1
|
Zou MJ, Cheng XR, Liu RF. lncRNA DLG1-AS1 promotes cervical cancer cell gemcitabine resistance by regulating miR-16-5p/HDGF. J Obstet Gynaecol Res 2022; 48:1836-1847. [PMID: 35388952 DOI: 10.1111/jog.15245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 12/22/2022]
Abstract
AIM To investigate the long non-coding RNA DLG1 Antisense RNA 1 (lncRNA DLG1-AS1) mechanism in cervical cancer cells with gemcitabine (GEM) resistance. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect DLG1-AS1, miR-16-5p, and hepatoma-derived growth factor (HDGF) expression in cervical cancer cells. The effects of DLG1-AS1 knockdown on cell viability, proliferation, and apoptosis were investigated in GEM-resistant cervical cancer cells. The binding of DLG1-AS1 with miR-16-5p and of miR-16-5p with HDGF was confirmed through dual-luciferase reporter assays. HDGF expression was detected through Western blotting. A xenograft model was established using stably transfected GEM-resistant cervical cancer cells to detect the role of DLG1-AS1 in tumorigenesis in vivo. RESULTS DLG1-AS1 expression was significantly elevated in HeLa/GEM and SiHa/GEM cells. DLG1-AS1 silencing significantly reduced the viability and proliferation of GEM-resistant cervical cancer cells. DLG1-AS1 also promoted GEM sensitivity in cervical cancer cells by inhibiting miR-16-5p. Moreover, the tumor volume in nude mice in the DLG1-AS1 knockdown group decreased after GEM treatment. In addition, DLG1-AS1 targeted miR-16-5p, and miR-16-5p targeted HDGF. The miR-16-5p inhibitor reversed the DLG1-AS1 knockdown effect in GEM-resistant cervical cancer cells. CONCLUSION Knockdown of DLG1-AS1 promoted GEM sensitivity in cervical cancer cells by regulating miR-16-5p/HDGF.
Collapse
Affiliation(s)
- Min-Jun Zou
- Department of Pharmacy, The People's Hospital of Zhongshan City, Zhongshan, Guangdong Province, China
| | - Xiao-Rong Cheng
- Department of Pharmacy, The People's Hospital of Zhongshan City, Zhongshan, Guangdong Province, China
| | - Rui-Feng Liu
- Department of Pharmacy, The People's Hospital of Zhongshan City, Zhongshan, Guangdong Province, China
| |
Collapse
|
2
|
Kulhari H, Pooja D, Kota R, Reddy TS, Tabor RF, Shukla R, Adams DJ, Sistla R, Bansal V. Cyclic RGDfK Peptide Functionalized Polymeric Nanocarriers for Targeting Gemcitabine to Ovarian Cancer Cells. Mol Pharm 2016; 13:1491-500. [DOI: 10.1021/acs.molpharmaceut.5b00935] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hitesh Kulhari
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory,
School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Health
Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
- IICT-RMIT
Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Deep Pooja
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory,
School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Raju Kota
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - T. Srinivasa Reddy
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory,
School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Health
Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
- IICT-RMIT
Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Rico F. Tabor
- School
of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Ravi Shukla
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory,
School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Health
Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
| | - David J. Adams
- Health
Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
| | - Ramakrishna Sistla
- Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
| | - Vipul Bansal
- Ian
Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory,
School of Science, RMIT University, Melbourne, VIC 3001, Australia
- Health
Innovations Research Institute, RMIT University, Melbourne, VIC 3083, Australia
| |
Collapse
|
3
|
Biocompatible gemcitabine-based nanomedicine engineered by Flow Focusing for efficient antitumor activity. Int J Pharm 2013; 443:103-9. [PMID: 23299085 DOI: 10.1016/j.ijpharm.2012.12.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/21/2012] [Accepted: 12/30/2012] [Indexed: 11/22/2022]
Abstract
We investigated the incorporation of gemcitabine into a colloidal carrier based on the biodegradable and biocompatible poly(d,l-lactide-co-glycolide) (PLGA) to optimize its anticancer activity. Two synthesis techniques (double emulsion/solvent evaporation, and Flow Focusing) were compared in terms of particle geometry, electrophoretic properties (surface charge), gemcitabine vehiculization capabilities (drug loading and release), blood compatibility, and in vitro antitumor activity. To the best of our knowledge, the second formulation methodology (Flow Focusing) has never been applied to the synthesis of gemcitabine-loaded PLGA particles. With the aim of achieving the finest (nano)formulation, experimental parameters associated to these preparation procedures were analyzed. The electrokinetics of the particles suggested that the chemotherapy agent was incorporated into the polymeric matrix. Blood compatibility was demonstrated in vitro. Flow Focusing led to a more appropriate geometry, higher gemcitabine loading and a sustained release profile. In addition, the cytotoxicity of gemcitabine-loaded particles prepared by Flow Focusing was tested in MCF-7 human breast adenocarcinoma cells, showing significantly greater antitumor activity compared to the free drug and to the gemcitabine-loaded particles synthesized by double emulsion/solvent evaporation. Thus, it has been identified the more adequate formulation conditions in the engineering of gemcitabine-loaded PLGA nanoparticles for the effective treatment of tumours.
