was important to accurately describe tissue concentrations during in vivo conditions.
Collapse
Affiliation(s)
- Ilse R Dubbelboer
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Elsa Lilienberg
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Erik Sjögren
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | - Hans Lennernäs
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| |
Collapse
|
9
|
Khdair A, Hamad I, Alkhatib H, Bustanji Y, Mohammad M, Tayem R, Aiedeh K. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin. Eur J Pharm Sci 2016; 93:38-44. [DOI: 10.1016/j.ejps.2016.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/15/2016] [Indexed: 01/21/2023]
|
10
|
Sági JC, Kutszegi N, Kelemen A, Fodor LE, Gézsi A, Kovács GT, Erdélyi DJ, Szalai C, Semsei ÁF. Pharmacogenetics of anthracyclines. Pharmacogenomics 2016; 17:1075-87. [DOI: 10.2217/pgs-2016-0036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Anthracyclines constitute a fundamental part of the chemotherapy regimens utilized to treat a number of different malignancies both in pediatric and adult patients. These drugs are one of the most efficacious anticancer agents ever invented. On the other hand, anthracyclines are cardiotoxic. Childhood cancer survivors treated with anthracyclines often undergo cardiac complications which are influenced by genetic variations of the patients. The scientific literature comprises numerous investigations in the subject of the pharmacogenetics of anthracyclines. In this review, we provide a comprehensive overview of this research topic. Genetic variants are proposed targets in the personalized treatment in order to individualize dosing and therefore reduce side effects.
Collapse
Affiliation(s)
- Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Nóra Kutszegi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Andrea Kelemen
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Lili E Fodor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Gábor T Kovács
- Second Department of Pediatrics, Semmelweis University, H-1094 Budapest, Tűzoltó utca 7–9, Hungary
| | - Dániel J Erdélyi
- Second Department of Pediatrics, Semmelweis University, H-1094 Budapest, Tűzoltó utca 7–9, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
- Central Laboratory, Heim Pal Children Hospital, H-1089 Budapest, Üllői út 86, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| |
Collapse
|
11
|
Chen S, Zhang Y, Zhang D. Endoplasmic reticulum protein 29 (ERp29) confers radioresistance through the DNA repair gene, O(6)-methylguanine DNA-methyltransferase, in breast cancer cells. Sci Rep 2015; 5:14723. [PMID: 26420420 PMCID: PMC4588584 DOI: 10.1038/srep14723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/03/2015] [Indexed: 11/23/2022] Open
Abstract
Resistance of cancer cells to radiotherapy is a major clinical problem in cancer treatment. Therefore, understanding the molecular basis of cellular resistance to radiotherapy and identification of novel targets are essential for improving treatment efficacy for cancer patients. Our previous studies have demonstrated a significant role of ERp29 in breast cancer cell survival against doxorubicin-induced genotoxic stress. We here reported that ERp29 expression in the triple negative MDA-MB-231 breast cancer cells significantly increased cell survival against ionizing radiation. Methylation PCR array analysis identified that ERp29 expression increased promoter hypomethylation of the DNA repair gene, O6-methylguanine DNA-methyltransferase (MGMT), by downregulating DNA methyltransferase 1. Knockdown of MGMT in the ERp29-transfected cancer cells increased radiosensitivity, leading to a decreased post-irradiation survival. In addition, radiation treatment in the MGMT-knockdown cells elevated phosphorylation of γ-H2AX and cleavage of caspase 3, indicating that depletion of MGMT facilitates DNA double strands breaks and increases cell apoptosis. Hence, our studies prove a novel function of ERp29\MGMT in cancer cell survival against radiation. Targeting ERp29\MGMT axis may be useful for providing better treatment efficacy in combination with radiotherapy in breast cancer.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, China
| | - Daohai Zhang
- Caner Research Group, The Canberra Hospital, ANU Medical School, Australia National University, ACT 2605, Australia
| |
Collapse
|
12
|