Collapse
|
4
|
Candelaria M, de la Cruz-Hernandez E, Taja-Chayeb L, Perez-Cardenas E, Trejo-Becerril C, Gonzalez-Fierro A, Chavez-Blanco A, Soto-Reyes E, Dominguez G, Trujillo JE, Diaz-Chavez J, Duenas-Gonzalez A. DNA methylation-independent reversion of gemcitabine resistance by hydralazine in cervical cancer cells. PLoS One 2012; 7:e29181. [PMID: 22427797 PMCID: PMC3299634 DOI: 10.1371/journal.pone.0029181] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 11/22/2011] [Indexed: 11/18/2022] Open
Abstract
Background Down regulation of genes coding for nucleoside transporters and drug metabolism responsible for uptake and metabolic activation of the nucleoside gemcitabine is related with acquired tumor resistance against this agent. Hydralazine has been shown to reverse doxorubicin resistance in a model of breast cancer. Here we wanted to investigate whether epigenetic mechanisms are responsible for acquiring resistance to gemcitabine and if hydralazine could restore gemcitabine sensitivity in cervical cancer cells. Methodology/Principal Findings The cervical cancer cell line CaLo cell line was cultured in the presence of increasing concentrations of gemcitabine. Down-regulation of hENT1 & dCK genes was observed in the resistant cells (CaLoGR) which was not associated with promoter methylation. Treatment with hydralazine reversed gemcitabine resistance and led to hENT1 and dCK gene reactivation in a DNA promoter methylation-independent manner. No changes in HDAC total activity nor in H3 and H4 acetylation at these promoters were observed. ChIP analysis showed H3K9m2 at hENT1 and dCK gene promoters which correlated with hyper-expression of G9A histone methyltransferase at RNA and protein level in the resistant cells. Hydralazine inhibited G9A methyltransferase activity in vitro and depletion of the G9A gene by iRNA restored gemcitabine sensitivity. Conclusions/Significance Our results demonstrate that acquired gemcitabine resistance is associated with DNA promoter methylation-independent hENT1 and dCK gene down-regulation and hyper-expression of G9A methyltransferase. Hydralazine reverts gemcitabine resistance in cervical cancer cells via inhibition of G9A histone methyltransferase.
Collapse
Affiliation(s)
- Myrna Candelaria
- Division of Clinical Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | - Lucia Taja-Chayeb
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | | | | | | | - Alma Chavez-Blanco
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Ernesto Soto-Reyes
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Guadalupe Dominguez
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Jaenai E. Trujillo
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Jose Diaz-Chavez
- Division of Basic Research, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Alfonso Duenas-Gonzalez
- Unit of Biomedical Research in Cancer. Instituto Nacional de Cancerologia/Instituto de Investigaciones Biomedicas UNAM, Mexico City, Mexico
- * E-mail:
| |
Collapse
|