Zhou X, Wang Y, Lee WYW, Or PMY, Wan DCC, Kwan YW, Yeung JHK. Miltirone Is a Dual Inhibitor of P-Glycoprotein and Cell Growth in Doxorubicin-Resistant HepG2 Cells. JOURNAL OF NATURAL PRODUCTS 2015; 78:2266-2275. [PMID: 26339922 DOI: 10.1021/acs.jnatprod.5b00516] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Miltirone (1), an abietane-type diterpene quinone isolated from Salvia miltiorrhiza, possesses anticancer activity in p-glycoprotein (P-gp)-overexpressing human cancer cells. Results of the current study suggest a dual effect of miltirone on P-gp inhibition and apoptotic induction in a human hepatoma HepG2 cell line and its P-gp-overexpressing doxorubicin-resistant counterpart (R-HepG2). Miltirone (1) elicited a concentration-dependent cytotoxicity, with a similar potency (EC50 ≈ 7-12 μM), in HepG2 and R-HepG2 cells. Miltirone (1) (1.56-6.25 μM) produced synergistic effects on doxorubicin (DOX)-induced growth inhibition of R-HepG2 (synergism: 0.3 < combination index < 0.5). Molecular docking studies illustrated that miltirone (1) interacted with the active site of P-gp with a higher binding affinity than DOX, suggesting that it was a P-gp inhibitor. Flow cytometric analysis confirmed miltirone (1) as a competitive inhibitor of P-gp. At non-necrotic concentrations (1.56-25 μM), miltirone (1) activated caspase-dependent apoptotic pathways and triggered the generation of reactive oxygen species (ROS) and ROS-mediated mitogen-activated protein kinase (MAPK) signaling pathways (e.g., p38 MAPK, stress-activated protein kinase/c-Jun N-terminal kinase, and extracellular regulated kinase 1/2) in both HepG2 and R-HepG2 cells. Thus, we conclude that miltirone (1) is a dual inhibitor of P-gp and cell growth in human drug-resistant hepatoma cells.
Collapse
Affiliation(s)
- Xuelin Zhou
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - Yan Wang
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - Wayne Y W Lee
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - Penelope M Y Or
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - David C C Wan
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - Yiu Wa Kwan
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| | - John H K Yeung
- School of Biomedical Sciences, ⊥Department of Orthopaedics & Traumatology, Faculty of Medicine, ‡Institute of Chinese Medicine, and §State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong , Hong Kong, People's Republic of China
| |
Collapse
|
13
|
Rathore K, Cekanova M. A novel derivative of doxorubicin, AD198, inhibits canine transitional cell carcinoma and osteosarcoma cells in vitro. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5323-35. [PMID: 26451087 PMCID: PMC4590339 DOI: 10.2147/dddt.s90859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Doxorubicin (DOX) is one of the most commonly used chemotherapeutic treatments for a wide range of cancers. N-benzyladriamycin-14-valerate (AD198) is a lipophilic anthracycline that has been shown to target conventional and novel isoforms of protein kinase C (PKC) in cytoplasm of cells. Because of the adverse effects of DOX, including hair loss, nausea, vomiting, liver dysfunction, and cardiotoxicity, novel derivatives of DOX have been synthesized and validated. In this study, we evaluated the effects of DOX and its derivative, AD198, on cell viability of three canine transitional cell carcinoma (K9TCC) (K9TCC#1-Lillie, K9TCC#2-Dakota, K9TCC#4-Molly) and three canine osteosarcoma (K9OSA) (K9OSA#1-Zoe, K9OSA#2-Nashville, K9OSA#3-JJ) primary cancer cell lines. DOX and AD198 significantly inhibited cell proliferation in all tested K9TCC and K9OSA cell lines in a dose-dependent manner. AD198 inhibited cell viability of tested K9TCC and K9OSA cell lines more efficiently as compared to DOX at the same concentration using MTS (3-(4,5-dimethyl-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium) assay. AD198 had lower IC50 values as compared to DOX for all tested K9TCC and K9OSA cell lines. In addition, AD198 increased apoptosis in all tested K9TCC and K9OSA cell lines. AD198 increased the caspase activity in tested K9TCC and K9OSA cell lines, which was confirmed by caspase-3/7 assay, and cleavage of poly (ADP-ribose) polymerase (PARP) was confirmed by Western blotting analysis. In addition, AD198 cleaved PKC-δ, which subsequently activated the p38 signaling pathway, resulting in the apoptosis of tested K9TCC and K9OSA cell lines. Inhibition of the p38 signaling pathway by SB203580 rescued DOX- and AD198-induced apoptosis in tested K9TCC and K9OSA cell lines. Our in vitro results suggest that AD198 might be considered as a new treatment option for K9TCC and K9OSA cell lines cancers in vivo.
Collapse
Affiliation(s)
- Kusum Rathore
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| | - Maria Cekanova
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
14
|
Nguyen TTT, Lim JSL, Tang RMY, Zhang L, Chen ES. Fitness profiling links topoisomerase II regulation of centromeric integrity to doxorubicin resistance in fission yeast. Sci Rep 2015; 5:8400. [PMID: 25669599 PMCID: PMC4323662 DOI: 10.1038/srep08400] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/14/2015] [Indexed: 01/18/2023] Open
Abstract
Doxorubicin, a chemotherapeutic agent, inhibits the religation step of topoisomerase II (Top2). However, the downstream ramifications of this action are unknown. Here we performed epistasis analyses of top2 with 63 genes representing doxorubicin resistance (DXR) genes in fission yeast and revealed a subset that synergistically collaborate with Top2 to confer DXR. Our findings show that the chromatin-regulating RSC and SAGA complexes act with Top2 in a cluster that is functionally distinct from the Ino80 complex. In various DXR mutants, doxorubicin hypersensitivity was unexpectedly suppressed by a concomitant top2 mutation. Several DXR proteins showed centromeric localization, and their disruption resulted in centromeric defects and chromosome missegregation. An additional top2 mutation could restore centromeric chromatin integrity, suggesting a counterbalance between Top2 and these DXR factors in conferring doxorubicin resistance. Overall, this molecular basis for mitotic catastrophe associated with doxorubicin treatment will help to facilitate drug combinatorial usage in doxorubicin-related chemotherapeutic regimens.
Collapse
Affiliation(s)
- Thi Thuy Trang Nguyen
- 1] Department of Biochemistry, National University of Singapore, Singapore 117597 [2] National University Health System (NUHS), Singapore
| | - Julia Sze Lynn Lim
- 1] Department of Biochemistry, National University of Singapore, Singapore 117597 [2] National University Health System (NUHS), Singapore
| | - Richard Ming Yi Tang
- 1] Department of Biochemistry, National University of Singapore, Singapore 117597 [2] National University Health System (NUHS), Singapore
| | - Louxin Zhang
- 1] NUS Graduate School for Integrative Sciences and Engineering [2] Department of Mathematics, National University of Singapore, Singapore 119076
| | - Ee Sin Chen
- 1] Department of Biochemistry, National University of Singapore, Singapore 117597 [2] National University Health System (NUHS), Singapore [3] Synthetic Biology Research Consortium, National University of Singapore [4] NUS Graduate School for Integrative Sciences and Engineering
| |
Collapse
|
15
|
Jordheim LP, Ribrag V, Ghesquieres H, Pallardy S, Delarue R, Tilly H, Haioun C, Jardin F, Demangel D, Salles GA, Dumontet C. Single nucleotide polymorphisms in ABCB1 and CBR1 can predict toxicity to R-CHOP type regimens in patients with diffuse non-Hodgkin lymphoma. Haematologica 2015; 100:e204-6. [PMID: 25637052 DOI: 10.3324/haematol.2014.120113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Lars P Jordheim
- Anticancer Antibody Team, INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon, France Hospices Civils de Lyon, France ProfileXpert, Lyon, France
| | | | | | | | | | | | | | - Fabrice Jardin
- Hematology, INSERM U918, Centre Henri Becquerel, Rouen, France
| | | | - Gilles A Salles
- Hospices Civils de Lyon, Centre Hospitalier Universitaire Lyon-Sud, Hématologie, Université Lyon 1, UMR 5239 CNRS, France
| | - Charles Dumontet
- Anticancer Antibody Team, INSERM U1052, CNRS UMR 5286, Cancer Research Center of Lyon, France Hospices Civils de Lyon, France ProfileXpert, Lyon, France Laboratory of Hematology, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
16
|
Jung KA, Choi BH, Kwak MK. The c-MET/PI3K signaling is associated with cancer resistance to doxorubicin and photodynamic therapy by elevating BCRP/ABCG2 expression. Mol Pharmacol 2014; 87:465-76. [PMID: 25534417 DOI: 10.1124/mol.114.096065] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Overexpression of BCRP/ABCG2, a xenobiotic efflux transporter, is associated with anticancer drug resistance in tumors. Proto-oncogene c-MET induces cancer cell proliferation, motility, and survival, and its aberrant activation was found to be a prognostic factor in advanced ovarian cancers. In the present study, we investigated the potential crossresistance of doxorubicin-resistant ovarian cancer cells to the pheophorbide a (Pba)-based photodynamic therapy (PDT), and suggest c-MET and BCRP/ABCG2 overexpression as an underlying molecular mechanism. The doxorubicin-resistant A2780 cell line (A2780DR), which was established by incubating A2780 with stepwise increasing concentrations of doxorubicin, showed low levels of cellular Pba accumulation and reactive oxygen species generation, and was more resistant to PDT cytotoxicity than A2780. In a microarray analysis, BCRP/ABCG2 was found to be the only drug transporter whose expression was upregulated in A2780DR; this increase was confirmed by Western blot and immunocytochemical analyses. As functional evidence, the treatment with a BCRP/ABCG2-specific inhibitor reversed A2780DR resistance to both doxorubicin and PDT. We identified that c-MET increase is related to BCRP/ABCG2 activation. The c-MET downstream phosphoinositide 3-kinase (PI3K)/AKT signaling was activated in A2780DR and the inhibition of PI3K/AKT or c-MET repressed resistance to doxorubicin and PDT. Finally, we showed that the pharmacological and genetic inhibition of c-MET diminished levels of BCRP/ABCG2 in A2780DR. Moreover, c-MET inhibition could repress BCRP/ABCG2 expression in breast carcinoma MDA-MB-231 and colon carcinoma HT29, resulting in sensitization to doxorubicin. Collectively, our results provide a novel link of c-MET overexpression to BCRP/ABCG2 activation, suggesting that this mechanism leads to crossresistance to both chemotherapy and PDT.
Collapse
Affiliation(s)
- Kyeong-Ah Jung
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea (K.-A.J., B.C., M.-K.K.)
| | - Bo-Hyun Choi
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea (K.-A.J., B.C., M.-K.K.)
| | - Mi-Kyoung Kwak
- College of Pharmacy, The Catholic University of Korea, Bucheon, Gyeonggi-do, Republic of Korea (K.-A.J., B.C., M.-K.K.)
| |
Collapse
|
17
|
Schaupp CM, White CC, Merrill GF, Kavanagh TJ. Metabolism of doxorubicin to the cardiotoxic metabolite doxorubicinol is increased in a mouse model of chronic glutathione deficiency: A potential role for carbonyl reductase 3. Chem Biol Interact 2014; 234:154-61. [PMID: 25446851 DOI: 10.1016/j.cbi.2014.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 11/30/2022]
Abstract
Doxorubicin is highly effective at inducing DNA double-strand breaks in rapidly dividing cells, which has led to it being a widely used cancer chemotherapeutic. However, clinical administration of doxorubicin is limited by off-target cardiotoxicity, which is thought to be mediated by doxorubicinol, the primary alcohol metabolite of doxorubicin. Carbonyl reductase 1 (CBR1), a well-characterized monomeric enzyme present at high basal levels in the liver, is known to exhibit activity toward doxorubicin. Little is known about a closely related enzyme, carbonyl reductase 3 (CBR3), which is present in the liver at low basal levels but is highly inducible by the transcription factor Nrf2. Genetic polymorphisms in CBR3, but not CBR1, are associated with differential cardiac outcomes in doxorubicin treated pediatric patients. Cbr3 mRNA and CBR3 protein are highly expressed in the livers of Gclm-/- mice (a mouse model of glutathione deficiency) relative to wild type mice. In the present study, we first investigated the ability of CBR3 to metabolize doxorubicin. Incubations of doxorubicin and purified recombinant murine CBR3 (mCBR3) were analyzed for doxorubicinol formation using HPLC, revealing for the first time that doxorubicin is a substrate of mCBR3. Moreover, hepatocytes from Gclm-/- mice produced more doxorubicinol than Gclm+/+ hepatocytes. In addition, differentiated rat myoblasts (C2C12 cells) co-cultured with primary Gclm-/- murine hepatocytes were more sensitive to doxorubicin-induced cytostasis/cytotoxicity than incubations with Gclm+/+ hepatocytes. Our results indicate a potentially important role for CBR3 in doxorubicin-induced cardiotoxicity. Because there is likely to be variability in hepatic CBR3 activity in humans (due to either genetic or epigenetic influences on its expression), these data also suggest that inhibition of CBR3 may provide protection from doxorubicinol cardiotoxicity.
Collapse
Affiliation(s)
- Christopher M Schaupp
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States
| | - Collin C White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States
| | - Gary F Merrill
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, United States.
| |
Collapse
|
18
|
Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology. Biosci Rep 2014; 34:BSR20140021. [PMID: 24877606 PMCID: PMC4069681 DOI: 10.1042/bsr20140021] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine.
Collapse
|
19
|
Paioli A, Luksch R, Fagioli F, Tamburini A, Cesari M, Palmerini E, Abate ME, Marchesi E, Balladelli A, Pratelli L, Ferrari S. Chemotherapy-related toxicity in patients with non-metastatic Ewing sarcoma: influence of sex and age. J Chemother 2013; 26:49-56. [PMID: 24091100 DOI: 10.1179/1973947813y.0000000103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Influence of age and sex on chemotherapy-related toxicity was evaluated in children (3-9 years), adolescents (10-17 years), and adults (up to 40 years) with localized Ewing sarcoma (ES) enrolled in the ISG/SSG III protocol. Treatment was based on vincristine, doxorubicin, cyclophosphamide, ifosfamide, dactinomycin, and etoposide. High-dose chemotherapy with busulfan and melphalan was given in poor responder patients. The analysis was based on 2191 courses of standard chemotherapy and 230 patients. A lower risk of G4 leukopenia and thrombocytopenia, hospitalization, febrile neutropenia, and red blood cell (RBC) transfusions was observed in males. Use of granulocyte colony-stimulating factor (G-CSF) was more frequent in adults, while children more often received RBC transfusions. A significant correlation between sex and chemotherapy-related toxicity was observed in the study, whereas no significant differences in terms of bone marrow toxicity can be expected according to patient age. Further studies should analyse the role of pharmacokinetics, pharmacogenomics, and clinical characteristics.
Collapse
|
20
|
Lilienberg E, Ebeling Barbier C, Nyman R, Hedeland M, Bondesson U, Axén N, Lennernäs H. Investigation of hepatobiliary disposition of doxorubicin following intrahepatic delivery of different dosage forms. Mol Pharm 2013; 11:131-44. [PMID: 24171458 DOI: 10.1021/mp4002574] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unresectable, intermediate stage hepatocellular carcinoma (HCC) is often treated palliatively in humans by doxorubicin (DOX). The drug is administered either as a drug-emulsified-in-Lipiodol (DLIP) or as drug loaded into drug eluting beads (DEB), and both formulations are administered intrahepatically. However, several aspects of their in vivo performance in the liver are still not well-understood. In this study, DLIP and DEB were investigated regarding the local and systemic pharmacokinetics (PK) of DOX and its primary metabolite doxorubicinol (DOXol). An advanced PK-multisampling site acute in vivo pig model was used for simultaneous sampling in the portal, hepatic, and femoral veins and the bile duct. The study had a randomized, parallel design with four treatment groups (TI-TIV). TI (n = 4) was used as control and received an intravenous (i.v.) infusion of DOX as a solution. TII and TIII were given a local injection in the hepatic artery with DLIP (n = 4) or DEB (n = 4), respectively. TIV (n = 2) received local injections of DLIP in the hepatic artery and bile duct simultaneously. All samples were analyzed for concentrations of DOX and DOXol with UPLC-MS/MS. Compared to DLIP, the systemic exposure for DOX with DEB was reduced (p < 0.05), in agreement with a slower in vivo release. The approximated intracellular bioavailability of DOX during 6 h appeared to be lower for DEB than DLIP. Following i.v. infusion (55 min), DOX had a liver extraction of 41 (28-53)%, and the fraction of the dose eliminated in bile of DOX and DOXol was 20 (15-22)% and 4.2 (3.2-5.2)%, respectively. The AUCbile/AUCVP for DOX and DOXol was 640 (580-660) and 5000 (3900-5400), respectively. In conclusion, DLIP might initially deliver a higher hepatocellular concentration of DOX than DEB as a consequence of its higher in vivo release rate. Thus, DLIP delivery results in higher intracellular peak concentrations that might correlate with better anticancer effects, but also higher systemic drug exposure and safety issues.
Collapse
Affiliation(s)
- Elsa Lilienberg
- Department of Pharmacy, Uppsala University , Box 580, 751 23 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
21
|
Mete R, Oran M, Topcu B, Oznur M, Seber ES, Gedikbasi A, Yetisyigit T. Protective effects of onion (Allium cepa) extract against doxorubicin-induced hepatotoxicity in rats. Toxicol Ind Health 2013; 32:551-7. [DOI: 10.1177/0748233713504807] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background/aim: Doxorubicin (DOX) is a widely used and potent chemotherapeutic agent. However, serious dose-limiting toxicity through generation of free oxygen radicals is a commonly encountered clinical problem. The aim of the current study was to assess the protective role of onion ( Allium cepa) extract (ACE) against DOX-induced hepatotoxicity in rats. Method: A total of 24 rats were randomly divided into 3 equal experimental groups: (1) DOX; (2) ACE + DOX; and (3) control groups. ACE was given orally as 1 mL of fresh ACE juice for 14 consecutive days followed by DOX injection. DOX was injected intraperitoneally in a single dose of 30 mg/kg body weight to induce hepatotoxicity, and the rats were killed after 48 h from injection. Control group was given saline only. Results: In the ACE pretreated group (ACE + DOX), serum aspartate transaminase, alanine transaminase, and tissue malondialdehyde and glutathione levels were significantly lower, while superoxide dismutase and glutathione peroxidase were higher compared with the DOX group. The histopathological examination of liver specimens revealed parenchymal necrosis, proliferation of biliary duct in DOX group; while ACE pretreatment provided marked reduction in these changes. Conclusion: Our study indicates that pretreatment with ACE protects against DOX-induced hepatotoxicity due to the antioxidant properties of ACE. Further studies on efficacy of antioxidant treatment by ACE in DOX-mediated toxicity and underlying mechanisms would provide a better explanation.
Collapse
Affiliation(s)
- Rafet Mete
- Department of Gastroenterology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Mustafa Oran
- Department of Internal Medicine, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Birol Topcu
- Department of Biostatistics, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Meltem Oznur
- Department of Pathology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | | | - Asuman Gedikbasi
- Biochemistry Department, Sadi Konuk Research and Training Hospital, İstanbul, Turkey
| | - Tarkan Yetisyigit
- Department of Medical Oncology, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
22
|
Churko JM, Mantalas GL, Snyder MP, Wu JC. Overview of high throughput sequencing technologies to elucidate molecular pathways in cardiovascular diseases. Circ Res 2013; 112:1613-23. [PMID: 23743227 PMCID: PMC3831009 DOI: 10.1161/circresaha.113.300939] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
High throughput sequencing technologies have become essential in studies on genomics, epigenomics, and transcriptomics. Although sequencing information has traditionally been elucidated using a low throughput technique called Sanger sequencing, high throughput sequencing technologies are capable of sequencing multiple DNA molecules in parallel, enabling hundreds of millions of DNA molecules to be sequenced at a time. This advantage allows high throughput sequencing to be used to create large data sets, generating more comprehensive insights into the cellular genomic and transcriptomic signatures of various diseases and developmental stages. Within high throughput sequencing technologies, whole exome sequencing can be used to identify novel variants and other mutations that may underlie many genetic cardiac disorders, whereas RNA sequencing can be used to analyze how the transcriptome changes. Chromatin immunoprecipitation sequencing and methylation sequencing can be used to identify epigenetic changes, whereas ribosome sequencing can be used to determine which mRNA transcripts are actively being translated. In this review, we will outline the differences in various sequencing modalities and examine the main sequencing platforms on the market in terms of their relative read depths, speeds, and costs. Finally, we will discuss the development of future sequencing platforms and how these new technologies may improve on current sequencing platforms. Ultimately, these sequencing technologies will be instrumental in further delineating how the cardiovascular system develops and how perturbations in DNA and RNA can lead to cardiovascular disease.
Collapse
Affiliation(s)
- Jared M. Churko
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gary L. Mantalas
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Departments of Medicine and Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
23
|
Gervasini G, Vagace JM. Impact of genetic polymorphisms on chemotherapy toxicity in childhood acute lymphoblastic leukemia. Front Genet 2012; 3:249. [PMID: 23189085 PMCID: PMC3504364 DOI: 10.3389/fgene.2012.00249] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
The efficacy of chemotherapy in pediatric acute lymphoblastic leukemia (ALL) patients has significantly increased in the last 20 years; as a result, the focus of research is slowly shifting from trying to increase survival rates to reduce chemotherapy-related toxicity. At the present time, the cornerstone of therapy for ALL is still formed by a reduced number of drugs with a highly toxic profile. In recent years, a number of genetic polymorphisms have been identified that can play a significant role in modifying the pharmacokinetics and pharmacodynamics of these drugs. The best example is that of the TPMT gene, whose genotyping is being incorporated to clinical practice in order to individualize doses of mercaptopurine. However, there are additional genes that are relevant for the metabolism, activity, and/or transport of other chemotherapy drugs that are widely use in ALL, such as methotrexate, cyclophosphamide, vincristine, L-asparaginase, etoposide, cytarabine, or cytotoxic antibiotics. These genes can also be affected by genetic alterations that could therefore have clinical consequences. In this review we will discuss recent data on this field, with special focus on those polymorphisms that could be used in clinical practice to tailor chemotherapy for ALL in order to reduce the occurrence of serious adverse effects.
Collapse
Affiliation(s)
- Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Division of Pharmacology, Medical School, University of Extremadura Badajoz, Spain
| | | |
Collapse
|
24
|
Drug-induced oxidative stress and toxicity. J Toxicol 2012; 2012:645460. [PMID: 22919381 PMCID: PMC3420138 DOI: 10.1155/2012/645460] [Citation(s) in RCA: 398] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity.
Collapse
|